JPH03237763A - Solar cell array - Google Patents

Solar cell array

Info

Publication number
JPH03237763A
JPH03237763A JP2034928A JP3492890A JPH03237763A JP H03237763 A JPH03237763 A JP H03237763A JP 2034928 A JP2034928 A JP 2034928A JP 3492890 A JP3492890 A JP 3492890A JP H03237763 A JPH03237763 A JP H03237763A
Authority
JP
Japan
Prior art keywords
solar cell
cell array
electromotive force
cell module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2034928A
Other languages
Japanese (ja)
Inventor
Katsuyuki Konishi
勝之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2034928A priority Critical patent/JPH03237763A/en
Publication of JPH03237763A publication Critical patent/JPH03237763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a solar cell array which does not cause electromagnetic damages to a load to be bonded when radio waves from the outside penetrate each solar cell module, by constituting the array in the manner in which the directions of photoelectric currents flowing in electric loops of a pair of solar cell modules become opposite to each other. CONSTITUTION:A positive pole 51 and a negative pole 61 of a solar cell module 1 are connected with a positive pole 5 of a solar cell array 100 and a positive pole 52 of a solar cell module 2, respectively. A negative pole 62 of the module 2 is connected with a negative pole 6 of the solar cell array 100. Hence the directions of photoelectric currents 81 and 82 become opposite to each other. The areas surrounded by electric loops 71 and 72 are made equal. By this constitution, when magnetic flux penetrates the electric loops 71 and 72 from the outside, the induced electromotive force 101 generated in the loop 71 and the induced electromotive force 102 generated in the loop 72 are cancelled, so that the electromotive force does not appear on the outside.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は太陽電池アレイの構造に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to the structure of a solar cell array.

〈従来の技術〉 従来の太陽電池アレイについて、第6図乃至第8図に従
って説明する。
<Prior Art> A conventional solar cell array will be described with reference to FIGS. 6 to 8.

1ず、−膜内に太陽電池モジュール1は第6図のような
構造になって釦り、太陽電池セル3とリードフレーム4
が連続的に接続された電気的ルー17を構成していると
考えることが出来、光生成電流8がこの電気的ループ7
に沿って流れる。なか、5は正極、6は負極である。
1.-The solar cell module 1 has a structure as shown in FIG.
can be thought of as constituting an electrical loop 17 connected continuously, and the photogenerated current 8 flows through this electrical loop 7.
flows along. Among them, 5 is a positive electrode, and 6 is a negative electrode.

従来は、上記太陽電池モジュール1’4直列及び並列に
接続して太陽電池アレイを構威し、必要とする電力を得
ていた。直列接続及び並列接続による従来の太陽電池ア
レイの例をそれぞれ第7図及び第8図に示す。図中、8
は受光によって発生する光生成電流、lOは後述するよ
うに、太陽電池モジニー/I/1の電気的ルー17を磁
束9が貫通する際に発生する誘導起電圧、またttFi
出カケ−プルである。
Conventionally, the solar cell modules 1' were connected in series and in parallel to form a solar cell array to obtain the required power. Examples of conventional solar cell arrays with series and parallel connections are shown in FIGS. 7 and 8, respectively. In the figure, 8
is the photogenerated current generated by light reception, lO is the induced electromotive force generated when the magnetic flux 9 passes through the electrical loop 17 of the solar cell Modiny/I/1, and ttFi is
This is the output cable.

〈発明が解決しようとする課題〉 ところで、太陽電池アレイの至近距離での落雷や至近距
離に置かれたバラポラアンテナ或は高圧送電線などによ
って空中に放出される強方な電磁波によって、上記太陽
電池アレイに電磁障害が生しる場合がある。これは、上
記の強力な電磁波が太陽電池アレイを構成する各太陽電
池モジュール!を貫通することによって発生する電磁誘
導に起因する電圧が発生するためである。
<Problems to be Solved by the Invention> By the way, strong electromagnetic waves emitted into the air by lightning strikes at close range of solar cell arrays, scattered antennas placed at close range, high-voltage power transmission lines, etc. Electromagnetic interference may occur in the battery array. This is because the strong electromagnetic waves above each solar module that make up the solar array! This is because a voltage is generated due to electromagnetic induction generated by penetrating the

ぺ 詳細に説明すると、空中を皐搬する電磁波(磁束変化の
波)が、導電性の物質で構成されたループを貫くとき、
そこに発生する誘導起電力Vは「電磁誘導の法則」によ
シ、次式で表すことが出来る。
To explain in detail, when electromagnetic waves (waves of magnetic flux changes) traveling through the air penetrate a loop made of conductive material,
The induced electromotive force V generated therein can be expressed by the following equation according to the "law of electromagnetic induction".

ここでφ(1)はループを貫く全磁束であり、負の符号
は「レンツの法則(誘導起電力はそれを生ずる原因をさ
またげる向きをもつ)」によるものである。又、磁束変
化が激しいほうが発生する誘導起電圧が高いため、一般
には高周波が誘起される。
Here, φ(1) is the total magnetic flux passing through the loop, and the negative sign is due to Lenz's law (an induced electromotive force has a direction that obstructs the cause that causes it). Furthermore, the induced electromotive voltage generated is higher when the magnetic flux changes more violently, so generally a high frequency wave is induced.

従って、例えば第7図及び第8図に示す太陽電池モジュ
ー/L/1の電気的ループ7を手前から反対側へ磁束9
が増大してゆくときを考えると、発生する誘起電圧10
は矢印の向きのように反時計方向に発生する。これらを
電気的に接続して太陽電池アレイを構成すると、各太陽
電池モジュール1に発生する誘導起電圧10が積算され
て大きくなり、周波数も高周波であるため接続される負
荷などに電磁障害を与える。
Therefore, for example, the electrical loop 7 of the solar cell module /L/1 shown in FIGS.
When considering the case where the induced voltage increases, the induced voltage 10
occurs in the counterclockwise direction as indicated by the arrow. When these are electrically connected to form a solar cell array, the induced electromotive force 10 generated in each solar cell module 1 is integrated and becomes large, and because the frequency is high, it causes electromagnetic interference to connected loads, etc. .

そこで本発明の目的は、外部からの強力な電磁波(磁束
)が各太陽電池モジュールを貫通しても、接続される負
荷などに電磁障害を与えることのない太陽電池アレイを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a solar cell array that does not cause electromagnetic interference to connected loads, even if strong electromagnetic waves (magnetic flux) from the outside penetrate each solar cell module.

〈課題を解決するための手段〉 上記目的を達成するために本発明による太陽電池アレイ
は、複数の太陽電池セルを接続して電気的lレープを形
成する太陽電池モジュールを少なくとも2モジユール1
対として接続してなり、上記1対の太陽電池モジュール
の各電気的ループを、該各電気的ループに流れる光生成
電流の方向が受光面から見て互いに反対方向となるよう
になし、且つ上記各電気的μmプが囲む面積を同一とし
たことを特徴とする。
<Means for Solving the Problems> In order to achieve the above object, a solar cell array according to the present invention comprises at least two solar cell modules each of which connects a plurality of solar cells to form an electrical loop.
connected as a pair, each of the electrical loops of the pair of solar cell modules is configured such that the direction of the photo-generated current flowing through each of the electrical loops is opposite to each other when viewed from the light receiving surface; It is characterized in that the area surrounded by each electrical μm plate is the same.

〈作用〉 一対の太陽電池モジュールにおいて、それぞれの電気的
ループに流れる光生成電流の方向を互いに逆となるよう
になし、且つそれぞれの電気的ループが囲む面積を同一
とするので、外部からの電磁波が上記太陽電池モジュー
ル対を貫通する時に、上記それぞれの電気的ループに発
生する誘導起電圧が、太陽電池モジューμ対として直列
接続した時には相殺される方向に、また並列接続した時
には閉ループになるように発生することとなシ、外部に
誘導起電力は現われない。
<Operation> In a pair of solar cell modules, the direction of the photogenerated current flowing through each electrical loop is made to be opposite to each other, and the area surrounded by each electrical loop is the same, so that external electromagnetic waves are prevented. When the solar cell modules pass through the pair of solar cell modules, the induced electromotive force generated in each of the electric loops is canceled out when the solar cell modules are connected in series as a μ pair, and becomes a closed loop when connected in parallel. However, no induced electromotive force appears externally.

〈実施例〉 本発明一実施例を第1図乃至射5図に従って説明する。<Example> An embodiment of the present invention will be described with reference to FIGS. 1 to 5.

まず、第1図は本発明による太陽電池アレイの実施例で
少なくとも2モジユールを1対としてなシ、それぞれの
太陽電池モジュールを直列に接続した場合である。図に
示すように、上記太陽電池アレイ100は、太陽電池モ
ジューA/1及び太陽電池モジュール2とからなってい
る。
First, FIG. 1 shows an embodiment of the solar cell array according to the present invention, in which at least two modules are formed as a pair and each solar cell module is connected in series. As shown in the figure, the solar cell array 100 includes a solar cell module A/1 and a solar cell module 2.

上記太陽電池モジュー7t、’1の正極51及び負極6
1ばそれぞれ、太陽電池アレイ100の正極5及び上記
太陽電池モジュール2の正極52に接続されている。ま
た、上記太陽電池モジュール2の負極62は太陽電池ア
レイ100の負極6に接続されている。
Positive electrode 51 and negative electrode 6 of the solar cell module 7t, '1
1 are connected to the positive electrode 5 of the solar cell array 100 and the positive electrode 52 of the solar cell module 2, respectively. Further, the negative electrode 62 of the solar cell module 2 is connected to the negative electrode 6 of the solar cell array 100.

上記太陽電池モジュー)v l及び2のよう詳細な平面
図をそれぞれ第3図(a)及び(b)に示す。図中、3
ぼ太陽電池セル、4は上記太陽電池セル3を接続するリ
ードフレームである。図に示すように、上記太陽電池モ
ジュール1及び2のそれぞれの太陽電池セ/L/3の配
置、接続を受光面よう見てそれぞれの電気的ループ71
及び72に流れる光生成電流81及び82の方向が互い
に反対方向となるよう構成している。
Detailed plan views of the solar cell module) v 1 and 2 are shown in FIGS. 3(a) and (b), respectively. In the diagram, 3
4 is a lead frame to which the solar cell 3 is connected. As shown in the figure, the arrangement and connection of each of the solar cell cells/L/3 of the solar cell modules 1 and 2 are viewed from the light-receiving surface of each electrical loop 71.
The directions of the photogenerated currents 81 and 82 flowing in and 72 are opposite to each other.

また、上記電気的ループ71及び72によってそれぞれ
曲管れる面積を同一としている。これは上記面積を貫通
する磁束数を同一とすることによって、後述の誘導起電
圧も同電圧とするためである。従って、電気的ループ7
1及び72によって囲まれる内面積が同一であれば、形
状が異なっても差し支えは無い。
Furthermore, the areas curved by the electrical loops 71 and 72 are the same. This is because by making the number of magnetic fluxes penetrating the above-mentioned area the same, the induced electromotive voltage to be described later is also made to be the same voltage. Therefore, electrical loop 7
As long as the inner areas surrounded by 1 and 72 are the same, there is no problem even if the shapes are different.

以上のような構成に訃いて、例えば上記太陽電池アレイ
100の至近距離での落雷や至近距離のパラボラアンテ
ナ或は高圧送電線などから強力な電磁波が空中に放出さ
れる場合のように、上記太陽電池モジュール1及び太陽
電池モジュール2のそれぞれの電気的ループ71及び7
2を、外部より磁束9が貫通する際に、上記太陽電池モ
ジュー/L/1の電気的ルー171に発生する誘導起電
圧101と、太陽電池モジューlし2の電気的ルー17
2に発生する誘導起電圧102とが相殺される方向に発
生し、しかも同電圧であるため、外部に誘導起電力は現
われない。従って、上記太陽電池アレイ100に接続さ
れる負荷などに電磁障害は発生しない。
Due to the above-mentioned configuration, when a strong electromagnetic wave is emitted into the air from a lightning strike at a close distance to the solar cell array 100 or from a parabolic antenna or a high-voltage power transmission line at a close distance, Electrical loops 71 and 7 of battery module 1 and solar module 2, respectively
2, the induced electromotive force 101 generated in the electrical loop 171 of the solar cell module /L/1 when the magnetic flux 9 penetrates from the outside, and the electrical loop 17 of the solar cell module 1 and 2.
Since the induced electromotive force 102 generated in the electromotive force 2 is generated in a direction that cancels out the induced electromotive force 102 and the voltage is the same, no induced electromotive force appears externally. Therefore, no electromagnetic interference occurs in the load connected to the solar cell array 100.

第2図は本発明による太陽電池アレイの他の実施例を示
した図で、少なくとも一対の太陽電池モジュールを並列
に接続した場合である。この場合の太陽電池アレイ20
0も、第1図に示す直列接続の場合と同様、第3図(a
)及び(b)に示す太陽電池モジューA/l及び太陽電
池モジュール゛2とからなり、該太陽電池モジュール1
及び2のそれぞれの電気的ル−プ71及び72を流れる
光生成電流81及び82の方向が互いに反対方向となる
よう構成する。
FIG. 2 is a diagram showing another embodiment of the solar cell array according to the present invention, in which at least one pair of solar cell modules are connected in parallel. Solar cell array 20 in this case
0 is also the same as in the case of series connection shown in Fig. 3 (a).
) and (b), the solar cell module A/1 and the solar cell module
The directions of the photogenerated currents 81 and 82 flowing through the respective electrical loops 71 and 72 of and 2 are opposite to each other.

上記太陽電池モジュールlの正極51と太陽電池モジュ
ール2の正極52は接続され、該接続点は太陽電池アレ
イ200の正極5に引き出されている。また、上記太陽
電池モジュールlの負極61と太陽電池モジューN2の
負極62は接続され、該接続点は太陽電池アレイ200
の負極6に引き出されている。
The positive electrode 51 of the solar cell module 1 and the positive electrode 52 of the solar cell module 2 are connected, and the connection point is led out to the positive electrode 5 of the solar cell array 200. Further, the negative electrode 61 of the solar cell module I and the negative electrode 62 of the solar cell module N2 are connected, and the connection point is connected to the solar cell array 200.
It is drawn out to the negative electrode 6 of.

以上のような構成において、上記太陽電池モジュール1
による誘導起電力101と、太陽電池モジュール2によ
る誘導起電力102とは、並列回路内で閉ループになる
ように発生し、しかも同電圧であるため、この場合も外
部に誘導起電力が現φ われず、上記太陽電池アレイ20に接続される負荷など
に電磁障害は発生しない。
In the above configuration, the solar cell module 1
The induced electromotive force 101 caused by the solar cell module 2 and the induced electromotive force 102 caused by the solar cell module 2 are generated in a closed loop in a parallel circuit and have the same voltage. First, no electromagnetic interference occurs in the load connected to the solar cell array 20.

第4図は、第1図に示した一対の太陽電池モジュールか
らなる太陽電池アレイ100を2対以上接続した場合を
示す。このように、太陽電池モジュール対による太陽電
池アレイを最小ユニットとして、無制限に接続すること
が出来る。又、この時、太陽電池アレイの電力引き出し
ケーブルを撚り合わせるか若しくは同軸り゛−プルを用
いることにより、更に耐電磁障害性を高めることが出来
る。
FIG. 4 shows a case where two or more pairs of solar cell arrays 100 each consisting of a pair of solar cell modules shown in FIG. 1 are connected. In this way, a solar cell array made up of pairs of solar cell modules can be connected as a minimum unit without limit. Further, at this time, the electromagnetic interference resistance can be further improved by twisting the power extraction cable of the solar cell array or using a coaxial pull cable.

第2図に示す太陽電池アレイ200も同様に無制限に接
続できる。
Similarly, the solar cell array 200 shown in FIG. 2 can be connected without limit.

また、本発明による太陽電池アレイ100及び200は
、太陽光によって発生する光生成電流には何等影響を及
ぼさないため、太陽電池電源装置としての基本性能は完
全に保持される。
Furthermore, since the solar cell arrays 100 and 200 according to the present invention have no effect on photogenerated current generated by sunlight, the basic performance as a solar cell power supply device is completely maintained.

筐た、太陽電池アレイを使用した応用例として第5図の
ような商用配電線12との連係システムがあり、この連
係用D C/A Cインバータ13の内部では、一般に
電力変換効率を高めるため、1次側の直流入力を高周波
チョッパ一部15にて矩形波(高周波PWM)にしてか
ら所定の交流出力を2次側に得ている。11はケーブル
、16は波形整形部である。この1次側にはDCフィル
タ14を介してはいるが高周波の矩形波が漏洩して太陽
電池アレイ17に回シ込み、太陽電池モジュールをアン
テナとして電磁波を放射し、テレビやラジオに電磁障害
を及ぼすという問題点があった。これに対し、本発明に
よる太陽電池アレイを使用すれば発生する電磁輻射が太
陽電池モジュール対で相殺され外部に電磁障害を及ぼさ
ない。
An example of an application using a solar cell array is a system for linking with a commercial power distribution line 12 as shown in Fig. 5. Inside this linking DC/AC inverter 13, a , the DC input on the primary side is converted into a rectangular wave (high frequency PWM) by the high frequency chopper part 15, and then a predetermined AC output is obtained on the secondary side. 11 is a cable, and 16 is a waveform shaping section. Although high-frequency rectangular waves enter the primary side through the DC filter 14, they leak and are routed to the solar cell array 17, which radiates electromagnetic waves using the solar cell module as an antenna, causing electromagnetic interference to televisions and radios. There was a problem with the effect of On the other hand, when the solar cell array according to the present invention is used, the generated electromagnetic radiation is canceled out by the solar cell module pair and does not cause electromagnetic interference to the outside.

以上のように本発明による太陽電池アレイは、外部から
電磁波が貫通する際に発生する誘導起電力が、上記太陽
電池アレイ内にかいて相殺されるか、或いは閉ループを
形成するので外部には現われず、負荷等に電磁障害を与
えない。
As described above, in the solar cell array according to the present invention, the induced electromotive force generated when electromagnetic waves penetrate from the outside is canceled out within the solar cell array or forms a closed loop, so that the induced electromotive force does not appear outside. Do not cause electromagnetic interference to loads, etc.

また、商用配電線との連係システムに使用すれば、従来
のような、外部に対する電磁輻射による電磁障害を解消
できる。
In addition, if used in a system linked to commercial power distribution lines, electromagnetic interference caused by electromagnetic radiation to the outside, which is conventional, can be eliminated.

〈発明の効果〉 以上のように、本発明による太陽電池アレイは、外部か
ら磁束が貫通しても、誘導起電力が見かけ上発生せず、
負荷等に電磁障害を与えない。
<Effects of the Invention> As described above, the solar cell array according to the present invention does not apparently generate induced electromotive force even when magnetic flux penetrates from the outside.
Do not cause electromagnetic interference to loads, etc.

また、商用配電線との連係システムに使用すれば、外部
に対する電磁輻射による電磁障害を解消できる。
Furthermore, if used in a system linked to commercial power distribution lines, electromagnetic interference caused by electromagnetic radiation to the outside can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明一実施例による太陽電池アレイの基本
例を示す図、第2図は太陽電池アレイの他の基本例を示
す図、第3図(a)及び(b)14本発明による一対の
太陽電池モジュールのそれぞれを示す平面図、第4図は
第1図の太陽電池アレイによる具体例を示す図、第5図
は本発明による太陽電池アレイの応用例を示す図、第6
図は従来例による太陽電池モジュールの平面図、第7図
は従来例による太陽電池アレイを示す図、第8図は他の
従来例による太陽電池アレイを示す図である。 1.2・・・太陽電池モジュール、 7L、72・・・
電気的ループ、 81.82・・・光生成電流、100
・・・太陽電池アレイ。
FIG. 1 is a diagram showing a basic example of a solar cell array according to an embodiment of the present invention, FIG. 2 is a diagram showing another basic example of a solar cell array, and FIG. 3 (a) and (b) 14 of the present invention FIG. 4 is a plan view showing each of a pair of solar cell modules according to the present invention, FIG. 4 is a view showing a specific example using the solar cell array of FIG. 1, FIG.
This figure is a plan view of a solar cell module according to a conventional example, FIG. 7 is a diagram showing a solar cell array according to a conventional example, and FIG. 8 is a diagram showing a solar cell array according to another conventional example. 1.2...Solar cell module, 7L, 72...
Electrical loop, 81.82...Photogenerated current, 100
...Solar array.

Claims (1)

【特許請求の範囲】 1、複数の太陽電池セルを接続して電気的ループを形成
する太陽電池モジュールを少なくとも2モジュール1対
として接続してなる太陽電池アレイであって、 上記1対の太陽電池モジュールの各電気的ループを、該
各電気的ループに流れる光生成電流の方向が受光面より
見て互いに反対方向となるようになし、且つ上記各電気
的ループが囲む面積を同一としたことを特徴とする太陽
電池アレイ。
[Scope of Claims] 1. A solar cell array formed by connecting at least two solar cell modules as a pair of solar cell modules each of which connects a plurality of solar cells to form an electrical loop, wherein the pair of solar cells Each of the electrical loops of the module is configured such that the direction of the photogenerated current flowing through each electrical loop is opposite to each other when viewed from the light receiving surface, and the area surrounded by each of the electrical loops is the same. Features solar cell array.
JP2034928A 1990-02-14 1990-02-14 Solar cell array Pending JPH03237763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034928A JPH03237763A (en) 1990-02-14 1990-02-14 Solar cell array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034928A JPH03237763A (en) 1990-02-14 1990-02-14 Solar cell array

Publications (1)

Publication Number Publication Date
JPH03237763A true JPH03237763A (en) 1991-10-23

Family

ID=12427861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034928A Pending JPH03237763A (en) 1990-02-14 1990-02-14 Solar cell array

Country Status (1)

Country Link
JP (1) JPH03237763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500052A (en) * 1993-05-19 1996-03-19 Nec Corporation Solar photovoltaic power generation device capable of adjusting voltage and electric power
JP2014192617A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Sunlight receiving device and sunlight receiving system
JP2018078684A (en) * 2016-11-07 2018-05-17 日本電信電話株式会社 Solar cell module, solar cell panel, and solar cell panel group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103656A (en) * 1983-11-10 1985-06-07 Fuji Electric Co Ltd Solar battery module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103656A (en) * 1983-11-10 1985-06-07 Fuji Electric Co Ltd Solar battery module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500052A (en) * 1993-05-19 1996-03-19 Nec Corporation Solar photovoltaic power generation device capable of adjusting voltage and electric power
JP2014192617A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Sunlight receiving device and sunlight receiving system
JP2018078684A (en) * 2016-11-07 2018-05-17 日本電信電話株式会社 Solar cell module, solar cell panel, and solar cell panel group

Similar Documents

Publication Publication Date Title
Ashoor et al. Polarization-independent cross-dipole energy harvesting surface
CN108565102B (en) Coil module, wireless charging transmitting device, wireless charging receiving device, wireless charging system and wireless charging terminal
EP2590299A1 (en) Electric power generator and electric power generating system
JPH02500795A (en) Method and device for converting radio frequency energy into direct current
JP2007068189A (en) Device for converting solar energy to electrical energy and for emitting and/or receiving high-frequency electromagnetic wave
Singh et al. Wireless transmission of electrical power overview of recent research & development
CN109239787A (en) A kind of terahertz wave detector based on array plaster antenna
CN104993613A (en) Wireless electric energy transmission device using single capacitor to realize electric field resonance
Aldhaeebi et al. Highly efficient planar metasurface rectenna
JP6118268B2 (en) Photovoltaic element with resonator
JPH03237763A (en) Solar cell array
US11501913B2 (en) Magnetically immune gatedriver circuit
Morsy et al. Integrated solar mesh dipole antenna based energy harvesting system
CN106788591A (en) Photovoltaic parallel in system based on power line carrier communication
KR20100082306A (en) Transmission apparatus
US20230370045A1 (en) High-efficiency acoustic excitation low-frequency antenna driven by serial electrodes
JP2015534268A (en) Solar device with resonator for application in energetics
JP2593954B2 (en) Solar cell module
Schelkunoff A general radiation formula
CN210577958U (en) Radio energy transmitting power supply device with several kilowatt level
CN103986355A (en) Low-voltage double-circuit MPPT high-frequency isolated type grid-connected inverter
JPH02297976A (en) Solar battery module
Khan et al. A highly efficient miniaturized microwave collector for wireless power transmission
Jeremiah et al. Wireless power transmission: As an emerging technology
CN214314741U (en) Wireless charging circuit of unmanned aerial vehicle group