JPS60103296A - Thermosiphone of inner descending pipe system - Google Patents

Thermosiphone of inner descending pipe system

Info

Publication number
JPS60103296A
JPS60103296A JP21178083A JP21178083A JPS60103296A JP S60103296 A JPS60103296 A JP S60103296A JP 21178083 A JP21178083 A JP 21178083A JP 21178083 A JP21178083 A JP 21178083A JP S60103296 A JPS60103296 A JP S60103296A
Authority
JP
Japan
Prior art keywords
heat
liquid
pipe
condensed
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21178083A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
研二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21178083A priority Critical patent/JPS60103296A/en
Publication of JPS60103296A publication Critical patent/JPS60103296A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To contrive an increase of a quantity of heat transmission per pipe without heating a return part of a condensed liquid, by making the inside of a descending pipe of the inside of an outer pipe into structure wherein the condensed liquid flows. CONSTITUTION:An outer pipe 1 consists of mainly a heat receiving part 7 and a condensation part 6. As the heat receiving part 7 is heated in the inside of a high heat source, a working fluid 5 in the inside boils, gaseous phase and a liquid phase are separated by a vapor-liquid separator 3 and the major part of the gaseous phase is arrived at the condensation part 6. On the one hand, as heat of the condensation part 6 is radiated in the inside of a low heat source, a gaseous phase ingredient out of the working fluid 5 is condensed here, and heat transmission is made to the low heat source. A liquid phase ingredient separated by the vapor-liquid separator 3 and the liquid phase ingredient condensed by the condensation part 6 are descended within an inner pipe 2 and returned to the heat receiving part 7 through an open end of the lower part of the inner pipe 2. The heat transmission from the high heat source to the low heat source is made in this manner. As the major part of a condensed liquid is descended along the inner pipe 2, spontaneous circulation of the working liquid can be realized as compared with a heat pipe and sufficient supply of the condensed liquid to the heat receiving part is done.

Description

【発明の詳細な説明】 この発明は外管(1)の中tJ作作動体(5)および内
部下降管(2)、気液分All器(3)を入れた構造を
もつ熱輸送のために用いる内部下降管方式サーモザイホ
ンに関するものである。使用法ならびに作動原理は次の
通りである。
DETAILED DESCRIPTION OF THE INVENTION This invention is for heat transport having a structure in which an outer pipe (1), a tJ operating body (5), an inner downcomer pipe (2), and a gas/liquid container (3) are placed inside the outer pipe (1). This relates to an internal downcomer type thermosyphon used for. The usage and operating principle are as follows.

外管(1)は主として受熱部(7)、および。The outer tube (1) mainly serves as a heat receiving section (7).

凝縮部(6)とからなる、気液分離器(3)は無くとも
よい、また、気液分離器は内部下降管の固定のために利
用してもよい。
The gas-liquid separator (3) consisting of the condensing section (6) may be omitted, or the gas-liquid separator may be used for fixing the internal downcomer.

受熱部(7)は高熱源中におかれ加熱される。The heat receiving part (7) is placed in a high heat source and heated.

その結果、内部の作動流体(5)は沸騎し、気液二相状
態となり、上昇し、気液分離器(3)にて気相と液相、
とが分離され、気相の大部分は凝縮部(6)に至る。気
液分離器(3)が無い場合は、内管(2)の上端付近で
気液の混合によって自然に気液が分離される。
As a result, the internal working fluid (5) boils, becomes a gas-liquid two-phase state, rises, and passes through the gas-liquid separator (3) into a gas phase and a liquid phase.
The majority of the gas phase reaches the condensation section (6). If there is no gas-liquid separator (3), gas-liquid will be naturally separated by mixing near the upper end of the inner tube (2).

一方、凝縮部(6)は低熱瀞中におかれ放熱される。従
って、内部の作動流体(5)のうぢ気相成分はここで凝
縮し、低熱源に熱輸送する。気液分離器(3)で分離さ
れた液相成分、および、凝縮部(6)で凝縮した液相成
分は内管(2)の中を下降し、内管(2)の下部開放端
より受熱部(7)に戻る。
On the other hand, the condensing section (6) is placed in a low heat chamber and heat is radiated. Therefore, the vapor phase component of the internal working fluid (5) condenses here and transports heat to a low heat source. The liquid phase component separated in the gas-liquid separator (3) and the liquid phase component condensed in the condensation section (6) descend through the inner tube (2) and are discharged from the lower open end of the inner tube (2). Return to the heat receiving section (7).

このようにして、結局、内部下降管方式サーモサイホン
を媒介として高熱源より低熱源への熱輸送が行なわれる
In this way, heat is ultimately transferred from the high heat source to the low heat source via the internal downcomer type thermosiphon.

この種の作動流体を中に入れた熱輸送を目的とする伝熱
管には、ヒートパイプ、および、密閉型サーモサイホン
と称せらるものがあるが、これらの伝熱管内部には9本
発明の内管に相当するものは挿入されていない、ヒート
バイブにζ:Lウィックと称ぜらるものが挿入されるこ
とがあるが、これは伝熱管内壁に貼られた多孔質状の物
質等で、この中を凝縮液が毛細管現象で移動するように
なっており、構造。
This type of heat transfer tube containing a working fluid for the purpose of heat transfer is called a heat pipe or a closed type thermosyphon. There are cases where something called ζ:L wick is inserted into the heat vibrator without inserting something equivalent to an inner tube, but this is a porous material etc. stuck to the inner wall of the heat transfer tube. , a structure in which the condensate moves through it by capillary action.

ならびに熱輸送機構ともに本発明とは全く異なるもので
ある。
Both the heat transport mechanism and the heat transport mechanism are completely different from those of the present invention.

さて、従来のヒートバイブCは受熱部で発生した蒸気は
管の中心部を移動し、t、(締部で凝縮しそこに熱輸送
する。凝縮液は管内壁じ沿って自然落下により、あるい
は、ウィック内を[、細管現象により移動し再び受熱部
に戻るようになっている。従って。
Now, in the conventional Heat Vibe C, the steam generated in the heat receiving section moves through the center of the tube, condenses at the tightening section and transports heat there.The condensed liquid falls naturally along the inner wall of the tube, or , moves within the wick due to the capillary phenomenon and returns to the heat receiving part. Therefore.

凝縮液が移動する部分で加熱するξ゛とは受熱部への凝
縮液の戻りを妨げる方向にあり、加熱型が大きくなると
、遂には凝縮液が、受熱部へ戻る途中でドライアウトし
ヒートバイブの伝熱性能の限界に至る。
ξ゛, where the condensate is heated in the moving part, is in the direction that prevents the condensate from returning to the heat receiving part, and as the heating mold becomes larger, the condensed liquid will eventually dry out on the way back to the heat receiving part, causing heat vibration. reaches the limit of heat transfer performance.

本発明は、凝縮液の大部分は内管な下降するようにしこ
の欠点を克服したものである。ずなわち、ヒートバイブ
と比べて、内部十降管の(f在により作動流体の自然循
環が実現でき、受熱部への凝縮液の十分な供給が行なわ
れるので、上記のような、凝縮液の戻り部を加熱するこ
とによる制限がなく、一本あたりの熱輸送量を大きくす
ることができる。
The present invention overcomes this drawback by allowing most of the condensate to descend into the inner tube. In other words, compared to a heat vibrator, natural circulation of the working fluid can be realized due to the presence of the internal downcomer tube, and sufficient condensate is supplied to the heat receiving section. There is no restriction due to heating the return section of the pipe, and the amount of heat transported per pipe can be increased.

また、従来の密閉型サーモサイボンでは、性向の作動流
体は管の下部で沸騰し、上部で凝縮するだけの構造であ
るため、流体内部で上昇する気泡と。
In addition, in conventional closed-type thermosibons, the working fluid tends to boil at the bottom of the tube and condense at the top, resulting in bubbles rising inside the fluid.

下降する液体の流れがあり、フラッディングと称せらる
現象による性能限界がある6本発明では、内部下降管内
を凝縮液が流れる構造であり木質的にこの限界から解放
されているので、一本あたりの熱輸送量を大きくとるこ
とができる。
There is a downward flow of liquid, and there is a performance limit due to a phenomenon called flooding6.In the present invention, the condensed liquid flows in the internal downcomer pipe, and since the wood is free from this limit, The amount of heat transported can be increased.

本発明は9以上のように、従来の類似の伝熱管の欠点を
内部下降管を挿入することにより克服したものである。
The present invention overcomes the drawbacks of conventional similar heat exchanger tubes by inserting an internal downcomer tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案のA−A断面図 第2図は立面図 第3図は斜視図 第4図は作動原理図 1は外管 2は内部下降管 3は気液分離器 4は支持具 5は作動流体 6は凝縮部 7は受熱部 第1図 ■ 第2図 第3図 第4図 Figure 1 is a sectional view taken along line A-A of the present invention. Figure 2 is an elevation view. Figure 3 is a perspective view Figure 4 is a diagram of the operating principle. 1 is the outer tube 2 is the internal downcomer pipe 3 is a gas-liquid separator 4 is a support 5 is working fluid 6 is the condensing part 7 is the heat receiving part Figure 1 ■ Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 両先端の閉じた外管(1)の中に両先端の開いた内部下
降管(2)を外管の1が壁に支持具(4)等で動かない
ようにとりつけ、更に作動流体(5)を中に封入した構
造をもつ内部下降管方式サーモサイホン。
An inner descending pipe (2) with both ends open is attached to the outer pipe (1) with both ends closed so that the outer pipe (1) does not move with a support (4) etc., and a working fluid (5) is attached to the wall. ) is an internal descending tube type thermosiphon with a structure sealed inside.
JP21178083A 1983-11-10 1983-11-10 Thermosiphone of inner descending pipe system Pending JPS60103296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21178083A JPS60103296A (en) 1983-11-10 1983-11-10 Thermosiphone of inner descending pipe system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21178083A JPS60103296A (en) 1983-11-10 1983-11-10 Thermosiphone of inner descending pipe system

Publications (1)

Publication Number Publication Date
JPS60103296A true JPS60103296A (en) 1985-06-07

Family

ID=16611473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21178083A Pending JPS60103296A (en) 1983-11-10 1983-11-10 Thermosiphone of inner descending pipe system

Country Status (1)

Country Link
JP (1) JPS60103296A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539733B2 (en) * 2000-11-01 2003-04-01 Twinbird Corporation Thermosiphon
US6571863B1 (en) * 2002-08-27 2003-06-03 Compal Electronics, Inc. Turbulence inducing heat pipe for improved heat transfer rates
US7051794B2 (en) * 2003-07-21 2006-05-30 Chin-Kuang Luo Vapor-liquid separating type heat pipe device
WO2008151751A1 (en) * 2007-06-11 2008-12-18 Zenergy Power Gmbh Heat pipe and cooling device used in cryotechnology
CN103453792A (en) * 2013-08-14 2013-12-18 奉化市垭特机电科技有限公司 Bottom enhanced heat transfer structure of gravity assisted heat pipe
CN114554679A (en) * 2022-03-17 2022-05-27 西安易朴通讯技术有限公司 Heat radiator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539733B2 (en) * 2000-11-01 2003-04-01 Twinbird Corporation Thermosiphon
US6571863B1 (en) * 2002-08-27 2003-06-03 Compal Electronics, Inc. Turbulence inducing heat pipe for improved heat transfer rates
US7051794B2 (en) * 2003-07-21 2006-05-30 Chin-Kuang Luo Vapor-liquid separating type heat pipe device
WO2008151751A1 (en) * 2007-06-11 2008-12-18 Zenergy Power Gmbh Heat pipe and cooling device used in cryotechnology
GB2461668A (en) * 2007-06-11 2010-01-13 Zenergy Power Gmbh Heat pipe and cooling device used in cryotechnology
CN103453792A (en) * 2013-08-14 2013-12-18 奉化市垭特机电科技有限公司 Bottom enhanced heat transfer structure of gravity assisted heat pipe
CN114554679A (en) * 2022-03-17 2022-05-27 西安易朴通讯技术有限公司 Heat radiator
CN114554679B (en) * 2022-03-17 2024-02-09 西安易朴通讯技术有限公司 Heat dissipation device

Similar Documents

Publication Publication Date Title
US10712099B2 (en) Heat pipe
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
US4441548A (en) High heat transport capacity heat pipe
US4254820A (en) Heat transport device
JPS60103296A (en) Thermosiphone of inner descending pipe system
RU93004759A (en) THERMOSIFON WITH EVAPORATOR, INCLUDING RISING AND DOWNLOADING SECTIONS
JP2743022B2 (en) heat pipe
JPH0611284A (en) Variable conduction heat pipe strengthening
JPS5919899Y2 (en) heat pipe
US20020074108A1 (en) Horizontal two-phase loop thermosyphon with capillary structures
JPH0631701B2 (en) Heat cycle equipment
JPS59112192A (en) Construction of heat transfer container
JP4143210B2 (en) Reboiler
JPS5541361A (en) Heat pipe
GB1602093A (en) Two-phase thermosiphons
JP2743021B2 (en) heat pipe
JPH09126672A (en) Heat pipe
JPH0429245Y2 (en)
SU1423871A1 (en) Solar-heat collector
JPS6224720B2 (en)
JPS632786Y2 (en)
KR860000774Y1 (en) Expansion tank for hot water boiler
KR100279875B1 (en) Generator column structure of absorption system
JPS6115421Y2 (en)
JPS6196395A (en) Heat transfer device