US20020074108A1 - Horizontal two-phase loop thermosyphon with capillary structures - Google Patents

Horizontal two-phase loop thermosyphon with capillary structures Download PDF

Info

Publication number
US20020074108A1
US20020074108A1 US09/739,043 US73904300A US2002074108A1 US 20020074108 A1 US20020074108 A1 US 20020074108A1 US 73904300 A US73904300 A US 73904300A US 2002074108 A1 US2002074108 A1 US 2002074108A1
Authority
US
United States
Prior art keywords
evaporator
recited
liquid
condenser
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/739,043
Inventor
Dmitry Khrustalev
Scott Garner
Peter Wollen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aavid Thermal Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/739,043 priority Critical patent/US20020074108A1/en
Assigned to THERMAL CORP. reassignment THERMAL CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARNER, SCOTT, WOLLEN, PETER, KHRUSTALEV, DMITRY
Priority to AU2002226946A priority patent/AU2002226946A1/en
Priority to PCT/US2001/043756 priority patent/WO2002050488A1/en
Publication of US20020074108A1 publication Critical patent/US20020074108A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • Two-phase loop thermosyphons are devices that use gravity to maintain the two-phase fluid circulation when a thermosyphon is operating.
  • Each loop thermosyphon has an evaporator, where vaporization occurs when it is heated, a vapor tube (or line) where the vapor flows to the condenser, a cooled condenser, where condensation takes place, and a liquid return line (transport lines).
  • a capillary structure is used in the evaporator to reduce its thermal resistance. The entire evaporator and the capillary structure are flooded with liquid that boils when the evaporator is heated. This means that there is a liquid pool in the evaporator.
  • thermosyphon condenser is always above the evaporator in the gravity field, since the gravity is used to supply the heat loaded zone in the evaporator with liquid. Typical loop thermosyphons cannot operate with the evaporator at the same level with the condenser in the gravity field.
  • FIG. 1 displays an embodiment of the two-phase loop thermosyphon in accordance with the present invention.
  • FIG. 2 displays the thermosyphon of FIG. 1 with the addition of multiple small diameter channels.
  • FIG. 3 displays the thermosyphon of FIG. 2 with the addition of a capillary-porous barrier.
  • an additional extension of the capillary-porous structure in the evaporator is attached to the inner walls of the evaporator and extends from the liquid pool level to the top portion of the heated zone.
  • This additional porous extension supplies liquid to the hot zone against the gravity field due to the capillary pressure developed by the evaporating liquid-vapor menisci, enabling operation of the loop thermosyphon in horizontal orientation (the heated zone at the same horizontal level with the condenser).
  • the evaporator contains multiple vertical channels in the porous structure extending from the liquid pool level to the top portion of the heated zone with the predetermined effective diameter of the size of larger vapor bubbles forming in the boiling pool of working liquid in the evaporator. Since the channels are of small diameter, the vapor bubbles expanding due to heating push liquid “slugs” up the channel. These liquid slugs supply liquid to the top portion of the heated capillary structure, which therefore can be at the same horizontal level with the condenser.
  • a continuous capillary-porous barrier is added to the evaporator, separating the liquid pool from the evaporator outlets at the vapor line side.
  • the porous barrier is in mechanical contact with the capillary structure on the inner surface of the heated zone of the evaporator, however it is not in direct contact with the heated wall.
  • This capillary-porous barrier with small pores maintains a pressure difference between the liquid pool side (lower pressure) and the vapor side (higher pressure) due to the capillary pressure produced by the liquid-vapor menisci in the pores. The pressure difference helps to pump vapor through the vapor line, which increases the maximum allowable heat flow rate in the loop thermosyphon (increased maximum heat transfer capability).
  • This porous barrier principle (the pressure difference across a porous barrier) is presently used in loop heat pipes.
  • a difference between the barrier in a loop heat pipe of the prior art and the loop thermosyphon with a porous barrier of the present invention is that the porous barrier in the loop heat pipe is in direct contact with the heated wall, unlike the barrier in the loop thermosyphon, which is only in contact with the capillary structure. Evaporation takes place at the interface between the porous barrier and the heated wall of the loop heat pipe evaporator. For the loop thermosyphon, evaporation takes place on the open surface of the capillary structure, and there should be no evaporation from the porous barrier.
  • a unit would include two pieces that are placed together and welded along the perimeter to produce a complete unit. Each stamped shell is 50% of the unit.
  • the evaporator wick could be sintered or a drop-in design, (such as felt metal or a pre-sintered wick).
  • a variant could utilize a drop-in check valve/restriction in the liquid line, as opposed to the evaporator wick.
  • the posts made out of the porous material would be part of the sintered wick, and since the sintering process anneals the copper envelope material, the posts help to support the walls of the evaporator chamber during the evacuation process.
  • the two-phase loop thermosyphon 10 contains both evaporator 11 and condenser 12 sections.
  • the capillary porous structure 13 in evaporator 11 is attached to the inner walls of the evaporator 11 and extends from the liquid pool level 14 to the top portion of the heated or hot zone 17 .
  • This additional capillary porous extension/structure 13 supplies liquid to the hot zone 17 against the gravity field due to capillary pressure developed by the evaporating liquid-vapor menisci, enabling operation of the loop thermosyphon 10 in a horizontal orientation, i.e., the heated zone 17 at the same horizontal level with the condenser 12 .
  • the evaporator 11 includes multiple vertical channels 20 in the capillary porous structure 13 extending from the liquid pool level 14 to the top portion of the heated zone, as shown in FIG. 2, with the predetermined effective diameter of the size of larger vapor bubbles forming in the boiling pool of working liquid 14 in the evaporator. Since the channels 20 are relatively small in diameter (e.g., 3 mm), the vapor bubbles expanding due to heating push liquid slugs up the channel 20 . The liquid slugs supply liquid to the top portion of the heated capillary structure 13 , which may be at the same horizontal level with the condenser 12 .
  • a continuous capillary-porous barrier 21 is added to the evaporator 11 , separating the liquid pool 16 from the evaporator 11 outlets at the vapor flow line 18 .
  • the porous barrier 21 is in mechanical contact with the capillary structure 13 on the inner surface of the heated zone of the evaporator 11 ; however, the porous barrier 21 is not in direct contact with the heated wall 19 .
  • the capillary porous barrier 21 contains small pores with liquid vapor menisci, which maintain a pressure difference between the liquid pool side 15 (lower pressure) and the vapor side 18 (higher pressure).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

An apparatus for maintaining two-phase fluid circulation is disclosed, which includes a two-phase loop containing at least one condenser and at least one evaporator with a capillary structure therein.

Description

    BACKGROUND OF THE INVENTION
  • Two-phase loop thermosyphons are devices that use gravity to maintain the two-phase fluid circulation when a thermosyphon is operating. Each loop thermosyphon has an evaporator, where vaporization occurs when it is heated, a vapor tube (or line) where the vapor flows to the condenser, a cooled condenser, where condensation takes place, and a liquid return line (transport lines). Sometimes, a capillary structure is used in the evaporator to reduce its thermal resistance. The entire evaporator and the capillary structure are flooded with liquid that boils when the evaporator is heated. This means that there is a liquid pool in the evaporator. The thermosyphon condenser is always above the evaporator in the gravity field, since the gravity is used to supply the heat loaded zone in the evaporator with liquid. Typical loop thermosyphons cannot operate with the evaporator at the same level with the condenser in the gravity field. [0001]
  • It is necessary for some electronics applications (for example, server boards) to have loop thermosyphons operating in strictly horizontal orientation with the evaporator at the same level with the condenser and horizontal transport lines. While the fluid flow through the transport lines is maintained due to the difference between the liquid levels in the evaporator and condenser, the present invention relates to an apparatus which allows operation of loop thermosyphons in horizontal orientation. [0002]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 displays an embodiment of the two-phase loop thermosyphon in accordance with the present invention. [0003]
  • FIG. 2 displays the thermosyphon of FIG. 1 with the addition of multiple small diameter channels. [0004]
  • FIG. 3 displays the thermosyphon of FIG. 2 with the addition of a capillary-porous barrier.[0005]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In accordance with the present invention, an additional extension of the capillary-porous structure in the evaporator is attached to the inner walls of the evaporator and extends from the liquid pool level to the top portion of the heated zone. This additional porous extension supplies liquid to the hot zone against the gravity field due to the capillary pressure developed by the evaporating liquid-vapor menisci, enabling operation of the loop thermosyphon in horizontal orientation (the heated zone at the same horizontal level with the condenser). [0006]
  • The evaporator contains multiple vertical channels in the porous structure extending from the liquid pool level to the top portion of the heated zone with the predetermined effective diameter of the size of larger vapor bubbles forming in the boiling pool of working liquid in the evaporator. Since the channels are of small diameter, the vapor bubbles expanding due to heating push liquid “slugs” up the channel. These liquid slugs supply liquid to the top portion of the heated capillary structure, which therefore can be at the same horizontal level with the condenser. [0007]
  • A continuous capillary-porous barrier is added to the evaporator, separating the liquid pool from the evaporator outlets at the vapor line side. The porous barrier is in mechanical contact with the capillary structure on the inner surface of the heated zone of the evaporator, however it is not in direct contact with the heated wall. This capillary-porous barrier with small pores maintains a pressure difference between the liquid pool side (lower pressure) and the vapor side (higher pressure) due to the capillary pressure produced by the liquid-vapor menisci in the pores. The pressure difference helps to pump vapor through the vapor line, which increases the maximum allowable heat flow rate in the loop thermosyphon (increased maximum heat transfer capability). [0008]
  • This porous barrier principle (the pressure difference across a porous barrier) is presently used in loop heat pipes. A difference between the barrier in a loop heat pipe of the prior art and the loop thermosyphon with a porous barrier of the present invention is that the porous barrier in the loop heat pipe is in direct contact with the heated wall, unlike the barrier in the loop thermosyphon, which is only in contact with the capillary structure. Evaporation takes place at the interface between the porous barrier and the heated wall of the loop heat pipe evaporator. For the loop thermosyphon, evaporation takes place on the open surface of the capillary structure, and there should be no evaporation from the porous barrier. Another difference between the loop thermosyphon and a loop heat pipe is that the liquid return to the loop thermosyphon evaporator is due to the gravity field (liquid head). This gives additional advantages to the loop thermosyphon compared to a loop heat pipe: (1) the condenser volume of the loop thermosyphon is not limited, while it is very limited in a loop heat pipe, (2) there is no need for a bulky liquid reservoir at the evaporator, which makes the loop thermosyphon more compact, and (3) flat configuration of the evaporator is straightforward for the loop thermosyphon, while it is a technical challenge yet to be resolved for a loop heat pipe due to the contact between the barrier and the heated wall in a loop heat pipe. [0009]
  • In a further preferred embodiment of the present invention, a unit would include two pieces that are placed together and welded along the perimeter to produce a complete unit. Each stamped shell is 50% of the unit. This includes the evaporator, condenser and the fluid transport lines. The evaporator wick could be sintered or a drop-in design, (such as felt metal or a pre-sintered wick). A variant could utilize a drop-in check valve/restriction in the liquid line, as opposed to the evaporator wick. [0010]
  • The posts made out of the porous material would be part of the sintered wick, and since the sintering process anneals the copper envelope material, the posts help to support the walls of the evaporator chamber during the evacuation process. [0011]
  • As shown in FIG. 1, the two-[0012] phase loop thermosyphon 10 contains both evaporator 11 and condenser 12 sections. The capillary porous structure 13 in evaporator 11 is attached to the inner walls of the evaporator 11 and extends from the liquid pool level 14 to the top portion of the heated or hot zone 17. This additional capillary porous extension/structure 13 supplies liquid to the hot zone 17 against the gravity field due to capillary pressure developed by the evaporating liquid-vapor menisci, enabling operation of the loop thermosyphon 10 in a horizontal orientation, i.e., the heated zone 17 at the same horizontal level with the condenser 12.
  • The [0013] evaporator 11 includes multiple vertical channels 20 in the capillary porous structure 13 extending from the liquid pool level 14 to the top portion of the heated zone, as shown in FIG. 2, with the predetermined effective diameter of the size of larger vapor bubbles forming in the boiling pool of working liquid 14 in the evaporator. Since the channels 20 are relatively small in diameter (e.g., 3 mm), the vapor bubbles expanding due to heating push liquid slugs up the channel 20. The liquid slugs supply liquid to the top portion of the heated capillary structure 13, which may be at the same horizontal level with the condenser 12.
  • As shown in FIG. 3, a continuous capillary-[0014] porous barrier 21 is added to the evaporator 11, separating the liquid pool 16 from the evaporator 11 outlets at the vapor flow line 18. The porous barrier 21 is in mechanical contact with the capillary structure 13 on the inner surface of the heated zone of the evaporator 11; however, the porous barrier 21 is not in direct contact with the heated wall 19. The capillary porous barrier 21 contains small pores with liquid vapor menisci, which maintain a pressure difference between the liquid pool side 15 (lower pressure) and the vapor side 18 (higher pressure).
  • While this invention has been described with respect to particular embodiments thereof, it is apparent that numerous other forms and modifications of this invention will be obvious to those skilled in the art. The appended claims and this invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the present invention. [0015]

Claims (8)

We claim:
1. An apparatus for maintaining two-phase fluid circulation, comprising a two-phase loop thermosyphon including at least one condenser and at least one evaporator with a capillary structure therein, wherein the capillary structure includes an extension in contact with the inner surface of the heated wall of the evaporator which extends above the liquid pool level in the evaporator.
2. The apparatus as recited in claim 1, wherein the condenser is connected to the evaporator.
3. The apparatus as recited in claim 1, further comprising two flow transport channels.
4. The apparatus as recited in claim 1, wherein the evaporator includes multiple channels.
5. The apparatus as recited in claim 4, wherein the diameter of the channels is of a size of vapor bubbles formed in the evaporator.
6. The apparatus as recited in claim 3, wherein the capillary structure includes a barrier separating the inlets of the flow transport channels from the evaporator outlets.
7. The apparatus as recited in claim 1, wherein the apparatus is formed by bonding two stamped parts.
8. The apparatus as recited in claim 4, wherein the multiple channels in the evaporator are contained in the capillary structure.
US09/739,043 2000-12-18 2000-12-18 Horizontal two-phase loop thermosyphon with capillary structures Abandoned US20020074108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/739,043 US20020074108A1 (en) 2000-12-18 2000-12-18 Horizontal two-phase loop thermosyphon with capillary structures
AU2002226946A AU2002226946A1 (en) 2000-12-18 2001-11-16 Horizontal two-phase loop thermosyphon with capillary structures
PCT/US2001/043756 WO2002050488A1 (en) 2000-12-18 2001-11-16 Horizontal two-phase loop thermosyphon with capillary structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/739,043 US20020074108A1 (en) 2000-12-18 2000-12-18 Horizontal two-phase loop thermosyphon with capillary structures

Publications (1)

Publication Number Publication Date
US20020074108A1 true US20020074108A1 (en) 2002-06-20

Family

ID=24970564

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/739,043 Abandoned US20020074108A1 (en) 2000-12-18 2000-12-18 Horizontal two-phase loop thermosyphon with capillary structures

Country Status (3)

Country Link
US (1) US20020074108A1 (en)
AU (1) AU2002226946A1 (en)
WO (1) WO2002050488A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090126905A1 (en) * 2007-11-16 2009-05-21 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
CN100495691C (en) * 2005-01-31 2009-06-03 杨开艳 CPU radiator
US20090219695A1 (en) * 2008-02-28 2009-09-03 Kabushiki Kaisha Toshiba Electronic Device, Loop Heat Pipe and Cooling Device
US9746248B2 (en) 2011-10-18 2017-08-29 Thermal Corp. Heat pipe having a wick with a hybrid profile
US20180220554A1 (en) * 2017-02-01 2018-08-02 J R Thermal LLC Self-priming thermosyphon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268658A (en) * 2004-03-19 2005-09-29 Denso Corp Boiling cooler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU958835A1 (en) * 1980-07-09 1982-09-15 Предприятие П/Я В-8466 Heat pipe
US4785875A (en) * 1987-11-12 1988-11-22 Stirling Thermal Motors, Inc. Heat pipe working liquid distribution system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495691C (en) * 2005-01-31 2009-06-03 杨开艳 CPU radiator
US20090126905A1 (en) * 2007-11-16 2009-05-21 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
US8262263B2 (en) 2007-11-16 2012-09-11 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
US20090219695A1 (en) * 2008-02-28 2009-09-03 Kabushiki Kaisha Toshiba Electronic Device, Loop Heat Pipe and Cooling Device
US7738248B2 (en) * 2008-02-28 2010-06-15 Kabushiki Kaisha Toshiba Electronic device, loop heat pipe and cooling device
WO2010056792A1 (en) * 2008-11-16 2010-05-20 Dinh Research, Llc High reliability cooling system for led lamps using dual mode heat transfer loops
US9746248B2 (en) 2011-10-18 2017-08-29 Thermal Corp. Heat pipe having a wick with a hybrid profile
US20180220554A1 (en) * 2017-02-01 2018-08-02 J R Thermal LLC Self-priming thermosyphon
US10631434B2 (en) * 2017-02-01 2020-04-21 J R Thermal LLC Self-priming thermosyphon

Also Published As

Publication number Publication date
WO2002050488A1 (en) 2002-06-27
AU2002226946A1 (en) 2002-07-01

Similar Documents

Publication Publication Date Title
US6533029B1 (en) Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator
KR101054092B1 (en) Evaporator for Loop Heat Pipe System
US6550530B1 (en) Two phase vacuum pumped loop
US8356657B2 (en) Heat pipe system
US6619384B2 (en) Heat pipe having woven-wire wick and straight-wire wick
EP1574800B1 (en) Thin-profile Condenser
JP6233125B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
US6615912B2 (en) Porous vapor valve for improved loop thermosiphon performance
US8353334B2 (en) Nano tube lattice wick system
CN100414243C (en) Boiling cooling device
CN101660880B (en) Variable conductance heat pipe
US20030159809A1 (en) Capillary evaporator
US6241008B1 (en) Capillary evaporator
US3741289A (en) Heat transfer apparatus with immiscible fluids
CN101652055A (en) Heat spreader, electronic apparatus, and heat spreader manufacturing method
JP6827362B2 (en) heat pipe
US7949236B2 (en) Home heating radiator using a phase change heat transfer fluid
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
US20020074108A1 (en) Horizontal two-phase loop thermosyphon with capillary structures
WO2009154323A1 (en) Evaporator for loop heat pipe system
JP4648106B2 (en) Cooling system
KR100982957B1 (en) Method for manufacturing Evaporator for loop heat pipe system
JP5300394B2 (en) Micro loop heat pipe evaporator
JP2904199B2 (en) Evaporator for capillary pump loop and heat exchange method thereof
US20020139516A1 (en) Heat pipe with a secondary wick for supplying subcooled liquid to high heat flux areas

Legal Events

Date Code Title Description
AS Assignment

Owner name: THERMAL CORP., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHRUSTALEV, DMITRY;GARNER, SCOTT;WOLLEN, PETER;REEL/FRAME:011385/0074;SIGNING DATES FROM 20001213 TO 20001215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION