JP2005268658A - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP2005268658A
JP2005268658A JP2004081381A JP2004081381A JP2005268658A JP 2005268658 A JP2005268658 A JP 2005268658A JP 2004081381 A JP2004081381 A JP 2004081381A JP 2004081381 A JP2004081381 A JP 2004081381A JP 2005268658 A JP2005268658 A JP 2005268658A
Authority
JP
Japan
Prior art keywords
refrigerant
wick
cooling device
boiling cooling
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081381A
Other languages
Japanese (ja)
Inventor
Sho Ishii
焦 石井
Noriyoshi Miyajima
則義 宮嶋
Yoshiyuki Okamoto
義之 岡本
Takashi Ogura
隆史 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004081381A priority Critical patent/JP2005268658A/en
Priority to CNB2005100547974A priority patent/CN100414243C/en
Priority to US11/082,929 priority patent/US20050274496A1/en
Publication of JP2005268658A publication Critical patent/JP2005268658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiling cooler efficiently cooling a heating element, even when a refrigerant tub is used in a head and tail direction posture in addition to a horizontal direction posture independently of a position of the heating element to the refrigerant tub. <P>SOLUTION: The boiling cooler equipped is with: a refrigerant tub 110 in which a heating element 10 is attached on an external surface of one wall 111 out of two facing walls 111, 112 and refrigerant is stored in an interior thereof; and a radiator 120 which is provided on an external surface of another wall 112 out of two walls 111, 112 and returns the refrigerant to the refrigerant tub 110 after flowing the refrigerant boiled and vaporized by the heating element 10 in an interior thereof and condensing the refrigerant. There is provided, on an interior side of one wall 111, a primary wick 131 from a region where the primary wick 131 serves as a bottom when two walls 111, 112 are used in the head and tail direction posture to a region where the heating element 10 is arranged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷媒の沸騰と凝縮による潜熱移動によって半導体素子等の発熱体を冷却する沸騰冷却装置に関するものである。   The present invention relates to a boiling cooling device that cools a heating element such as a semiconductor element by latent heat transfer caused by boiling and condensation of a refrigerant.

従来の沸騰冷却装置として、例えば特許文献1に示されるものが知られている。即ち、この沸騰冷却装置は、扁平状を成して水平方向配置され、内部に冷媒が貯留される冷媒槽(特許文献1中では冷媒容器)と、この冷媒槽の上側に組付けられる放熱部(特許文献1中では放熱器)とから構成され、冷媒槽の下側には発熱体(半導体素子等)が取付けられる。   As a conventional boiling cooling device, for example, the one shown in Patent Document 1 is known. That is, this boiling cooling device is formed in a flat shape in a horizontal direction, a refrigerant tank (a refrigerant container in Patent Document 1) in which a refrigerant is stored, and a heat radiating unit assembled above the refrigerant tank. (A radiator in Patent Document 1), and a heating element (such as a semiconductor element) is attached to the lower side of the refrigerant tank.

放熱部は、冷媒槽の上側に立設される2本のヘッダと、この2本のヘッダを介して冷媒槽内に連通するチューブとから成り、チューブは冷媒槽に対して傾斜するように設けられている。   The heat radiating section is composed of two headers standing on the upper side of the refrigerant tank and a tube communicating with the refrigerant tank via the two headers, and the tube is provided so as to be inclined with respect to the refrigerant tank. It has been.

この沸騰冷却装置においては、冷媒槽内の冷媒は、発熱体の熱を受けて沸騰気化し、上昇してチューブ内へ流れ込み、チューブ内を流れる際に、外気との熱交換により凝縮し、凝縮液となって冷媒槽に還流する。よって、発熱体から発生した熱が冷媒に伝達されて放熱部で外気に放出されることで発熱体が冷却されることになる。   In this boiling cooling device, the refrigerant in the refrigerant tank is boiled and vaporized by the heat of the heating element, rises and flows into the tube, and condenses and condenses by heat exchange with the outside air when flowing through the tube. It becomes a liquid and returns to the refrigerant tank. Therefore, the heat generated from the heating element is transmitted to the refrigerant and released to the outside air by the heat radiating section, thereby cooling the heating element.

ここでは、チューブ内で凝縮した凝縮冷媒がチューブの傾斜によってスムーズに流れることができ、チューブ内に凝縮冷媒が滞留するのを防止し、冷媒の循環性を向上するようにしている。
特開2002−206880号公報
Here, the condensed refrigerant condensed in the tube can flow smoothly due to the inclination of the tube, so that the condensed refrigerant is prevented from staying in the tube and the circulation of the refrigerant is improved.
JP 2002-206880 A

しかしながら、近年、上記のような沸騰冷却装置においては、発熱体の実装密度の向上や各種電子機器への共通使用等のために、冷媒槽を水平方向姿勢に対して、図11に示す天地方向姿勢での使用も可能となるような要求も出ている。   However, in recent years, in the above-described boiling cooling apparatus, the refrigerant tank is in a vertical direction as shown in FIG. 11 with respect to the horizontal orientation in order to improve the mounting density of the heating elements and to be commonly used for various electronic devices. There is also a demand that can be used in a posture.

特に、天地方向姿勢で発熱体10が冷媒槽110の上側に配置される場合には、それに合わせて冷媒液面を高くする必要があり、放熱部120における有効な領域(凝縮領域)が減少して著しく性能が低下する。   In particular, when the heating element 10 is arranged on the upper side of the refrigerant tank 110 in the vertical orientation, it is necessary to raise the refrigerant liquid level accordingly, and the effective area (condensation area) in the heat radiating unit 120 is reduced. Performance is significantly reduced.

本発明の目的は、上記問題に鑑み、冷媒槽に対する発熱体の位置に関わらず、且つ冷媒槽が水平方向姿勢に加えて天地方向姿勢で使用される場合でも、高性能で発熱体の冷却を可能とする沸騰冷却装置を提供することにある。   In view of the above problems, the object of the present invention is to cool the heating element with high performance regardless of the position of the heating element with respect to the refrigerant tank, and even when the refrigerant tank is used in the vertical orientation in addition to the horizontal orientation. An object of the present invention is to provide a boiling cooling device that can be used.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、対向する2つの壁部(111、112)のうち、一方の壁部(111)の外表面に発熱体(10)が取付けられ、内部に冷媒を貯留する冷媒槽(110)と、2つの壁部(111、112)のうち、他方の壁部(112)の外表面に設けられ、発熱体(10)によって沸騰気化した冷媒を内部に流入させて凝縮液化した後に冷媒槽(110)に戻す放熱部(120)とを備える沸騰冷却装置において、一方の壁部(111)の内側面には、2つの壁部(111、112)が天地方向を向く姿勢で使用される時に下側となる領域から発熱体(10)が配置される領域に至る第1のウィック(131)が設けられたことを特徴としている。   In the invention according to claim 1, of the two opposing wall portions (111, 112), the heating element (10) is attached to the outer surface of one wall portion (111), and the refrigerant stores the refrigerant therein. Of the tank (110) and the two wall portions (111, 112), provided on the outer surface of the other wall portion (112), the refrigerant boiled and vaporized by the heating element (10) is introduced into the inside to be condensed and liquefied. In the boiling cooling device including the heat radiating portion (120) that is returned to the refrigerant tank (110) after the operation, the two wall portions (111, 112) are oriented in the vertical direction on the inner surface of the one wall portion (111). The first wick (131) extending from the lower region to the region where the heating element (10) is disposed when used in the above is provided.

これにより、2つの壁部(111、112)が天地方向を向く姿勢で使用される時に、発熱体(10)の位置に関わらず冷媒槽(110)内部の冷媒液面を低い位置に設定しても、第1のウィック(131)の毛細管力によって、一方の壁部(111)の内壁面に沿って冷媒を発熱体(10)の配置される領域まで供給することができる。また、冷媒液面を低くすることで、放熱部(120)での冷媒凝縮領域を大きくすることができる。よって、冷媒槽(110)内の冷媒を沸騰気化させ、沸騰気化した冷媒を放熱部(120)で充分に凝縮液化(凝縮潜熱を大気に放熱)して、再び冷媒槽(110)に戻すことで発熱体(10)の冷却が可能となる。   Thus, when the two wall portions (111, 112) are used in a posture facing the top-and-bottom direction, the refrigerant liquid level inside the refrigerant tank (110) is set to a low position regardless of the position of the heating element (10). Even so, the capillary force of the first wick (131) can supply the refrigerant along the inner wall surface of the one wall portion (111) to the region where the heating element (10) is disposed. Moreover, the refrigerant | coolant condensation area | region in a thermal radiation part (120) can be enlarged by making a refrigerant | coolant liquid level low. Therefore, the refrigerant in the refrigerant tank (110) is boiled and vaporized, and the vaporized refrigerant is sufficiently condensed and liquefied (condensation latent heat is released to the atmosphere) by the heat radiating section (120), and then returned to the refrigerant tank (110) again. Thus, the heating element (10) can be cooled.

尚、2つの壁部(111、112)が水平方向を向く姿勢とし、発熱体(10)が冷媒槽(110)の下側に配置されるようにした場合は、冷媒は一方の壁部(111)の上に貯まる形となるので、容易に冷媒を沸騰気化させ、放熱部(120)で充分に凝縮液化させることができる。   In addition, when it is set as the attitude | position in which two wall parts (111,112) face a horizontal direction, and a heat generating body (10) is arrange | positioned under a refrigerant tank (110), a refrigerant | coolant is one wall part ( 111), the refrigerant can be easily evaporated to the boil and sufficiently condensed and liquefied by the heat radiating section (120).

総じて、冷媒槽(110)に対する発熱体(10)の位置に関わらず、且つ冷媒槽(110)が水平方向姿勢に加えて天地方向姿勢で使用される場合でも、高性能で発熱体(10)の冷却を可能とする沸騰冷却装置(100)とすることができる。   In general, regardless of the position of the heating element (10) with respect to the refrigerant tank (110), and even when the refrigerant tank (110) is used in a vertical orientation in addition to the horizontal orientation, the heating element (10) has high performance. It is possible to provide a boiling cooling device (100) that can cool the water.

そして、放熱部(120)は、請求項2に記載の発明のように、他方の壁部(112)から立設されて、一端側が前記冷媒槽(110)内に連通する一対のヘッダ(121、122)と、一対のヘッダ(121、122)間で2つの壁部(111、112)に略平行に配置されて、一対のヘッダ(121、122)内に連通する1以上のチューブ(123a)とから形成することができる。   And the heat radiating part (120) is erected from the other wall part (112) as in the invention described in claim 2, and has a pair of headers (121) whose one end side communicates with the refrigerant tank (110). 122) and one or more tubes (123a) that are arranged substantially parallel to the two wall portions (111, 112) between the pair of headers (121, 122) and communicate with the pair of headers (121, 122). ).

また、放熱部(120)は、請求項3に記載の発明のように、他方の壁部(112)から立設されて、一端側が冷媒槽(110)内に連通する複数のチューブ(123b)と、複数のチューブ(123b)の他端側で接続されて、複数のチューブ(123b)同士を連通させる連通ヘッダ(125)とから形成するようにしても良い。   Further, as in the invention described in claim 3, the heat dissipating part (120) is erected from the other wall part (112) and has a plurality of tubes (123b) whose one end side communicates with the refrigerant tank (110). And a communication header (125) that is connected on the other end side of the plurality of tubes (123b) and allows the plurality of tubes (123b) to communicate with each other.

通常、2つの壁部(111、112)が拡がる方向の寸法は、放熱部(120)における2つの壁部(111、112)が対向する方向の寸法より大きく設定される場合が多く、このような場合では、2つの壁部(111、112)が拡がる方向にチューブ(123b)を複数配置することで、冷媒の流路断面積を拡大して、冷媒の流通抵抗を低減することができるので、冷媒の循環を促進して冷却性能を向上させることができる。   Usually, the dimension in the direction in which the two wall parts (111, 112) expand is often set larger than the dimension in the direction in which the two wall parts (111, 112) in the heat dissipating part (120) face each other. In such a case, by arranging a plurality of tubes (123b) in the direction in which the two wall portions (111, 112) expand, the flow passage cross-sectional area of the refrigerant can be expanded and the flow resistance of the refrigerant can be reduced. The cooling performance can be improved by promoting the circulation of the refrigerant.

請求項4に記載の発明では、2つの壁部(111、112)が天地方向を向く姿勢で使用される時の冷媒槽(110)内の下側領域には、第2のウィック(132)が設けられたことを特徴としている。   In the invention according to claim 4, the second wick (132) is provided in the lower region in the refrigerant tank (110) when the two wall portions (111, 112) are used in a posture facing the vertical direction. Is featured.

これにより、第2のウィック(132)の毛細管力によって、放熱部(120)側の冷媒を冷媒槽(110)側に引っ張ることができ、放熱部(120)における冷媒液面を下げて凝縮領域を大きくできるので、冷却性能を向上させることができる。   Thereby, the refrigerant | coolant by the side of a thermal radiation part (120) can be pulled to the refrigerant | coolant tank (110) side by the capillary force of a 2nd wick (132), the refrigerant | coolant liquid level in a thermal radiation part (120) is lowered | hung, and a condensation area | region Therefore, the cooling performance can be improved.

請求項5に記載の発明では、第2のウィック(132)は、第1のウィック(131)よりも多孔質構造が粗と成るように形成されたことを特徴としている。   The invention according to claim 5 is characterized in that the second wick (132) is formed so as to have a coarser porous structure than the first wick (131).

第2のウィック(132)においては、放熱部(120)側の冷媒を冷媒槽(110)側に引っ張るだけの毛細管力があれば事足りるため、第1のウィック(131)に比べて大きな毛細管力を必要としないことから、多孔質構造を粗にすることができる訳であり、この分、冷媒が流通する際の流通抵抗を低減することができるので、冷媒の循環をスムーズにして、冷却性能を向上させることができる。   In the second wick (132), a capillary force sufficient to pull the refrigerant on the heat radiating portion (120) side to the refrigerant tank (110) side is sufficient, and therefore a larger capillary force than the first wick (131) is required. Therefore, the porous structure can be roughened, and the flow resistance when the refrigerant flows can be reduced accordingly. Can be improved.

請求項6に記載の発明では、第2のウィック(132)は、第1のウィック(131)に一体的に形成されたことを特徴としており、これにより、部品点数を低減し、組付けを容易にして、安価な対応ができる。   The invention according to claim 6 is characterized in that the second wick (132) is formed integrally with the first wick (131), thereby reducing the number of parts and assembling. Easily and inexpensively.

請求項7に記載の発明では、第2のウィック(132)は、発熱体(10)が配置される領域近傍まで延びるように形成されたことを特徴としている。   The invention according to claim 7 is characterized in that the second wick (132) is formed so as to extend to the vicinity of the region where the heating element (10) is arranged.

これにより、第1のウィック(131)に加えて、第2のウィック(132)によっても冷媒を発熱体(10)の領域に供給することができるので、その分、発熱体(10)による沸騰を促進させ、冷媒の循環量を増加させて、冷却性能を向上させることができる。   Thereby, in addition to the first wick (131), the second wick (132) can also supply the refrigerant to the region of the heating element (10). Can be promoted, the circulation amount of the refrigerant can be increased, and the cooling performance can be improved.

請求項8に記載の発明では、2つの壁部(111、112)が天地方向を向く姿勢で使用される時の冷媒槽(110)内の冷媒の液面より上側と成る領域には、第1のウィック(131)を貫通させつつ、冷媒槽(110)内を上側と下側とに区切る隔壁(113)が設けられたことを特徴としている。   In the invention according to claim 8, in the region above the coolant level in the coolant tank (110) when the two wall portions (111, 112) are used in a posture facing the top-and-bottom direction, A partition wall (113) that divides the refrigerant tank (110) into an upper side and a lower side while passing through one wick (131) is provided.

これにより、冷媒槽(110)内の沸騰冷媒の圧力(PA)が冷媒槽(110)の液冷媒に作用しないようにして、放熱部(120)内の冷媒液面の上昇を防止することができるので、放熱部(120)の凝縮領域を大きくして、冷却性能を向上さることができる。   This prevents the pressure (PA) of the boiling refrigerant in the refrigerant tank (110) from acting on the liquid refrigerant in the refrigerant tank (110) and prevents the refrigerant liquid level in the heat radiating section (120) from rising. Therefore, the condensation area of the heat dissipating part (120) can be increased to improve the cooling performance.

請求項2に記載の発明において、請求項9に記載の発明では、一対のヘッダ(121、122)の一方(122)には、このヘッダ(122)の反冷媒槽側の先端部から第1のウィック(131)に繋がる第3のウィック(133)が設けられたことを特徴としている。   In the invention according to claim 2, in the invention according to claim 9, the first (122) of the pair of headers (121, 122) is a first from the tip of the header (122) on the side opposite to the refrigerant tank. The third wick (133) connected to the wick (131) is provided.

これにより、冷媒槽(110)を水平方向姿勢として、且つ、発熱体(10)が冷媒槽(110)の上側になるようにして使用する場合でも、放熱部(120)の下側に貯まる冷媒を第3のウィック(133)の毛細管力によって第1のウィック(131)を介して発熱体(10)に供給することができるので、発熱体(10)の冷却を可能とする沸騰冷却装置(100)とすることができる。   Accordingly, even when the refrigerant tank (110) is used in a horizontal orientation and the heating element (10) is located above the refrigerant tank (110), the refrigerant is stored below the heat radiating portion (120). Can be supplied to the heating element (10) via the first wick (131) by the capillary force of the third wick (133), so that the boiling cooling device ( 100).

請求項3に記載の発明において、請求項10に記載の発明では、複数のチューブ(123b)のいずれかには、連通ヘッダ(125)側から第1のウィック(131)に繋がる第4のウィック(134)が設けられたことを特徴としている。   In the invention according to claim 3, in the invention according to claim 10, any one of the plurality of tubes (123b) includes a fourth wick connected to the first wick (131) from the communication header (125) side. (134) is provided.

これにより、請求項9に記載の発明と同様に、冷媒槽(110)を水平方向姿勢として、且つ、発熱体(10)が冷媒槽(110)の上側になるようにして使用する場合でも、放熱部(120)の下側に貯まる冷媒を第4のウィック(134)の毛細管力によって第1のウィック(131)を介して発熱体(10)に供給することができるので、発熱体(10)の冷却を可能とする沸騰冷却装置(100)とすることができる。   Thereby, similarly to the invention described in claim 9, even when the refrigerant tank (110) is used in a horizontal orientation and the heating element (10) is located above the refrigerant tank (110), Since the refrigerant stored under the heat radiating section (120) can be supplied to the heating element (10) via the first wick (131) by the capillary force of the fourth wick (134), the heating element (10 ) Is a boiling cooling device (100) that enables cooling.

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
本発明の沸騰冷却装置100における第1実施形態を図1、図2に示す。図1は、冷媒槽110を天地方向(以下、垂直方向と呼ぶ)姿勢とした場合の沸騰冷却装置100を示す断面図、図2は、冷媒槽110を水平方向姿勢とした場合の沸騰冷却装置100を示す断面図である。
(First embodiment)
1 and 2 show a first embodiment of the boiling cooling device 100 of the present invention. FIG. 1 is a cross-sectional view showing a boiling cooling device 100 when the refrigerant tank 110 is in a vertical direction (hereinafter referred to as a vertical direction), and FIG. 2 is a boiling cooling device when the refrigerant tank 110 is in a horizontal posture. FIG.

沸騰冷却装置100は、半導体素子等の発熱体10を冷却するようにしたもので、冷媒槽110と放熱部120とから構成されている。そして、以下説明する各部材は、銅材あるいは銅系材より成り、各部材間で接合される部位に施されたろう材により一体でろう付けされている。   The boiling cooling device 100 is configured to cool the heating element 10 such as a semiconductor element, and includes a refrigerant tank 110 and a heat radiating unit 120. Each member described below is made of a copper material or a copper-based material, and is brazed integrally with a brazing material applied to a portion joined between the members.

まず、冷媒槽110は、扁平箱状を成す容器であり、対向する受熱壁(本発明における一方の壁部に対応)111と、放熱壁(本発明における他方の壁部に対応)112とを有している。そして、図1に示すように、受熱壁111、放熱壁112を垂直方向姿勢とした場合の受熱壁111の上側には発熱体10が図示しないボルト等の締め付けにより固定されている。ここで、発熱体10と受熱壁111との間の接触熱抵抗を小さくするために、両者間に熱伝導グリースを介在させても良い。   First, the refrigerant tank 110 is a container having a flat box shape, and includes an opposing heat receiving wall (corresponding to one wall portion in the present invention) 111 and a heat radiating wall (corresponding to the other wall portion in the present invention) 112. Have. And as shown in FIG. 1, the heat generating body 10 is being fixed to the upper side of the heat receiving wall 111 at the time of making the heat receiving wall 111 and the heat radiating wall 112 into a vertical attitude | position by fastening | tightening the bolt etc. which are not shown in figure. Here, in order to reduce the contact thermal resistance between the heating element 10 and the heat receiving wall 111, thermal conductive grease may be interposed therebetween.

放熱部120は、2本のヘッダ121、122内に連通する複数本の放熱チューブ(本発明における1以上のチューブに対応)123aと、各放熱チューブ123a間に介在される放熱フィン124とから構成される。2本のヘッダ121、122は、それぞれ冷媒槽110の両端側(図1中の上側と下側)で放熱壁112から略直立して組付けられ、冷媒槽110の内部空間と連通して設けられている。放熱チューブ123aは、放熱壁112と略平行に配列され、2本のヘッダ121、122を介して冷媒槽110の内部空間と連通している。放熱フィン124は、周知のコルゲートフィンであり、放熱面積を増大させるために使用される。   The heat dissipating part 120 includes a plurality of heat dissipating tubes (corresponding to one or more tubes in the present invention) 123a communicating with the two headers 121 and 122, and heat dissipating fins 124 interposed between the heat dissipating tubes 123a. Is done. The two headers 121 and 122 are assembled so as to be substantially upright from the heat radiating wall 112 on both ends (upper and lower sides in FIG. 1) of the refrigerant tank 110, and are provided in communication with the internal space of the refrigerant tank 110. It has been. The heat radiating tube 123 a is arranged substantially in parallel with the heat radiating wall 112, and communicates with the internal space of the refrigerant tank 110 through the two headers 121 and 122. The heat radiating fins 124 are well-known corrugated fins and are used to increase the heat radiating area.

そして、本発明の特徴部として冷媒槽110の受熱壁111の内側面には、受熱壁111(冷媒槽110)の下側となる領域から発熱体10が配置される領域に至るウィック(本発明における第1のウィックに対応)131を設けるようにしている。尚、ここでは、受熱壁111の垂直方向の両端部のどちらが下側になっても上記の条件を満足するように、ウィック131は、受熱壁111の両端部側(図1中の上側と下側)から発熱体10の領域に至るように設けている。因みに、ウィック131は、周知のように、金網、金属製フェルト、焼結金属等から成る多孔質部材であり、本実施形態では、銅製の焼結金属を用いている。   As a characteristic part of the present invention, the inner surface of the heat receiving wall 111 of the refrigerant tank 110 has a wick extending from a region below the heat receiving wall 111 (refrigerant tank 110) to a region where the heating element 10 is disposed (the present invention). 131 corresponding to the first wick in FIG. In this case, the wick 131 is arranged on both end sides of the heat receiving wall 111 (upper side and lower side in FIG. 1) so that the above condition is satisfied regardless of which of the both ends in the vertical direction of the heat receiving wall 111 is on the lower side. Side) to the region of the heating element 10. Incidentally, as is well known, the wick 131 is a porous member made of a wire mesh, a metal felt, a sintered metal, or the like. In this embodiment, a sintered metal made of copper is used.

そして、真空引きされた沸騰冷却装置100の内部空間には、所定量の冷媒が封入されている。冷媒は、ここでは水を使用しており、封入量としては、冷媒槽110の容積以下となるようにしている。冷媒(水)の沸点は、通常(一気圧で)100℃であるが、沸騰冷却装置100内を真空引きしているため、沸点は、30〜40℃となっている。尚、冷媒としては、水の他にアルコール、フロロカーボン、フロン等を用いても良い。   A predetermined amount of refrigerant is sealed in the internal space of the evacuated boiling cooling apparatus 100. Here, water is used as the refrigerant, and the amount of the enclosed liquid is set to be equal to or less than the volume of the refrigerant tank 110. The boiling point of the refrigerant (water) is usually 100 ° C. (at one atmospheric pressure), but since the inside of the boiling cooling device 100 is evacuated, the boiling point is 30 to 40 ° C. As the refrigerant, alcohol, fluorocarbon, chlorofluorocarbon or the like may be used in addition to water.

次に、上記構成に基づく沸騰冷却装置100の作動および作用効果について説明する。   Next, the operation and effect of the boiling cooling device 100 based on the above configuration will be described.

まず、冷媒槽110の受熱壁111、放熱壁112を垂直方向にして用いた場合(図1)、沸騰冷却装置100内の冷媒は、冷媒槽110、放熱チューブ123aの下側およびヘッダ122に貯まる形となり、その液面は発熱体10よりも低い位置と成るが、この冷媒は、ウィック131の毛細管力によって吸い上げられ、発熱体10の領域に供給されることになる。   First, when the heat receiving wall 111 and the heat radiating wall 112 of the refrigerant tank 110 are used in a vertical direction (FIG. 1), the refrigerant in the boiling cooling device 100 is stored in the refrigerant tank 110, the lower side of the heat radiating tube 123a, and the header 122. The liquid level is lower than that of the heating element 10, but the refrigerant is sucked up by the capillary force of the wick 131 and supplied to the area of the heating element 10.

そして、この冷媒は発熱体10から受熱して沸騰気化し、冷媒槽110内を上昇し、一方のヘッダ121内に流れ込み(図1中の破線)、そのヘッダ121から各放熱チューブ123aに分散して流れる。放熱チューブ123a内へ流入した冷媒蒸気は、この放熱チューブ123a内を流れる際に、例えば図示しない送風手段から供給される冷却風を受けて冷却され、凝縮液となって他方のヘッダ122から冷媒槽110へと還流する(図1中の実線)。   Then, this refrigerant receives heat from the heating element 10 and evaporates, rises in the refrigerant tank 110, flows into one header 121 (broken line in FIG. 1), and is dispersed from the header 121 to each heat radiating tube 123a. Flowing. When the refrigerant vapor that has flowed into the heat radiating tube 123a flows through the heat radiating tube 123a, the refrigerant vapor is cooled by receiving cooling air supplied from, for example, a blowing means (not shown), and becomes a condensed liquid from the other header 122. Reflux to 110 (solid line in FIG. 1).

このように、発熱体10から発生した熱が冷媒に伝達されて放熱部120へ輸送され、この放熱部120で冷媒蒸気が凝縮する際に凝縮潜熱として放出され、放熱フィン124を介して外気(冷却風)に放熱される。即ち、発熱体10から発生した熱が冷媒に伝達されて放熱部120で外気に放出されることで発熱体10が冷却される訳である。   In this way, the heat generated from the heating element 10 is transmitted to the refrigerant and transported to the heat radiating unit 120, and is released as condensation latent heat when the refrigerant vapor condenses in the heat radiating unit 120, and the outside air ( Heat is dissipated to the cooling air). That is, the heat generated from the heating element 10 is transmitted to the refrigerant and released to the outside air by the heat radiating unit 120, thereby cooling the heating element 10.

本発明においては、2つの壁部111、112が垂直方向を向く姿勢で使用される時に、発熱体10の位置に関わらず冷媒槽110内部の冷媒液面を発熱体10より低い位置に設定しても、上記したようにウィック131の毛細管力によって、受熱壁111の内壁面に沿って冷媒を発熱体10の配置される領域まで供給することができる。また、冷媒液面を低くすることで、従来技術の項で説明した図11に比較して、放熱部120での冷媒凝縮領域を大きくすることができる。よって、冷媒槽110内の冷媒を沸騰気化させ、沸騰気化した冷媒を放熱部120で充分に凝縮液化(凝縮潜熱を大気に放熱)して、再び冷媒槽110に戻すことで発熱体10の冷却が可能となる。   In the present invention, when the two wall portions 111 and 112 are used in a vertical orientation, the refrigerant liquid level in the refrigerant tank 110 is set at a lower position than the heating element 10 regardless of the position of the heating element 10. However, as described above, the refrigerant can be supplied to the region where the heating element 10 is disposed along the inner wall surface of the heat receiving wall 111 by the capillary force of the wick 131. Further, by lowering the coolant level, the coolant condensing region in the heat dissipating unit 120 can be increased as compared with FIG. 11 described in the section of the prior art. Therefore, the refrigerant in the refrigerant tank 110 is boiled and vaporized, and the boiled and vaporized refrigerant is sufficiently condensed and liquefied by the heat dissipating unit 120 (condensation latent heat is released to the atmosphere) and returned to the refrigerant tank 110 again to cool the heating element 10. Is possible.

尚、図2に示すように、放熱部120が上を向くように冷媒槽110の受熱壁111、放熱壁112を水平方向にして用いた場合は、冷媒は冷媒槽110内で受熱壁111の上に貯まる形となるので、容易に冷媒を沸騰気化させ、放熱部120で充分に凝縮液化させることができる。   As shown in FIG. 2, when the heat receiving wall 111 and the heat radiating wall 112 of the refrigerant tank 110 are used in a horizontal direction so that the heat dissipating part 120 faces upward, the refrigerant is contained in the heat receiving wall 111 in the refrigerant tank 110. Since it is stored in the upper shape, the refrigerant can be easily boiled and vaporized sufficiently by the heat dissipating unit 120.

総じて、冷媒槽110に対する発熱体10の位置に関わらず、且つ冷媒槽110が水平方向姿勢に加えて垂直方向姿勢で使用される場合でも、高性能で発熱体10の冷却を可能とする沸騰冷却装置100とすることができる。   In general, regardless of the position of the heating element 10 with respect to the refrigerant tank 110, and even when the refrigerant tank 110 is used in a vertical position in addition to a horizontal position, boiling cooling that enables the heating element 10 to be cooled with high performance. Device 100 may be provided.

尚、変形例1として放熱部120については、図3に示すように、放熱壁112から立設されて、一端側が冷媒槽110内に連通する複数のチューブ123bと、これら複数のチューブ123bの他端側で接続されて、複数のチューブ123b同士を連通させる連通ヘッダ125とから成るものとしても良い。   In addition, as shown in FIG. 3, as the first modification, the heat radiating unit 120 is erected from the heat radiating wall 112 and has one end side communicating with the inside of the refrigerant tank 110, and other than the plurality of tubes 123 b. It is good also as what consists of the communication header 125 connected by the end side and making the some tube 123b communicate.

通常、2つの壁部111、112が拡がる方向(図3中の上下方向)の寸法は、放熱部120における2つの壁部111、112が対向する方向(図3中の左右方向)の寸法より大きく設定される場合が多く、このような場合では、上下方向に放熱チューブ123bを複数配置することで、冷媒の流路断面積を拡大して、冷媒の流通抵抗を低減することができるので、冷媒の循環を促進して冷却性能を向上させることができる。   Usually, the dimension in the direction in which the two wall parts 111 and 112 expand (up and down direction in FIG. 3) is larger than the dimension in the direction in which the two wall parts 111 and 112 face each other in the heat radiating part 120 (left and right direction in FIG. 3) In many cases, it is set large, and in such a case, by disposing a plurality of heat dissipating tubes 123b in the vertical direction, the flow passage cross-sectional area of the refrigerant can be expanded and the flow resistance of the refrigerant can be reduced. Cooling performance can be improved by promoting circulation of the refrigerant.

(第2実施形態)
本発明の第2実施形態を図4、図5に示す。第2実施形態は、上記第1実施形態に対して、ウィック(本発明における第2のウィックに対応)132を追加したものである。
(Second Embodiment)
A second embodiment of the present invention is shown in FIGS. The second embodiment is obtained by adding a wick (corresponding to the second wick in the present invention) 132 to the first embodiment.

ウィック132は、図4に示すように、2つの壁部111、112が垂直方向を向く姿勢で使用される時の冷媒槽110内の下側領域に配置されるようにしている。そして、ウィック132は、ウィック131に対して多孔質構造が粗(形成される孔が大きい)と成るようにしている。   As shown in FIG. 4, the wick 132 is arranged in a lower region in the refrigerant tank 110 when the two wall portions 111 and 112 are used in a posture in which they are oriented in the vertical direction. The wick 132 has a coarser porous structure (larger holes are formed) than the wick 131.

沸騰冷却装置100においては、発熱体10の発熱に伴って冷媒の沸騰が促進され、冷媒循環量が増加する。すると、放熱チューブ123aにおける冷媒の流通抵抗が増大し(冷媒の圧力損失が増大し)、図5に示すように、冷媒槽110内のA点における圧力PAに対して、放熱チューブ123a内のB点の圧力PBが低下し(圧力PA>圧力PB)、冷媒液にヘッド差hが生じる。即ち、凝縮領域が減少してしまう。   In the boiling cooling device 100, the boiling of the refrigerant is promoted with the heat generation of the heating element 10, and the refrigerant circulation amount is increased. Then, the flow resistance of the refrigerant in the heat radiating tube 123a increases (the pressure loss of the refrigerant increases), and as shown in FIG. 5, B in the heat radiating tube 123a with respect to the pressure PA at point A in the refrigerant tank 110. The point pressure PB decreases (pressure PA> pressure PB), and a head difference h occurs in the refrigerant liquid. That is, the condensation area is reduced.

しかしながら、本第2実施形態では、ウィック132の毛細管力によって、放熱部120側の冷媒を冷媒槽110側に引っ張ることができるので、放熱部120における冷媒液面を下げて凝縮領域を大きくして、冷却性能を向上させることができる。   However, in the second embodiment, the capillary force of the wick 132 can pull the refrigerant on the heat radiating unit 120 side to the refrigerant tank 110 side, so the refrigerant liquid level in the heat radiating unit 120 is lowered to enlarge the condensation region. , Cooling performance can be improved.

また、ウィック132においては、放熱部120側の冷媒を冷媒槽110側に引っ張るだけの毛細管力があれば事足りるため、ウィック131に比べて大きな毛細管力を必要としないことから、多孔質構造を粗にすることができる訳であり、この分、冷媒が流通する際の流通抵抗を低減することができるので、冷媒の循環をスムーズにして、冷却性能を向上させることができる。   In addition, in the wick 132, it is sufficient that there is a capillary force sufficient to pull the refrigerant on the heat radiating unit 120 side to the refrigerant tank 110 side, so that a large capillary force is not required compared to the wick 131. Since the flow resistance when the refrigerant flows can be reduced by this amount, the refrigerant can be smoothly circulated and the cooling performance can be improved.

尚、第2実施形態の変形例2として図6に示すように、ウィック132は、ウィック131と一体に形成するようにしても良く、これにより、部品点数を低減し、組付けを容易にして、安価な対応ができる。ここで、ウィック131と132の一体化に当っては、上記で説明したように、ウィック132を多孔質構造が粗となるものとして、両ウィック131、132を焼結によって一体化させたものとしても良い。   As shown in FIG. 6 as a second modification of the second embodiment, the wick 132 may be formed integrally with the wick 131, thereby reducing the number of parts and facilitating assembly. Can be cheap. Here, in integrating the wicks 131 and 132, as described above, it is assumed that the wick 132 has a rough porous structure and the wicks 131 and 132 are integrated by sintering. Also good.

また、変形例3として図7に示すように、ウィック132は、発熱体10が配置される領域まで延ばすようにしても良く、これにより、ウィック131に加えて、ウィック132によっても冷媒を発熱体10の領域に供給することができるので、その分、発熱体10による沸騰を促進させ、冷媒の循環量を増加させて、冷却性能を向上させることができる。   Further, as shown in FIG. 7 as a third modification, the wick 132 may be extended to a region where the heating element 10 is disposed, and thereby the refrigerant is also generated by the wick 132 in addition to the wick 131. Since it can supply to 10 area | regions, the boiling by the heat generating body 10 can be accelerated | stimulated by that much, the circulation amount of a refrigerant | coolant can be increased, and cooling performance can be improved.

(第3実施形態)
本発明の第3実施形態を図8に示す。第3実施形態は、上記第2実施形態に対して、隔壁113によって、冷媒液のヘッド差hを低減するようにしたものである。
(Third embodiment)
A third embodiment of the present invention is shown in FIG. In the third embodiment, the head difference h of the refrigerant liquid is reduced by the partition wall 113 as compared with the second embodiment.

隔壁113は、2つの壁部111、112が垂直方向を向く姿勢で使用される時の冷媒槽110内の冷媒の液面より上側となる領域に、ウィック131を貫通させつつ、冷媒槽110内を上側と下側とに区切るように配設されている。   The partition wall 113 is disposed in the refrigerant tank 110 while penetrating the wick 131 into a region above the liquid level of the refrigerant in the refrigerant tank 110 when the two wall portions 111 and 112 are used in a posture in which they are oriented in the vertical direction. Is arranged to be divided into an upper side and a lower side.

これにより、冷媒槽110内の沸騰冷媒の圧力PAが冷媒槽110の液冷媒に作用しないようにして、放熱部120(放熱チューブ123a)内の冷媒液面の上昇を防止することができるので、放熱部120の凝縮領域を大きくして、冷却性能を向上さることができる。   Thereby, the pressure PA of the boiling refrigerant in the refrigerant tank 110 does not act on the liquid refrigerant in the refrigerant tank 110, and the rise of the refrigerant liquid level in the heat radiating unit 120 (heat radiating tube 123a) can be prevented. The condensation area of the heat dissipating unit 120 can be increased to improve the cooling performance.

(第4実施形態)
本発明の第4実施形態を図9に示す。第4実施形態は、冷媒槽110が上記第1実施形態〜第3実施形態に対して、更に異なる姿勢で使用される場合でも発熱体10の冷却を可能とするようにしたものである。
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIG. In the fourth embodiment, the heat generating body 10 can be cooled even when the refrigerant tank 110 is used in a different posture from the first to third embodiments.

ここでは、ヘッダ122内に、このヘッダ122の反冷媒槽側の先端部からのウィック131に繋がるウィック(本発明における第3のウィックに対応)133を設けるようにしている。   Here, a wick (corresponding to the third wick in the present invention) 133 connected to the wick 131 from the tip of the header 122 on the side opposite to the refrigerant tank is provided in the header 122.

これにより、冷媒槽110を水平方向姿勢として、且つ、発熱体10が冷媒槽110の上側になるようにして使用する場合でも、放熱部120の下側に貯まる冷媒をウィック133の毛細管力によってウィック131を介して発熱体10に供給することができるので、発熱体10の冷却を可能とする沸騰冷却装置100とすることができる。   Accordingly, even when the refrigerant tank 110 is used in a horizontal orientation and the heating element 10 is located above the refrigerant tank 110, the refrigerant stored under the heat radiating unit 120 is wicked by the capillary force of the wick 133. Since it can supply to the heat generating body 10 via 131, it can be set as the boiling cooling device 100 which enables the heat generating body 10 to be cooled.

尚、放熱部120を複数の放熱チューブ123bと連通ヘッダ125から成るものとした場合は、変形例4として図10に示すように、複数のチューブ123bのいずれか(ここでは図中右側のチューブ123b)に、連通ヘッダ125側からウィック131に繋がるウィック(本発明における第4のウィックに対応)134を設けてやれば良く、これにより、上記と同様の効果を得ることができる。   When the heat dissipating part 120 is composed of a plurality of heat dissipating tubes 123b and a communication header 125, as shown in FIG. 10 as a modified example 4, any one of the plural tubes 123b (here, the right tube 123b in the figure). ) May be provided with a wick (corresponding to the fourth wick in the present invention) 134 connected to the wick 131 from the communication header 125 side, whereby the same effect as described above can be obtained.

第1実施形態における沸騰冷却装置の冷媒槽を垂直方向姿勢で用いる場合を示す断面図である。It is sectional drawing which shows the case where the refrigerant tank of the boiling cooling device in 1st Embodiment is used with a vertical direction attitude | position. 第1実施形態における沸騰冷却装置の冷媒槽を水平方向姿勢で用いる場合を示す断面図である。It is sectional drawing which shows the case where the refrigerant tank of the boiling cooling device in 1st Embodiment is used in a horizontal direction attitude | position. 第1実施形態における沸騰冷却装置の変形例1を示す断面図である。It is sectional drawing which shows the modification 1 of the boiling cooling device in 1st Embodiment. 第2実施形態における沸騰冷却装置の冷媒槽を垂直方向姿勢で用いる場合を示す断面図である。It is sectional drawing which shows the case where the refrigerant tank of the boiling cooling device in 2nd Embodiment is used with a vertical direction attitude | position. 沸騰冷却装置に生じる冷媒液のヘッド差を示す断面図である。It is sectional drawing which shows the head difference of the refrigerant liquid which arises in a boiling cooling device. 第2実施形態における沸騰冷却装置の変形例2を示す断面図である。It is sectional drawing which shows the modification 2 of the boiling cooling device in 2nd Embodiment. 第2実施形態における沸騰冷却装置の変形例3を示す断面図である。It is sectional drawing which shows the modification 3 of the boiling cooling device in 2nd Embodiment. 第3実施形態における沸騰冷却装置の冷媒槽を垂直方向姿勢で用いる場合を示す断面図である。It is sectional drawing which shows the case where the refrigerant tank of the boiling cooling device in 3rd Embodiment is used with a vertical direction attitude | position. 第4実施形態における沸騰冷却装置の冷媒槽を水平方向姿勢とし、発熱体を上側にして用いる場合を示す断面図である。It is sectional drawing which shows the case where it uses a refrigerant | coolant tank of the boiling cooling device in 4th Embodiment as a horizontal direction attitude | position, and makes a heat generating body upper side. 第4実施形態における沸騰冷却装置の変形例4を示す断面図である。It is sectional drawing which shows the modification 4 of the boiling cooling device in 4th Embodiment. 従来技術における沸騰冷却装置の冷媒槽を垂直方向姿勢で用いる場合を示す断面図である。It is sectional drawing which shows the case where the refrigerant tank of the boiling-cooling apparatus in a prior art is used with an orthogonal | vertical direction attitude | position.

符号の説明Explanation of symbols

10 発熱体
100 沸騰冷却装置
110 冷媒槽
111 受熱壁(一方の壁部)
112 放熱壁(他方の壁部)
113 隔壁
120 放熱部
121、122 ヘッダ
123a 放熱チューブ(1以上のチューブ)
123b 放熱チューブ(複数のチューブ)
125 連通ヘッダ
131 ウィック(第1のウィック)
132 ウィック(第2のウィック)
133 ウィック(第3のウィック)
134 ウィック(第4のウィック)
DESCRIPTION OF SYMBOLS 10 Heat generating body 100 Boiling cooler 110 Refrigerant tank 111 Heat receiving wall (one wall part)
112 Heat dissipation wall (the other wall)
113 Partition 120 Heat radiating part 121, 122 Header 123a Heat radiating tube (one or more tubes)
123b Heat dissipation tube (multiple tubes)
125 communication header 131 wick (first wick)
132 Wick (second wick)
133 Wick (Third Wick)
134 Wick (4th Wick)

Claims (10)

対向する2つの壁部(111、112)のうち、一方の壁部(111)の外表面に発熱体(10)が取付けられ、内部に冷媒を貯留する冷媒槽(110)と、
前記2つの壁部(111、112)のうち、他方の壁部(112)の外表面に設けられ、前記発熱体(10)によって沸騰気化した前記冷媒を内部に流入させて凝縮液化した後に前記冷媒槽(110)に戻す放熱部(120)とを備える沸騰冷却装置において、
前記一方の壁部(111)の内側面には、前記2つの壁部(111、112)が天地方向を向く姿勢で使用される時に下側となる領域から前記発熱体(10)が配置される領域に至る第1のウィック(131)が設けられたことを特徴とする沸騰冷却装置。
Of the two opposing wall portions (111, 112), the heating element (10) is attached to the outer surface of one wall portion (111), and the refrigerant tank (110) that stores the refrigerant therein,
Of the two wall portions (111, 112), provided on the outer surface of the other wall portion (112), the refrigerant boiled and vaporized by the heating element (10) flows into the inside and is condensed and liquefied. In a boiling cooling device comprising a heat radiating part (120) returning to the refrigerant tank (110),
The heating element (10) is disposed on the inner side surface of the one wall portion (111) from the lower region when the two wall portions (111, 112) are used in a posture facing the top-and-bottom direction. A boiling cooling device characterized in that a first wick (131) extending to a region is provided.
前記放熱部(120)は、前記他方の壁部(112)から立設されて、一端側が前記冷媒槽(110)内に連通する一対のヘッダ(121、122)と、
前記一対のヘッダ(121、122)間で前記2つの壁部(111、112)に略平行に配置されて、前記一対のヘッダ(121、122)内に連通する1以上のチューブ(123a)とから成ることを特徴とする請求項1に記載の沸騰冷却装置。
The heat radiating portion (120) is erected from the other wall portion (112), and a pair of headers (121, 122) whose one end side communicates with the refrigerant tank (110);
One or more tubes (123a) disposed between the pair of headers (121, 122) substantially parallel to the two wall portions (111, 112) and communicating with the pair of headers (121, 122). The boiling cooling device according to claim 1, comprising:
前記放熱部(120)は、前記他方の壁部(112)から立設されて、一端側が前記冷媒槽(110)内に連通する複数のチューブ(123b)と、
前記複数のチューブ(123b)の他端側で接続されて、前記複数のチューブ(123b)同士を連通させる連通ヘッダ(125)とから成ることを特徴とする請求項1に記載の沸騰冷却装置。
The heat dissipating part (120) is erected from the other wall part (112), and a plurality of tubes (123b) whose one end side communicates with the refrigerant tank (110),
2. The boiling cooling device according to claim 1, comprising a communication header (125) connected at the other end side of the plurality of tubes (123 b) and communicating the plurality of tubes (123 b) with each other.
前記2つの壁部(111、112)が天地方向を向く姿勢で使用される時の前記冷媒槽(110)内の下側領域には、第2のウィック(132)が設けられたことを特徴とする請求項1〜請求項3のいずれかに記載の沸騰冷却装置。   A second wick (132) is provided in a lower region in the refrigerant tank (110) when the two wall portions (111, 112) are used in a posture in which they face in a vertical direction. The boiling cooling device according to any one of claims 1 to 3. 前記第2のウィック(132)は、前記第1のウィック(131)よりも多孔質構造が粗と成るように形成されたことを特徴とする請求項4に記載の沸騰冷却装置。   The boiling cooling device according to claim 4, wherein the second wick (132) is formed so as to have a coarser porous structure than the first wick (131). 前記第2のウィック(132)は、前記第1のウィック(131)に一体的に形成されたことを特徴とする請求項4または請求項5に記載の沸騰冷却装置。   The boiling cooling apparatus according to claim 4 or 5, wherein the second wick (132) is formed integrally with the first wick (131). 前記第2のウィック(132)は、前記発熱体(10)が配置される領域近傍まで延びるように形成されたことを特徴とする請求項4〜請求項6のいずれかに記載の沸騰冷却装置。   The said 2nd wick (132) was formed so that it might extend to the area | region vicinity where the said heat generating body (10) is arrange | positioned, The boiling cooling device in any one of Claims 4-6 characterized by the above-mentioned. . 前記2つの壁部(111、112)が天地方向を向く姿勢で使用される時の前記冷媒槽(110)内の前記冷媒の液面より上側と成る領域には、前記第1のウィック(131)を貫通させつつ、前記冷媒槽(110)内を上側と下側とに区切る隔壁(113)が設けられたことを特徴とする請求項1〜請求項3のいずれかに記載の沸騰冷却装置。   When the two wall portions (111, 112) are used in a posture facing the top-and-bottom direction, the first wick (131) is disposed in a region above the coolant level in the coolant tank (110). ), And a partition wall (113) that divides the inside of the refrigerant tank (110) into an upper side and a lower side is provided. . 前記一対のヘッダ(121、122)の一方(122)には、このヘッダ(122)の反冷媒槽側の先端部から前記第1のウィック(131)に繋がる第3のウィック(133)が設けられたことを特徴とする請求項2に記載の沸騰冷却装置。   One (122) of the pair of headers (121, 122) is provided with a third wick (133) connected to the first wick (131) from the front end portion of the header (122) on the side opposite to the refrigerant tank. The boiling cooling device according to claim 2, wherein the boiling cooling device is provided. 前記複数のチューブ(123b)のいずれかには、前記連通ヘッダ(125)側から前記第1のウィック(131)に繋がる第4のウィック(134)が設けられたことを特徴とする請求項3に記載の沸騰冷却装置。   The fourth wick (134) connected to the first wick (131) from the side of the communication header (125) is provided in any of the plurality of tubes (123b). The boiling cooling apparatus according to 1.
JP2004081381A 2004-03-19 2004-03-19 Boiling cooler Pending JP2005268658A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004081381A JP2005268658A (en) 2004-03-19 2004-03-19 Boiling cooler
CNB2005100547974A CN100414243C (en) 2004-03-19 2005-03-16 Boiling cooling device
US11/082,929 US20050274496A1 (en) 2004-03-19 2005-03-17 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081381A JP2005268658A (en) 2004-03-19 2004-03-19 Boiling cooler

Publications (1)

Publication Number Publication Date
JP2005268658A true JP2005268658A (en) 2005-09-29

Family

ID=35041813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081381A Pending JP2005268658A (en) 2004-03-19 2004-03-19 Boiling cooler

Country Status (3)

Country Link
US (1) US20050274496A1 (en)
JP (1) JP2005268658A (en)
CN (1) CN100414243C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113942A1 (en) * 2006-04-03 2007-10-11 Fuchigami Micro Co., Ltd. Heat pipe
JP2021042896A (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using the same
WO2023042880A1 (en) * 2021-09-17 2023-03-23 住友精密工業株式会社 Boiling-type cooling device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
US20080093058A1 (en) * 2006-10-24 2008-04-24 Jesse Jaejin Kim Systems and methods for orientation and direction-free cooling of devices
JP4766132B2 (en) * 2009-03-10 2011-09-07 トヨタ自動車株式会社 Boiling cooler
JP2013211297A (en) * 2012-03-30 2013-10-10 Denso Corp Boil cooling device
JP2013247148A (en) * 2012-05-23 2013-12-09 Toshiba Corp Natural circulation type cooling device
CN102867876A (en) * 2012-10-15 2013-01-09 上海电力学院 Natural circulating type phase-changing radiating device generally used in condensation high-temperature hot point
US20140216691A1 (en) * 2013-02-05 2014-08-07 Asia Vital Components Co., Ltd. Vapor chamber structure
EP3113590B1 (en) * 2015-06-30 2020-11-18 ABB Schweiz AG Cooling apparatus
JP2019086259A (en) * 2017-11-09 2019-06-06 三菱マテリアル株式会社 Copper porous body for vaporization member, ebullition cooler, and heat pipe
TWI639379B (en) * 2017-12-26 2018-10-21 訊凱國際股份有限公司 Heat dissipation structure
US11131511B2 (en) * 2018-05-29 2021-09-28 Cooler Master Co., Ltd. Heat dissipation plate and method for manufacturing the same
EP3584527B1 (en) * 2018-06-19 2021-08-11 Nokia Technologies Oy Heat transfer apparatus
EP3813098A1 (en) * 2019-10-25 2021-04-28 ABB Schweiz AG Vapor chamber

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074612B1 (en) * 1981-09-11 1986-01-02 Hitachi, Ltd. Heat-storing apparatus
US4705102A (en) * 1985-12-13 1987-11-10 Fuji Electric Company, Ltd. Boiling refrigerant-type cooling system
JPH0760075B2 (en) * 1987-01-31 1995-06-28 株式会社東芝 Heat storage device
US6357517B1 (en) * 1994-07-04 2002-03-19 Denso Corporation Cooling apparatus boiling and condensing refrigerant
DE19805930A1 (en) * 1997-02-13 1998-08-20 Furukawa Electric Co Ltd Cooling arrangement for electrical component with heat convection line
US6269866B1 (en) * 1997-02-13 2001-08-07 The Furukawa Electric Co., Ltd. Cooling device with heat pipe
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US6227287B1 (en) * 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
US6341646B1 (en) * 1998-11-20 2002-01-29 Denso Corporation Cooling device boiling and condensing refrigerant
US6321831B1 (en) * 1998-12-16 2001-11-27 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US6360814B1 (en) * 1999-08-31 2002-03-26 Denso Corporation Cooling device boiling and condensing refrigerant
KR100338810B1 (en) * 1999-11-08 2002-05-31 윤종용 cooling device
US6808015B2 (en) * 2000-03-24 2004-10-26 Denso Corporation Boiling cooler for cooling heating element by heat transfer with boiling
US6648063B1 (en) * 2000-04-12 2003-11-18 Sandia Corporation Heat pipe wick with structural enhancement
JP4423792B2 (en) * 2000-09-14 2010-03-03 株式会社デンソー Boiling cooler
US20020074108A1 (en) * 2000-12-18 2002-06-20 Dmitry Khrustalev Horizontal two-phase loop thermosyphon with capillary structures
TW523893B (en) * 2001-01-16 2003-03-11 Denso Corp Cooling equipment
JP2003042672A (en) * 2001-07-31 2003-02-13 Denso Corp Ebullient cooling device
JP2003161594A (en) * 2001-09-14 2003-06-06 Denso Corp Evaporation cooler
FR2829746B1 (en) * 2001-09-18 2003-12-19 Cit Alcatel HEAT TRANSFER DEVICE
JP3918502B2 (en) * 2001-10-25 2007-05-23 株式会社デンソー Boiling cooler
US6609561B2 (en) * 2001-12-21 2003-08-26 Intel Corporation Tunnel-phase change heat exchanger
US20030121515A1 (en) * 2001-12-28 2003-07-03 Industrial Technology Research Institute Counter - thermosyphon loop heat pipe solar collector
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
US6770085B1 (en) * 2003-04-11 2004-08-03 Ryan R Munson Heat absorbing pad
US6798661B1 (en) * 2003-05-08 2004-09-28 Hewlett-Packard Development Company, L.P. Chassis conducted cooling thermal dissipation apparatus for servers
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
US6901994B1 (en) * 2004-01-05 2005-06-07 Industrial Technology Research Institute Flat heat pipe provided with means to enhance heat transfer thereof
US7137441B2 (en) * 2004-03-15 2006-11-21 Hul-Chun Hsu End surface capillary structure of heat pipe
TWI235817B (en) * 2004-03-26 2005-07-11 Delta Electronics Inc Heat-dissipating module
US6899165B1 (en) * 2004-06-15 2005-05-31 Hua Yin Electric Co., Ltd. Structure of a heat-pipe cooler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113942A1 (en) * 2006-04-03 2007-10-11 Fuchigami Micro Co., Ltd. Heat pipe
JP2021042896A (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using the same
WO2021049096A1 (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using cooling device
WO2023042880A1 (en) * 2021-09-17 2023-03-23 住友精密工業株式会社 Boiling-type cooling device
JP7299441B1 (en) 2021-09-17 2023-06-27 住友精密工業株式会社 boiling cooler

Also Published As

Publication number Publication date
CN1670460A (en) 2005-09-21
CN100414243C (en) 2008-08-27
US20050274496A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US20050274496A1 (en) Boiling cooler
US6360814B1 (en) Cooling device boiling and condensing refrigerant
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
US6490160B2 (en) Vapor chamber with integrated pin array
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US6749013B2 (en) Heat sink
JPH04233259A (en) Removal device of heat
US7093647B2 (en) Ebullition cooling device for heat generating component
JP2010060164A (en) Heat pipe type heat sink
JP6697112B1 (en) heatsink
JP2005229102A (en) Heatsink
JP2007115917A (en) Thermal dissipation plate
JP5092931B2 (en) Boiling cooler
JP2010050326A (en) Cooling device
JP3924674B2 (en) Boiling cooler for heating element
JP2008021697A (en) Heat dispersion radiator
JPH11101585A (en) Plate-type heat pump and its packaging structure
JPH10227585A (en) Heat spreader and cooler employing the same
JP4026038B2 (en) Boiling cooler
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
JP5860728B2 (en) Electronic equipment cooling system
JP5624771B2 (en) Heat pipe and heat sink with heat pipe
JP2006234267A (en) Ebullient cooling device
JP3810119B2 (en) Boiling cooler
JP2004349652A (en) Boiling cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415