JPS60103044A - Manufacture of optical fiber for infrared rays - Google Patents

Manufacture of optical fiber for infrared rays

Info

Publication number
JPS60103044A
JPS60103044A JP58210936A JP21093683A JPS60103044A JP S60103044 A JPS60103044 A JP S60103044A JP 58210936 A JP58210936 A JP 58210936A JP 21093683 A JP21093683 A JP 21093683A JP S60103044 A JPS60103044 A JP S60103044A
Authority
JP
Japan
Prior art keywords
optical fiber
core
pipe
glass
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210936A
Other languages
Japanese (ja)
Inventor
Makoto Sato
信 佐藤
Toshio Katsuyama
俊夫 勝山
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP58210936A priority Critical patent/JPS60103044A/en
Publication of JPS60103044A publication Critical patent/JPS60103044A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a base material for an optical fiber for infrared rays with superior bonding strength between its core and clad by heat treating the inner wall of an oxide glass pipe as a clad material in a reducing gas and forming chalcogenide glass as a core material. CONSTITUTION:While introducing a reducing gas such as gaseous H2 into an oxide glass pipe as a clad material, the outside of the pipe is heated to form a metallic thin film in the pipe, and one end of the pipe is sealed by melt bonding. Metallic Ge is mixed with metallic Se, the mixture is filled into an ampul, and the ampul is sealed. The mixture is then melted by heating, mixed, and vitrified by rapid cooling to form chalcogenide glass as a core material. This core material is filled into said glass pipe and heat treated at the softening temp. of the chalcogenide glass to obtain a base material for an optical fiber. The desired optical fiber for infrared rays is manufactured by drawing the base material.

Description

【発明の詳細な説明】 〔発明の第1」用分野〕 本発明は赤外光の透過光ファイバに係り、コアークラッ
ド間の接着性の良い光コアイノ(の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [First Field of the Invention] The present invention relates to an optical fiber that transmits infrared light, and relates to a method for manufacturing an optical core with good adhesiveness between the core and cladding.

〔発明の背景〕[Background of the invention]

従来赤外用光ファイバはコアークラツドイ11ζ造にお
いてはクラツド材として緩衝性ポリマー4」料、捷たけ
コア材と組成比を変えた同種の材料が用いられていた。
Conventionally, in the case of infrared optical fibers having a core cladding of 11ζ, the same type of material was used as the cladding material, with a buffering polymer 4'' material and a twisted core material with different composition ratios.

しかしポリマー材料は赤外光11へ域で専ルl#61t
17千入奔ぬ、コア≠上ら計月食り、た光を1欧J反し
、加熱されてポリマーが硬化など変質し光ファイバの劣
化をもlcらす。またコア材と組成比を変えた同種の4
.イわでt」、コアークラッド間の屈折率差が小さいf
rめ::I j”の’+11力集中度が悪く、製法上も
技術的難度が高いなどの欠点があった。
However, polymer materials are exclusively used for infrared light in the range of 11
The 17,000-year-old core eclipses the top of the core, and the light emitted from the core is eclipsed by 1000 yen, and the polymer is heated and hardened, resulting in deterioration of the optical fiber. In addition, the same type of 4 with different core material and composition ratio
.. t”, the refractive index difference between the core cladding is small f
The '+11 force concentration of "rme::I j" was poor, and the manufacturing method was technically difficult.

〔発明の目的1 本発明の目的はクラツド材として従来の線引き工程が利
用でき)Y、ファイバの劣化しない酸化物ガラスを用い
る赤外用光フアイバ母材の製造方法を提供することにあ
4+。
[Objective of the Invention 1 The object of the present invention is to provide a method for manufacturing an infrared optical fiber base material using oxide glass that does not cause deterioration of the fiber, which can be used in a conventional drawing process as a cladding material.

〔発明の概要〕[Summary of the invention]

赤外用光ファイバのコア材としてカルコゲナイドガラス
を用いjr JAA)合、酸化!吻ガラスのクラッドと
は接着性が!I1.″く、熱的歪みによってコアとクラ
ッドは容易に剥9711 L、伝送特性に悪影響を及は
す。
Chalcogenide glass is used as the core material of infrared optical fiber. Adhesive to the glass cladding! I1. 9711L, the core and cladding easily peel off due to thermal distortion, which adversely affects transmission characteristics.

かかる困難を酸化物ガラスを還元ガス中で加熱処理する
ことによって酸化物ガラス表面に金属薄膜を形成し、金
k(とカルコゲナイドガラスの化学的結合によって解決
するものである。
These difficulties are solved by forming a thin metal film on the surface of the oxide glass by heat-treating the oxide glass in a reducing gas, and chemically bonding gold (k) and chalcogenide glass.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 金属ケルマニウムおよびセレンをモル比で20二80の
割合に混合し、石英製アンプルに10−2以下の真空中
で充填、封入した。ついでこのアンプルを800Cで3
9時間溶溶融金した後急冷ガラス化して20 Ge/8
0 S eカルコゲナイドガラスを作成した。このガラ
スブロックをコア材に用いて酸化物ガラスをクラッドと
する2種類の光フアイバ母材(ブレフオーム)を作製し
た。1つは管内壁面を還元処理した酸化物ガラス管を、
もう1つは未処理のガラス管を用いた。
Example 1 Metal kermanium and selenium were mixed at a molar ratio of 20 to 80, and the mixture was filled and sealed in a quartz ampoule in a vacuum of 10<-2> or less. Next, boil this ampoule at 800C for 3
After melting for 9 hours, it was rapidly cooled and vitrified to 20 Ge/8
A 0 S e chalcogenide glass was created. Using this glass block as a core material, two types of optical fiber base materials (breforms) each having an oxide glass as a cladding material were produced. One is an oxide glass tube whose inner wall surface has been subjected to reduction treatment.
The other used an untreated glass tube.

コア材の熱膨張係数α、軟化温度Tsを考慮して選定し
た、α=150X10−7/deg、TS=500℃の
多成分酸化物ガラス管(外径10胛φ内径7w+Iφ)
内にH2ガスを流しながら約600Cに、ガラス管外側
面を管内が薄く黒化するまで加熱した。ついでガラス管
の一端を溶着封止し、上記カルコゲナイドガラスのブロ
ックを充填し、管内を減圧しながらカルコゲナイドガラ
スが軟化する下限温度(約3001でガラス管内に流し
込みムク棒状二層(11°1造プレフオームを形成した
A multi-component oxide glass tube (outer diameter 10 φ, inner diameter 7w + Iφ) with α=150X10-7/deg and TS=500°C selected in consideration of the thermal expansion coefficient α and softening temperature Ts of the core material.
The outer surface of the glass tube was heated to about 600 C while flowing H2 gas inside the tube until the inside of the tube turned slightly black. Next, one end of the glass tube is welded and sealed, and the chalcogenide glass block described above is filled, and while the pressure inside the tube is reduced, the chalcogenide glass is poured into the glass tube at the lowest temperature at which it softens (approximately 3,000 yen). was formed.

この流し込み温IJ′1が高いとカルコゲナイドガラス
が沸騰して気孔が発生するため、なるべく低温が望まし
い。あるいはガラス管の一端に細孔を設け、減圧の代シ
に不活性ガスで加圧しながらコア材をし7オームを60
0〜700rで線引き光フアイバ化し、光学顕微鏡でそ
のコアークラッド界面を調べたところ未処理ガラス管を
クラッドとした光ファイバではコアークラッド界面にお
ける強い光の反射が観られ、剥離していることがわかっ
た。
If this pouring temperature IJ'1 is too high, the chalcogenide glass will boil and pores will be generated, so it is desirable to keep it as low as possible. Alternatively, make a pore at one end of the glass tube, pressurize with inert gas instead of reducing the pressure, and apply a core material to 7 ohm.
When an optical fiber was drawn at 0 to 700 r and its core-clad interface was examined using an optical microscope, strong light reflection was observed at the core-clad interface in an optical fiber whose cladding was an untreated glass tube, indicating that it had peeled off. Ta.

一方還元処理したものは剥離現象が観られず、良好な伝
送特性がイ1)られ、これはコアークラッド界面の接着
性のみならず、酸化物ガラス管の還元処理による酸素除
去効果により、ガラス管からの酸素汚染が防止され、吸
収損失が低減したことによることが判明しlroなお上
記実施例の他、各種カルコゲナイドガラスについても実
験検討し、本発明の方法が有効であることを確認した。
On the other hand, the reduction-treated tube showed no peeling phenomenon and had good transmission characteristics.This is due not only to the adhesion of the core-clad interface, but also to the oxygen removal effect of the reduction treatment of the oxide glass tube. It was found that this was due to the fact that oxygen contamination from the glass was prevented and absorption loss was reduced.In addition to the above-mentioned examples, various chalcogenide glasses were also examined experimentally, and it was confirmed that the method of the present invention is effective.

代理人 弁理士 高橋明夫Agent: Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、赤外用カルコゲナイドガラスをコアとする光ファイ
バの製造方法において、クラッド4Aである酸化物ガラ
スのコア側壁面を還元性ガス中で加熱処理したのち、九
ファイノ(のコアとなる1115分を形成し、元ファイ
バ母材とすることを7[モ徴とする赤外用光ファイバの
製造方法。
1. In a method for manufacturing an optical fiber having an infrared chalcogenide glass core, the core side wall surface of the oxide glass, which is the cladding 4A, is heat-treated in a reducing gas, and then a 1115-minute core is formed, which becomes the core of 7. A method for manufacturing an infrared optical fiber having the following characteristics:
JP58210936A 1983-11-11 1983-11-11 Manufacture of optical fiber for infrared rays Pending JPS60103044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210936A JPS60103044A (en) 1983-11-11 1983-11-11 Manufacture of optical fiber for infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210936A JPS60103044A (en) 1983-11-11 1983-11-11 Manufacture of optical fiber for infrared rays

Publications (1)

Publication Number Publication Date
JPS60103044A true JPS60103044A (en) 1985-06-07

Family

ID=16597533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210936A Pending JPS60103044A (en) 1983-11-11 1983-11-11 Manufacture of optical fiber for infrared rays

Country Status (1)

Country Link
JP (1) JPS60103044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230440A (en) * 1988-03-09 1989-09-13 Hisankabutsu Glass Kenkyu Kaihatsu Kk Production of preform for chalcogenide glass fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230440A (en) * 1988-03-09 1989-09-13 Hisankabutsu Glass Kenkyu Kaihatsu Kk Production of preform for chalcogenide glass fiber

Similar Documents

Publication Publication Date Title
JPS5852935B2 (en) Manufacturing method for optical transmission materials
JPS6140617B2 (en)
US4343638A (en) Method for manufacturing glass fibers from an infrared ray-transmitting glass fiber material
US5160521A (en) Method for making optical fiber preforms
JPS6090852A (en) Treatment of glass for optical fiber
JP3215810B2 (en) Single mode active optical fiber and method of manufacturing the same
EP1110113A1 (en) Method of fabricating a cylindrical optical fiber containing an optically active film
US4908053A (en) Process for producing chalcogenide glass fiber
US3563716A (en) Potting quartz glass fiber bundle ends
JPS60103044A (en) Manufacture of optical fiber for infrared rays
JPS5879835A (en) Surface-treating method for optical fiber preform
JPS63225555A (en) Chalcogenide glass fiber
JPH02275732A (en) As-s glass fiber having core clad structure
JPH0380131A (en) Chalogenide glass fiber having core-clad structure
JPS60195029A (en) Preparation of optical fiber for transmitting infrared ray
JPH01215738A (en) Production of optical glass fiber having core-clad structure
JPS58153918A (en) Manufacture of element having magnetooptic effect
JPH0312339A (en) Chalcogenide glass fiber having core-clad structure
JPH01222206A (en) Production of functional optical fiber
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JPH01148732A (en) Method for curing coating material of infrared ray transmitting glass optical fiber
JPS6011244A (en) Manufacture of optical fiber
JPH0555456B2 (en)
JPH1059730A (en) Production of synthetic quartz glass
JPS63143508A (en) Preform for fluoride glass fiber and its production