JPS6010105A - Measurement of shape of body of low coefficient of reflection - Google Patents

Measurement of shape of body of low coefficient of reflection

Info

Publication number
JPS6010105A
JPS6010105A JP11842983A JP11842983A JPS6010105A JP S6010105 A JPS6010105 A JP S6010105A JP 11842983 A JP11842983 A JP 11842983A JP 11842983 A JP11842983 A JP 11842983A JP S6010105 A JPS6010105 A JP S6010105A
Authority
JP
Japan
Prior art keywords
image
flux
interference fringes
measured
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11842983A
Other languages
Japanese (ja)
Other versions
JPH0312684B2 (en
Inventor
Nobuhiro Tsuda
津田 展宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11842983A priority Critical patent/JPS6010105A/en
Publication of JPS6010105A publication Critical patent/JPS6010105A/en
Publication of JPH0312684B2 publication Critical patent/JPH0312684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a surface condition as a clear image, by taking an image element difference of image wherein interference fringes are existing by projection of two fluxes on the faces of a low coefficient of reflection and image wherein it is lighted by the other flux. CONSTITUTION:A flux of rays issued from a laser source 2 is bisected by a beam splitter (BS)4, a flux of rays L1 passed through BS4 and a flux of rays L2 reflected by a mirror 5 are incident on a work 2 on a measuring bench 1 and its interference fringes are formed. An image P1 taken by a video camera 6 is stored in a memory in an image element decrement unit 7. Then the flux L2 is interrupted by a shutter and work surface 2 is photographed in a condition that it is illuminated only by the flux L1 and an image P2 is obtained. Then, an image P3 is obtained by interruption of the flux L1. By an image decrement of P1-P2-P3 by the unit 7, a clear image of surface condition becomes available.

Description

【発明の詳細な説明】 本発明は、低反射率物体の形状測定法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the shape of low reflectance objects.

種々の加工法による加工面の凹凸測定には、一般に表面
アラサ測定器、すなわち゛数ILfflの半径を有する
ダイヤモンド触子で測定面をなぞって、その微小凹凸量
を差動トランスで電圧に変換し、表示する装置が用いら
れている。また、仕上げ面の良好な研摩面あるいは光学
部品の検査には、被検査面と参照鏡を所定の状態で組立
てて干渉工1とし、両者の凹凸の差を干渉縞の湾曲度に
よりめる方法が利用されている。
To measure the unevenness of machined surfaces by various processing methods, generally a surface roughness measuring device, that is, a diamond probe with a radius of several ILffl, is used to trace the measurement surface, and the amount of minute unevenness is converted into voltage using a differential transformer. and display devices are used. In addition, for inspecting polished surfaces with a good finish or optical components, there is a method in which the surface to be inspected and a reference mirror are assembled in a predetermined state to form an interference tool 1, and the difference in unevenness between the two is determined by the degree of curvature of the interference fringes. is being used.

前者の方法は非常に簡易であるが、触子の測定圧によっ
ては表面に傷がつくという最大の欠点を有し、あらゆる
測定物の検査に適当とは限らない。一方、後者の方法は
反射率が高い仕上面の極力良好な表面でないと干渉縞が
生じないという問題がある。
Although the former method is very simple, it has the biggest drawback of damaging the surface depending on the measuring pressure of the probe, and is not suitable for inspecting all types of objects. On the other hand, the latter method has the problem that interference fringes do not occur unless the finished surface has a high reflectance and is as good as possible.

近年、ホログラフィの発明により反射率の低い粗面の凹
凸の測定も不可能ではないが、乾板像のためその伸縮に
よる像の変形が必然的に存在し、□かつ高度で煩雑な操
作が依然として難点として残っている。さらに、モアレ
トポグラフィ法もその実用機が急速に普及しているが、
細かい凹凸を測定するために、たとえ数p、m間隔の格
子を使用したとしても、回折現象があらhれるため、そ
の分解能はせいぜい20gmといわれている。
In recent years, with the invention of holography, it is not impossible to measure the unevenness of rough surfaces with low reflectance, but since it is a dry plate image, there is inevitably deformation of the image due to expansion and contraction, and advanced and complicated operations are still difficult. remains as. Furthermore, although practical equipment for the moire topography method is rapidly becoming widespread,
Even if a grating with an interval of several p or m is used to measure fine irregularities, the resolution is said to be at most 20 gm because of diffraction phenomena.

本発明は1反射率が5zよりも小さいような低反測定法
を用いて検出し、それによって得られた干渉縞を画素差
分法により鮮明な画像として、その表面形状を測定しよ
うとするものである。
The present invention attempts to detect interference fringes using a low-reflection measurement method in which the 1 reflectance is smaller than 5z, and to measure the surface shape of the interference fringes obtained by using the pixel difference method as a clear image. be.

而して、本発明の形状測定法は、低反射率の被測定物体
の表面に二つの光束の投射によって干渉縞をつくり、被
測定物体表面にこの干渉縞が存在する状態、及び被測定
物体表面を上記光束のうちの1木のみにより単に照明し
た状態で、その表面を撮像し、これら両画像についての
画素差分により、上記被測定物体表面の干渉縞のみの鮮
明な画像を得ることを特徴としている。
The shape measurement method of the present invention creates interference fringes by projecting two light beams onto the surface of an object to be measured with low reflectance, and creates a state in which these interference fringes exist on the surface of the object to be measured, and a state in which the interference fringes exist on the surface of the object to be measured. The method is characterized in that the surface is simply illuminated with only one of the light beams, and the surface is imaged, and a clear image of only the interference fringes on the surface of the object to be measured is obtained by the pixel difference between these two images. It is said that

ここでいう画素差分とは、干渉縞が投影された′被験物
の画像をとると、干渉縞と被験物の表0面の双方が投影
され、縞が不鮮明となるため、別に被験物の表面のみの
画像をとってこれを干渉縞投影像から差引き、干渉縞の
みが写っている$A算像として、より鮮明な画像を得る
方法をいう。
The pixel difference here means that when you take an image of a test object onto which interference fringes are projected, both the interference fringes and the front surface of the test object are projected, making the fringes unclear. This is a method of obtaining a clearer image by taking an image of only the interference fringes and subtracting it from the interference fringe projection image to obtain a $A calculation image that shows only the interference fringes.

このような本発明の方法によれば、大きな凹凸を有する
対象物を測定するときには間隔の広い干渉縞をその表面
に投影し、小さな凹凸を有する対以下に図面を参照して
本発明をさらに具体的に説明する。
According to the method of the present invention, when measuring an object having large irregularities, widely spaced interference fringes are projected onto the surface of the object, and the present invention will be further described with reference to the drawings below. Explain in detail.

第1図は、計算機を利用して本発明の方法により被測定
物体の表面形状を測定する測定装置を示し、1は測定台
、2はその測定台上に置いた被測定物体、3はレーザ光
源、4はそのレーザ光源からのレーザ光束を2分するビ
ームスプリッタ、5は上記ビームスプリッタからのレー
ザ光束を反射させるミラーであって、上記ビームスプリ
ッタ4及びミラー5によってニ一つの光束L1. L2
に光路差を与え、それらの光束を被測定物体2に対して
その表面上で合致するように投射させ、そこに干渉縞を
つくらせる。
FIG. 1 shows a measuring device for measuring the surface shape of an object to be measured by the method of the present invention using a computer, in which 1 is a measuring table, 2 is an object to be measured placed on the measuring table, and 3 is a laser beam. A light source, 4 is a beam splitter that divides the laser beam from the laser light source into two, and 5 is a mirror that reflects the laser beam from the beam splitter. L2
An optical path difference is applied to the object to be measured, and these light beams are projected onto the object to be measured 2 so as to coincide with each other on the surface of the object to be measured, thereby creating interference fringes thereon.

ビデオカメラ6は、第2図に示すように、被測定物体表
面の素地とその上に投影された干渉縞の双方を顕微鏡を
通して撮影し、それをビデオカメラに接続した画素差分
装置7内のメモリーに記憶ごせ、また必要に応じてそれ
を白黒モニタに表示する。ここでは、」二連したところ
によって得られの照明を行い、この状態で上記ビデオカ
メラ8により被測定物体表面を撮像する。このときには
第3図に示すような画像が得られ、この画像P2にはも
はや干渉縞は存在せず、被測定物体表面の素地のみであ
る。
As shown in FIG. 2, the video camera 6 photographs both the base material of the surface of the object to be measured and the interference fringes projected thereon through a microscope, and records the photographed images in the memory in the pixel subtraction device 7 connected to the video camera. memorize it, and display it on a black and white monitor if necessary. In this case, the illumination obtained by the double illumination is performed, and in this state, the surface of the object to be measured is imaged by the video camera 8. At this time, an image as shown in FIG. 3 is obtained, and this image P2 no longer contains interference fringes, but only the basic surface of the object to be measured.

さらに、光束L1をシャフタ−によって遮蔽し、束L1
の方向の差の分だけ、影の長さも異っている。
Further, the light flux L1 is blocked by a shutter, and the light flux L1
The length of the shadow also differs by the difference in direction.

上記ビデオカメラ6に接続された画素差分装置7は、そ
れによって、p+ −(P2 + P:l) 、あるい
はP、 −P、−P3 の画素差分を行うものであり、
この一連の操作により画像P1における素地、陰影8、
そしてスペックル(斑点)8などは除かれ、被測定物体
の凹凸に対応した干渉縞のみが鮮明な画像としてモニタ
に残る。従って、その後の画像処理が極めて容易となる
The pixel difference device 7 connected to the video camera 6 performs pixel difference of p+ −(P2 + P:l) or P, −P, −P3,
Through this series of operations, the base, shadow 8,
Then, speckles 8 and the like are removed, and only the interference fringes corresponding to the irregularities of the object to be measured remain as a clear image on the monitor. Therefore, subsequent image processing becomes extremely easy.

なお、このようにして鮮明化した干渉縞にも幅があるが
、この幅の最も濃い場所を選び出す細線化処理を行えば
、分解能と測定精度を上げることができる。
Although the interference fringes sharpened in this way also have a width, resolution and measurement accuracy can be improved by performing line thinning processing to select the area with the deepest width.

次に、カラーフィルムを用いて上記と同様な形状測定を
行う方法について説明する。
Next, a method of performing shape measurement similar to the above using a color film will be described.

この場合、第1図のビデオカメラ6と画素差分装W7に
代えて一眼レフカメラを使用する。測定断してカラー写
真をとると、被測定物体の素地のみが撮影される。これ
は前述の画像P2またはP3に相当する。画像P1には
、素地すなわちその表面アラサによるスペックル8が如
、実に出たり、あるいは被測定物体の凹凸の影8が現れ
るために、投影された干渉縞と混在して、明瞭な画像は
得られない。そこで、画像P1から画像P2またはP、
を差分することによって、被測定物体の凹凸だけの情報
、すなわち投影された干渉縞を得る必要がある。そこで
、上記カラー写真から鮮明な干渉縞を得る方法について
説明する。
In this case, a single-lens reflex camera is used in place of the video camera 6 and pixel difference device W7 shown in FIG. When a color photograph is taken after a measurement is taken, only the base material of the object to be measured is photographed. This corresponds to the above-mentioned image P2 or P3. In the image P1, speckles 8 due to the roughness of the substrate or its surface appear, or shadows 8 of the unevenness of the object to be measured appear, which are mixed with the projected interference fringes, making it impossible to obtain a clear image. I can't do it. Therefore, from image P1 to image P2 or P,
It is necessary to obtain information about only the irregularities of the object to be measured, that is, the projected interference fringes, by subtracting the . Therefore, a method for obtaining clear interference fringes from the above-mentioned color photograph will be explained.

第4図は、黄、マゼンタ及びシアンの3枚のフィルタを
重ね合わせた場合におけるそれぞれの色の補色を説明す
るための図で、例えば赤の補色はシアンであることから
、赤色の被写体をカラーネガフィルムを用いて撮影する
と、フィルム」二ではシアン色となる。すなわち、被写
体の色とそれを撮ったネガフィルムの色とは補色の関係
にある。従って、このことを応用することによりよりそ
のうちの素地のみの画像を撮影したネガ像に白色光をあ
て、同じ種類のネガカラーフィルムに等倍写像をすると
、物体の素地のみのポジカラーフィルム像が得られる。
Figure 4 is a diagram to explain the complementary colors of each color when three filters of yellow, magenta, and cyan are superimposed. For example, since the complementary color of red is cyan, a red subject is photographed using a color negative. When shooting with film, the color becomes cyan. In other words, the color of the subject and the color of the negative film on which it was photographed are complementary colors. Therefore, by applying this fact, if you shine white light on a negative image of only the base material of the object and map it to the same type of negative color film, you will obtain a positive color film image of only the base material of the object. It will be done.

そこで、干渉縞投影画像Plのネガ像と新たに得られた
素地のみのポジ像をめに黒色となって印画紙上には白く
写り、素地を除いた投影干渉縞のみを鮮明な画像として
得ることができる。但し、素地のみのネガ像をポジ像に
するときに用いる反転用ネガフィルムは、ネガ像を得た
ときと同じように、γが1.0に近いものでなければい
けない。さもないと素地を写しているネガ、ポジフィル
ムは補色の関係とならず、色が残ることになる。
Therefore, by combining the negative image of the interference fringe projection image Pl and the newly obtained positive image of only the base material, it becomes black and appears white on the photographic paper, and only the projected interference fringes excluding the base material are obtained as a clear image. I can do it. However, the reversal negative film used to convert a negative image of only the substrate into a positive image must have a γ value close to 1.0, just as it was used to obtain the negative image. Otherwise, the negative and positive films that capture the base material will not have a complementary color relationship, and the colors will remain.

また、白黒フィルムを用いても同様の形状測定を行うこ
とができる。この場合、まず、白黒ネガフィルムによっ
て被測定物体の素地の上に干渉縞が投影された画像を撮
影してネガ原板A1を得る。
Further, similar shape measurement can be performed using a black and white film. In this case, first, an image in which interference fringes are projected onto the base of the object to be measured is photographed using a black and white negative film to obtain a negative master plate A1.

次に、同種のネガフィルムを用いて、1本の光束によっ
て照明された被測定物体の素地を撮影する。このとき露
光時間は上記ネガA、を得るときの2倍として、ネガ原
板A、と同じ濃度となるようにつとめ、これによってネ
ガ原板A2を得る。さらに、ネガ原板んを上記操作で利
用したのと同種類のネガフィルム上に密着焼付を行い、
ポジ原板A。
Next, using the same type of negative film, the base of the object to be measured illuminated by one beam of light is photographed. At this time, the exposure time is set twice as long as that used to obtain the above-mentioned negative A, so that the same density as that of the negative original plate A is obtained, thereby obtaining the negative original plate A2. Furthermore, the negative original plate is subjected to contact printing on the same type of negative film used in the above operation.
Positive original plate A.

を得る。get.

このようにして得られたネガ原板A1とポジ原板A3の
膜面を合わせて画像を重ねると、素地像の部分は階調の
乏しい殆んど灰色調になり、これに対して干渉縞は明瞭
に現われるので、2枚の原板を固定して印画紙に焼付け
ることにより投影された干渉縞のみを得る。
When the film surfaces of the negative original plate A1 and positive original plate A3 obtained in this way are aligned and the images are superimposed, the base image part becomes almost grayish with poor gradation, whereas the interference fringes are clear. Therefore, by fixing the two original plates and printing them on photographic paper, only the projected interference fringes can be obtained.

上記操作においては、使用するネガフィルムとそのポジ
像を得るネガフィルムとしてγが1.0に近いものを利
用する必要がある。もし、γが0.5のネガフィルムを
用いたとすると素地像を写したネガ原板からそのポジ像
を得るときに、ネガ原板とネガフィルムを密着焼きする
ので、ポジ像のγは0.5 Xo、5’= 0.25と
なり、極端に軟調になってしまう。従って、γが0.5
のネガ原板と0.25のポジ原板を重ね合わせて固定し
、それを印画紙に焼付けることになり、この場合に両原
板の素地像の部分のγが異なるので、素地像は完全に消
去されずに残ることになる。
In the above operation, it is necessary to use a negative film with γ close to 1.0 as the negative film used and the negative film from which the positive image is obtained. If a negative film with γ of 0.5 is used, when obtaining a positive image from the negative original plate on which the base image has been copied, the negative original plate and negative film are printed in close contact, so the γ of the positive image is 0.5 Xo , 5'=0.25, resulting in an extremely soft tone. Therefore, γ is 0.5
A negative master plate of 0.25 and a positive master plate of 0.25 are superimposed and fixed, and then printed on photographic paper.In this case, since the γ of the base image portion of both master plates is different, the base image is completely erased. It will remain unused.

次に、上述したところによって得た干渉縞から被測定物
体表面の凹凸量の絶対値を測定する方法について説明す
る。
Next, a method for measuring the absolute value of the amount of unevenness on the surface of the object to be measured from the interference fringes obtained as described above will be described.

この凹凸量については、被測定物体の代りに対物ミクロ
ケータ(例えば、1+amlOO等分の目盛を刻んだガ
ラススケール)を顕微鏡下に置き、倍率の較正すなわち
第2図における縞間隔aを測ると共に凸部のlbを測り
、両者の比b/aをとることによってその絶対値を知る
ことができる。
Regarding the amount of unevenness, place an objective micrometer (for example, a glass scale with graduations of 1+amlOO) under the microscope instead of the object to be measured, and calibrate the magnification, that is, measure the stripe spacing a in Fig. 2, and measure the unevenness. The absolute value can be found by measuring the lb of lb and taking the ratio b/a of the two.

また、第1図において光束L1と烏のなす角をθ、レー
ザ光源の波長をλどするとき、干渉縞の間隔dは、 d = λ/(2sinθ/2 ) で表わされる。そして、レーザ光の斜入射角をηとする
とき、被測定物体上の縞間隔aは、a=(λ/(2si
nθ/2 )) cosηとなる。
Further, in FIG. 1, when the angle between the light beam L1 and the light beam is θ, and the wavelength of the laser light source is λ, the interval d between the interference fringes is expressed as d = λ/(2 sin θ/2). When the oblique incidence angle of the laser beam is η, the fringe interval a on the object to be measured is a=(λ/(2si
nθ/2)) cosη.

従って、マイケルソン型干渉計によって得られる縞間隔
^/2よりも広くなる。ブロックゲージの絶対測長測定
にはマイケルソン型干渉計を用いて、しかも波長の異な
った3木以上のレーザ光を用いる。いわゆる合致法を応
用している。ここに述べた干渉縞投影法も縞の間隔が広
くなるだけであるから、ブロックゲージと同様に合致法
が適用でき、この場合には前述のガラススケールなどを
用いて較正する必要はなくなる。
Therefore, the fringe spacing is wider than ^/2 obtained by a Michelson type interferometer. A Michelson interferometer is used to measure the absolute length of the block gauge, and three or more laser beams with different wavelengths are used. The so-called matching method is applied. Since the interference fringe projection method described here also only widens the spacing between the fringes, the matching method can be applied in the same way as the block gauge, and in this case, there is no need to calibrate using the aforementioned glass scale or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の構成図、第2図
及び第3図は本発明において撮像する干渉縞についての
説明図、第4図は補色に関する説明図である。 2・・被測定物体、3・・レーザ光源、6・・ビデオカ
メラ、 7・一画素差分装置L 、 L?・・光束。 指定代理人 第4 回
FIG. 1 is a block diagram of an apparatus for implementing the method of the present invention, FIGS. 2 and 3 are explanatory diagrams of interference fringes to be imaged in the present invention, and FIG. 4 is an explanatory diagram of complementary colors. 2. Object to be measured, 3. Laser light source, 6. Video camera, 7. One pixel difference device L, L? ... Luminous flux. Designated Agent 4th

Claims (1)

【特許請求の範囲】[Claims] 1、低反射率の被測定物体の表面に二つの光束の投射に
よって干渉縞をつくり、被測定物体表面渉縞のみの鮮明
な画像を得ることを特徴とする低反射率物体の形状測定
法。
1. A method for measuring the shape of a low reflectance object, which is characterized by creating interference fringes by projecting two light beams onto the surface of a low reflectance object to obtain a clear image of only the interference fringes on the surface of the object.
JP11842983A 1983-06-30 1983-06-30 Measurement of shape of body of low coefficient of reflection Granted JPS6010105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11842983A JPS6010105A (en) 1983-06-30 1983-06-30 Measurement of shape of body of low coefficient of reflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11842983A JPS6010105A (en) 1983-06-30 1983-06-30 Measurement of shape of body of low coefficient of reflection

Publications (2)

Publication Number Publication Date
JPS6010105A true JPS6010105A (en) 1985-01-19
JPH0312684B2 JPH0312684B2 (en) 1991-02-20

Family

ID=14736423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11842983A Granted JPS6010105A (en) 1983-06-30 1983-06-30 Measurement of shape of body of low coefficient of reflection

Country Status (1)

Country Link
JP (1) JPS6010105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976850B2 (en) 2013-09-10 2018-05-22 Bae Systems Plc Optical surface roughness measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099220A1 (en) * 2011-01-21 2012-07-26 兵庫県 Three-dimensional shape measurement method and three-dimensional shape measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664605A (en) * 1979-11-01 1981-06-01 Mitsubishi Heavy Ind Ltd Method for sensing distribution of height of stored material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664605A (en) * 1979-11-01 1981-06-01 Mitsubishi Heavy Ind Ltd Method for sensing distribution of height of stored material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976850B2 (en) 2013-09-10 2018-05-22 Bae Systems Plc Optical surface roughness measurement

Also Published As

Publication number Publication date
JPH0312684B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US3894802A (en) Stereoscopic gage and gaging system
US7595891B2 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
US5467184A (en) Method of large deformation measurement using speckle interferometry
EP0470816A1 (en) Field shift moire system
US4000949A (en) Photomask inspection by optical spatial filtering
JPH0712535A (en) Interferometer
JP3653591B2 (en) Schlieren analysis method and apparatus
US4169980A (en) Method and apparatus for interference fringe center sensing
JPH01230233A (en) Aligning method for exposing semiconductor
US4981360A (en) Apparatus and method for projection moire mapping
US20040150834A1 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP3359193B2 (en) Exposure apparatus and device manufacturing method using the same
Wadsworth et al. Real-time observation of in-plane displacements of opaque surfaces
JPS6010105A (en) Measurement of shape of body of low coefficient of reflection
JPH04186716A (en) Alignment device
SU696281A1 (en) Instrument for measuring the phase and deformation of plates
Sen et al. An inverting Fizeau interferometer
JPH0157285B2 (en)
JPS6017681Y2 (en) Projection image magnification inspection scale
Bissinger How to interpret an interferogram
Wykes et al. Mass transfer measurement using projected fringes
SU389397A1 (en) MULTIBREAD WEDGE INTERFEROMETER
JPH0447243B2 (en)
JPH04102415U (en) Film flatness measuring device
JPH0420805A (en) Measuring apparatus for laser speckle displacement