JPH0447243B2 - - Google Patents

Info

Publication number
JPH0447243B2
JPH0447243B2 JP5708082A JP5708082A JPH0447243B2 JP H0447243 B2 JPH0447243 B2 JP H0447243B2 JP 5708082 A JP5708082 A JP 5708082A JP 5708082 A JP5708082 A JP 5708082A JP H0447243 B2 JPH0447243 B2 JP H0447243B2
Authority
JP
Japan
Prior art keywords
interference
measurement
photosensitive
test
reference position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5708082A
Other languages
Japanese (ja)
Other versions
JPS58173417A (en
Inventor
Junpei Tsujiuchi
Toshio Pponda
Jun Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5708082A priority Critical patent/JPS58173417A/en
Publication of JPS58173417A publication Critical patent/JPS58173417A/en
Publication of JPH0447243B2 publication Critical patent/JPH0447243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、被検面上の任意の個所の面精度を高
精度で測定可能とする干渉による面形状の測定方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface shape measuring method using interference, which allows the surface precision of any location on a surface to be measured to be measured with high precision.

従来から被検面の面精度を測定するには、フア
ブリーペロー干渉計のような繰り返し反射干渉計
が多く用いられている。この種の干渉計では、干
渉縞が表わす2面間の空気間隔は波長の1/2の等
高線となる。干渉縞を高い精度で読み取るには干
渉縞の直線からのごく微少な変位量をも検出する
ことが必要であり、そのためには参照面と被検面
とが成す角を小さくして、隣接する干渉縞の間隔
を広くする必要がある。しかしこの場合、干渉縞
と干渉縞との間の領域の形状は測定不可能であ
り、測定精度は高くても測定密度が低いことが難
点となる。
Conventionally, repeating reflection interferometers such as Fabry-Perot interferometers have often been used to measure the surface accuracy of a surface to be inspected. In this type of interferometer, the air distance between the two surfaces represented by the interference fringes is a contour line of 1/2 the wavelength. In order to read interference fringes with high precision, it is necessary to detect even the slightest displacement of the interference fringes from a straight line. It is necessary to widen the interval between interference fringes. However, in this case, the shape of the region between the interference fringes cannot be measured, and even if the measurement accuracy is high, the measurement density is low.

そこで本出願人は被検面の測定密度を高めるた
めに、第1図に示すような平面測定干渉装置を既
に提案している。即ち、被検面と、十分高精度に
研磨された参照面との2枚の光透過可能な反射面
1,2同志を対向させると共に微小角度を与えて
固定し、これらの反射面1,2の一方の側にレー
ザー源3を配置し、発光されたレーザー光をレン
ズ4により点光源としてコリメータレンズ5に導
き、このコリメータレンズ5によりレーザー光を
平行光束として反射面1,2に入射させる。する
と、レーザー光は2枚の反射面1,2間で反射を
繰り返し、望遠光学系6を経由して感光材料7の
上にフイネスの高い干渉縞パターンを結像させて
露光する。次に、反射面1,2の関係を保持した
まま、反射面1,2をレーザー光の光軸に対して
矢印A方向に回転させると共に、光学系6は固定
し感光材料7を反射面1,2と反対方向の矢印B
方向に回転させて歪を除去し、感光材料7の上に
干渉縞パターンを重畳して記録する。この操作を
繰り返して最初に記録した干渉縞間に多数の干渉
縞を露光し、例えば第2図に示すように、あたか
も波長の1/20ごとの干渉縞Sを生じたかのような
パターンを形成して、高精度な面形状を読み取る
わけである。しかし、この装置は高精度に面形状
を測定し得るものではあるが、多重露光を短時間
中に行う手間や、感光材料7の現像処理及び解析
に時間がかかるなどの欠点がある。
Therefore, the present applicant has already proposed a planar measurement interference device as shown in FIG. 1 in order to increase the measurement density of the surface to be inspected. That is, the two reflecting surfaces 1 and 2 that can transmit light, a test surface and a reference surface that has been polished to a sufficiently high precision, are made to face each other and are fixed at a small angle. A laser source 3 is disposed on one side of the laser beam, and the emitted laser beam is guided as a point light source by a lens 4 to a collimator lens 5, and the collimator lens 5 causes the laser beam to enter the reflecting surfaces 1 and 2 as a parallel beam of light. Then, the laser beam is repeatedly reflected between the two reflective surfaces 1 and 2, passes through the telephoto optical system 6, and forms an image of a high finesse interference fringe pattern on the photosensitive material 7 for exposure. Next, while maintaining the relationship between the reflective surfaces 1 and 2, the reflective surfaces 1 and 2 are rotated in the direction of arrow A with respect to the optical axis of the laser beam, the optical system 6 is fixed, and the photosensitive material 7 is , 2 and arrow B in the opposite direction
The interference fringe pattern is superimposed on the photosensitive material 7 and recorded. By repeating this operation, a large number of interference fringes are exposed between the first recorded interference fringes, and for example, as shown in Figure 2, a pattern is formed as if interference fringes S were generated at every 1/20th of the wavelength. This allows for highly accurate reading of surface shapes. However, although this apparatus can measure the surface shape with high precision, it has drawbacks such as the trouble of performing multiple exposures in a short period of time and the time required for developing and analyzing the photosensitive material 7.

本発明は、上述の従来例の欠点を除去すると同
時に、実時間で被検面の任意の位置の面精度を高
精度に測定可能とする干渉による面形状の測定方
法を提供することにあり、その要旨は、略平行に
配置された参照面と被検面に交差する方向から平
行光束である測定光を入射させ、参照面と被検面
との空気間隔を固定したまま、これらを測定光の
光軸に対して該光軸に対する前記参照面と被検面
の傾きが変化する方向に回転し、透過光によつて
得られる干渉縞出力を感光面上に投影し、被検面
上の基準位置に対応する感光面上で得られる干渉
縞強度の大なる回転角度と、被検面上の任意の測
定位置に対応する感光面上で得られる干渉縞強度
の大なる回転角度とから、前記被検面の基準位置
から参照面までの間隔に基づいて前記基準位置に
対する測定位置の段差を求めることを特徴とする
干渉による面形状の測定方法である。
An object of the present invention is to provide a method for measuring a surface shape by interference, which eliminates the drawbacks of the conventional example described above, and at the same time makes it possible to measure the surface accuracy of any position on a test surface with high precision in real time. The gist of this is that measurement light, which is a parallel beam, is incident on a reference surface and a test surface that are arranged approximately parallel to each other from a direction that intersects the test surface, and while the air distance between the reference surface and test surface is fixed, the measurement light is The reference surface and the surface to be measured are rotated in a direction in which the inclinations of the reference surface and the surface to be measured with respect to the optical axis are changed, and the interference fringe output obtained by the transmitted light is projected onto the photosensitive surface. From the large rotation angle of the interference fringe intensity obtained on the photosensitive surface corresponding to the reference position and the large rotation angle of the interference fringe intensity obtained on the photosensitive surface corresponding to an arbitrary measurement position on the test surface, This method of measuring a surface shape by interference is characterized in that a difference in level between the measurement position and the reference position of the test surface is determined based on the distance from the reference position of the test surface to the reference surface.

次に本発明を第3図以下に図示の実施例に基づ
いて詳細に説明する。
Next, the present invention will be explained in detail based on the embodiments shown in FIG. 3 and below.

第3図は本発明に係る方法を実現するための装
置の構成図であり、第1図の装置とほぼ同様の構
成となつている。なお、第1図の符号と同一の符
号は同一の部材を示すものとする。反射面1,2
は前述したように所定の空気間隔に保持したま
ま、回転可能な試料ステージ8上に載置し、この
試料ステージ8の回転角を読み取り得るようにす
る。また、感光面ステージ9上には感光面10を
載置し、この感光面10は例えばフオトダイオー
ドアレイ等から成り、多数の個所に対してその光
強度を検出することを可能とする。
FIG. 3 is a block diagram of an apparatus for implementing the method according to the present invention, which has substantially the same configuration as the apparatus shown in FIG. 1. Note that the same reference numerals as those in FIG. 1 indicate the same members. Reflective surface 1, 2
is placed on the rotatable sample stage 8 while being maintained at a predetermined air interval as described above, so that the rotation angle of this sample stage 8 can be read. Further, a photosensitive surface 10 is placed on the photosensitive surface stage 9, and this photosensitive surface 10 is made of, for example, a photodiode array, and makes it possible to detect the light intensity at a large number of locations.

ここで理解を容易にするために、被検面となる
反射面1の基準となる位置X1に対し、測定位置
X2の表面には第4図に模式的に示すような微小
量の段差Δが存在するものとし、反射面1上の基
準位置X1における2つの反射面1,2間の間隔
をdとする。いま、光源3から発光され、反射面
1の位置X1,X2に反射面1に対し角度θで入射
する2本の単色光I1,I2を考える。単色光I1及び
I2は、反射面1,2の間隔が距離dの個所X1及び
距離d−Δの個所X2でそれぞれ反射を繰り返し
て干渉を起し、反射面1,2のユニツトを通過す
る。このときの干渉光の強度を試料ステージ8を
矢印A方向に回転しながら、即ち角度θを変えな
がら測定すると、反射面1に段差Δが存在するた
めに、単色光I1,I2による干渉光S1,S2の強度変
化は等しくならず、第5図に示すように回転各θ
の異なる位置にピークがずれることになる。
Here, in order to make it easier to understand, the measurement position is
Assume that there is a minute step Δ on the surface of X 2 as schematically shown in Figure 4, and the distance between the two reflective surfaces 1 and 2 at the reference position X 1 on the reflective surface 1 is d. do. Now, consider two monochromatic lights I 1 and I 2 emitted from the light source 3 and incident on the reflection surface 1 at positions X 1 and X 2 at an angle θ with respect to the reflection surface 1. Monochromatic light I 1 and
I 2 is repeatedly reflected at a point X 1 at a distance d and at a point X 2 at a distance d - Δ between the reflecting surfaces 1 and 2, causing interference, and passes through the unit of the reflecting surfaces 1 and 2. When measuring the intensity of the interference light at this time while rotating the sample stage 8 in the direction of arrow A, that is, while changing the angle θ, it is found that since there is a step Δ on the reflecting surface 1, interference due to the monochromatic lights I 1 and I 2 occurs. The intensity changes of the lights S 1 and S 2 are not equal, and as shown in Figure 5, each rotation θ
The peak will shift to a different position.

干渉光S1及びS2の強度が急激に変化する個所、
例えばそれぞれのピークの尾部の1/2になつたと
きの試料ステージ8の回転角度をそれぞれθ1
θ2、そのときの単色光I1,I2の光軸に沿つた反射
面1,2間の距離をl1,l2とすれば、 d=l1 cosθ1 ……(1) d−Δ=l2 cosθ2 ……(2) となり、ピークが共に生ずるのはl1=l2の場合で
あるから、(1),(2)式より間隔dと段差Δの関係は
次の式で表される。
Locations where the intensity of interference lights S 1 and S 2 changes rapidly,
For example, the rotation angle of the sample stage 8 when it reaches 1/2 of the tail of each peak is θ 1 ,
If θ 2 and the distance between the reflecting surfaces 1 and 2 along the optical axis of the monochromatic lights I 1 and I 2 at that time are l 1 and l 2 , then d=l 1 cosθ 1 ...(1) d- Δ=l 2 cosθ 2 ...(2), and the peaks occur together when l 1 = l 2 , so from equations (1) and (2), the relationship between the interval d and the step difference Δ is expressed by the following equation. It is expressed as

d/cosθ1=(d−Δ)/cosθ2 ……(3) 従つて、段差Δは次のように求められることに
なる。
d/cosθ 1 =(d−Δ)/cosθ 2 (3) Therefore, the step difference Δ can be obtained as follows.

Δ=d(cosθ1−cosθ2)/cosθ1 ……(4) 以上の説明は反射面1中の2点X1,X2の凹凸
についての説明であるが、同様にして感光面10
で多数の点を同時に計測し、基準となる面位置
X1からの凹凸量を(4)式を用いて計算することに
よつて、被検面である反射面1の各点の形状を計
測できることになる。かくすることにより、その
測定精度を測定光の波長1/100程度にまで向上で
きることが確認されている。
Δ=d(cosθ 1 −cosθ 2 )/cosθ 1 ...(4) The above explanation is about the unevenness at the two points X 1 and X 2 on the reflective surface 1, but in the same way, the photosensitive surface 10
Measure many points at the same time and determine the reference surface position.
By calculating the amount of unevenness from X 1 using equation (4), the shape of each point on the reflective surface 1, which is the surface to be inspected, can be measured. It has been confirmed that by doing so, the measurement accuracy can be improved to about 1/100 of the wavelength of the measurement light.

また、試料ステージ8を回転することにより、
感光面10上に結像する像には歪が生ずるため
に、感光面ステージ9を試料ステージ8と反対の
矢印B方向に同じ角度だけ回転して歪を補正すれ
ば、測定値を正確に得ることができる。回転角が
微小の場合は光学系6は省略してもよく、この場
合は感光面10の回転も不要である。
In addition, by rotating the sample stage 8,
Since distortion occurs in the image formed on the photosensitive surface 10, accurate measurement values can be obtained by correcting the distortion by rotating the photosensitive surface stage 9 by the same angle in the direction of arrow B opposite to the sample stage 8. be able to. If the rotation angle is small, the optical system 6 may be omitted, and in this case, the rotation of the photosensitive surface 10 is also unnecessary.

以上説明したような簡単な操作で被検面の形状
を計測できるわけであるが、このために感光面1
0として二次元フオトダイオードアレイを用い
て、ダイオードアレイのそれぞれの番地の出力を
マイクロコンピユータに取り込み、(4)式を用いて
計算し被検面の形状を実時間で算出することも可
能である。また、間隔dの決定は、これを決定す
る特定の場合に注目して、試料ステージ8を回転
し、第6図に示すように干渉光S3及びS4の2つの
ピークから得られる角度θ3及びθ4を測定すれば、
間隔dを決定することができる。即ち、光源3の
波長をλとすれば、間隔dは、 d=λ/{2(cosθ4−cosθ3)} (3) として求められる。
The shape of the surface to be measured can be measured with the simple operations explained above.
It is also possible to use a two-dimensional photodiode array as zero, input the output of each address of the diode array into a microcomputer, calculate using equation (4), and calculate the shape of the test surface in real time. . In addition, the distance d can be determined by rotating the sample stage 8, focusing on the specific case in which it is to be determined, and obtaining an angle θ from the two peaks of the interference lights S 3 and S 4 as shown in FIG. 3 and θ 4 , we get
The spacing d can be determined. That is, if the wavelength of the light source 3 is λ, the distance d can be obtained as follows: d=λ/{2(cosθ 4 −cosθ 3 )} (3).

また、従来の繰り返し干渉測定方法では、フイ
ネスの高い繰り返し干渉縞を形成するために、反
射面1,2の表面を高反射でしかも透過率の良い
面にしなければならなかつた。しかし、本発明で
は干渉光Sの最も急激に変化する個所、例えば第
5図に示すようなピーク位置の1/2の部分を捉え
れば、誘電体膜のような高反射率の膜を用いなく
とも、アルミニウム膜のような通常用いられてい
る反射膜でも良好な精度で角度の測定が可能であ
る。
Furthermore, in the conventional repeating interference measurement method, in order to form repeating interference fringes with high finesse, the surfaces of the reflective surfaces 1 and 2 had to be highly reflective and have good transmittance. However, in the present invention, if the part where the interference light S changes most rapidly, for example, 1/2 of the peak position as shown in FIG. In both cases, the angle can be measured with good accuracy even with a commonly used reflective film such as an aluminum film.

以上説明したように、本発明に係る干渉による
面形状の測定方法は、被検面と参照面とをほぼ平
行に固定したまま、これらを測定光の光軸に対し
て回転させ、被検面の各位置の光量変化を回転角
度に対比させて検出し、干渉縞のピークの例えば
1/2になる角度を読み取るという簡単な操作によ
つて、被検面の形状を高精度に測定することがで
きる。
As explained above, the method of measuring a surface shape by interference according to the present invention rotates the test surface and the reference surface with respect to the optical axis of the measurement light while fixing the test surface and the reference surface substantially parallel to each other. The shape of the surface to be measured can be measured with high precision by a simple operation of detecting the change in light intensity at each position in comparison with the rotation angle and reading the angle that is, for example, 1/2 of the peak of the interference fringes. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成図、第2図は従来の計測
装置により得られる干渉縞の説明図、第3図以下
は本発明に係る干渉による面形状の測定方法の実
施例であり、第3図はこの方法を実現するための
装置の構成図、第4図は反射面の模式的な配置
図、第5図、第6図は測定方法の説明図である。 符号1,2は反射面、3は光源,5はコリメー
タレンズ、6は結像望遠光学系、8は試料ステー
ジ、9は感光面ステージ、10は感光面である。
FIG. 1 is a configuration diagram of a conventional example, FIG. 2 is an explanatory diagram of interference fringes obtained by a conventional measuring device, and FIG. FIG. 3 is a block diagram of an apparatus for implementing this method, FIG. 4 is a schematic layout of reflective surfaces, and FIGS. 5 and 6 are explanatory diagrams of the measuring method. Reference numerals 1 and 2 are reflective surfaces, 3 is a light source, 5 is a collimator lens, 6 is an imaging telephoto optical system, 8 is a sample stage, 9 is a photosensitive surface stage, and 10 is a photosensitive surface.

Claims (1)

【特許請求の範囲】 1 略平行に配置された参照面と被検面に交差す
る方向から平行光束である測定光を入射させ、参
照面と被検面との空気間隔を固定したまま、これ
らを測定光の光軸に対して該光軸に対する前記参
照面と被検面の傾きが変化する方向に回転し、透
過光によつて得られる干渉縞出力を感光面上に投
影し、被検面上の基準位置に対応する感光面上で
得られる干渉縞強度の大なる回転角度と、被検面
上の任意の測定位置に対応する感光面上で得られ
る干渉縞強度の大なる回転角度とから、前記被検
面の基準位置から参照面までの間隔に基づいて前
記基準位置に対する測定位置の段差を求めること
を特徴とする干渉による面形状の測定方法。 2 前記被検面の基準位置から参照面までの間隔
をd、測定位置の基準位置に対する段差をΔ、基
準位置から求められる干渉縞強度の大なる回転角
度をθ1、測定位置から求められる干渉縞の同様の
角度をθ2とするとき、前記段差を、 Δ=d(cosθ1−cosθ2)/cosθ1 として求める特許請求の範囲第1項記載の干渉に
よる面形状の測定方法。 3 被検面及び参照面と反対方向に前記感光面を
回転することにより、得られる干渉縞の歪を除去
する特許請求の範囲第1項記載の干渉による面形
状の測定方法。
[Scope of Claims] 1. Measurement light, which is a parallel beam, is incident on a reference surface and a test surface that are arranged substantially parallel to each other from a direction intersecting the test surface, and the air distance between the reference surface and the test surface is fixed. is rotated with respect to the optical axis of the measurement light in a direction that changes the inclination of the reference surface and the test surface with respect to the optical axis, and the interference fringe output obtained by the transmitted light is projected onto the photosensitive surface. A large rotation angle of the interference fringe intensity obtained on the photosensitive surface corresponding to the reference position on the surface and a large rotation angle of the interference fringe intensity obtained on the photosensitive surface corresponding to an arbitrary measurement position on the surface to be measured. A method for measuring a surface shape by interference, characterized in that, based on the distance from the reference position of the surface to be inspected to the reference surface, a step difference between the measurement position and the reference position is determined. 2 The distance from the reference position of the test surface to the reference surface is d, the step difference between the measurement position and the reference position is Δ, the rotation angle at which the interference fringe intensity obtained from the reference position is large is θ 1 , and the interference obtained from the measurement position is 2. The method of measuring a surface shape by interference according to claim 1, wherein the step difference is determined as Δ=d( cosθ1 - cosθ2 )/ cosθ1 , when the similar angle of the stripes is θ2 . 3. The method of measuring a surface shape by interference according to claim 1, wherein distortion of the obtained interference fringes is removed by rotating the photosensitive surface in a direction opposite to that of the test surface and the reference surface.
JP5708082A 1982-04-05 1982-04-05 Measuring method of face shape by interference Granted JPS58173417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5708082A JPS58173417A (en) 1982-04-05 1982-04-05 Measuring method of face shape by interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5708082A JPS58173417A (en) 1982-04-05 1982-04-05 Measuring method of face shape by interference

Publications (2)

Publication Number Publication Date
JPS58173417A JPS58173417A (en) 1983-10-12
JPH0447243B2 true JPH0447243B2 (en) 1992-08-03

Family

ID=13045495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5708082A Granted JPS58173417A (en) 1982-04-05 1982-04-05 Measuring method of face shape by interference

Country Status (1)

Country Link
JP (1) JPS58173417A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472575B2 (en) * 2009-02-26 2014-04-16 独立行政法人 宇宙航空研究開発機構 Apparatus and method for measuring distance between opposed surfaces at predetermined positions in opposed surface, and high flatness machining method using them

Also Published As

Publication number Publication date
JPS58173417A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US3829219A (en) Shearing interferometer
US5069548A (en) Field shift moire system
US3907438A (en) Contour measuring system for cylinders
US4969744A (en) Optical angle-measuring device
US5218424A (en) Flying height and topography measuring interferometer
JPH02170033A (en) Inspection method and apparatus for
JP3185901B2 (en) Measurement and analysis method of interference fringes by hologram interferometer
US7349102B2 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JPH0781818B2 (en) Shearing interferometer for measuring lens lateral aberration
JP4183220B2 (en) Optical spherical curvature radius measuring device
US4395123A (en) Interferometric angle monitor
JPH04229863A (en) Photomask tester
US7471398B2 (en) Method for measuring contour variations
JPH0447243B2 (en)
JP3436407B2 (en) Grazing incidence interferometer
US7161684B2 (en) Apparatus for optical system coherence testing
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2753545B2 (en) Shape measurement system
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
JPH05157532A (en) Computer hologram for measurement and measuring method using same
JPS5842908A (en) Interference device for plane measurement
JPH07113547B2 (en) Sample plane position measuring device
JPS6151241B2 (en)