JPS5842908A - Interference device for plane measurement - Google Patents

Interference device for plane measurement

Info

Publication number
JPS5842908A
JPS5842908A JP14153881A JP14153881A JPS5842908A JP S5842908 A JPS5842908 A JP S5842908A JP 14153881 A JP14153881 A JP 14153881A JP 14153881 A JP14153881 A JP 14153881A JP S5842908 A JPS5842908 A JP S5842908A
Authority
JP
Japan
Prior art keywords
interference
mounting table
interference fringes
air gap
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14153881A
Other languages
Japanese (ja)
Inventor
Junpei Tsujiuchi
石川純
Jun Ishikawa
辻内順平
Toshio Honda
本田捷夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14153881A priority Critical patent/JPS5842908A/en
Publication of JPS5842908A publication Critical patent/JPS5842908A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform interference measurement with high precision by providing a means of allowing measuring luminous flux to strike the air gap between a surface to be inspected and a reference surface while the air gap is fixed. CONSTITUTION:A plane measuring interference device is equipped with a mounting table 16 which is rotatable including the optical axis of the measuring device while the conditions between a reflective surface 14 to be inspected and a reference reflective surface 15 are fixed. In accordance with the rotation of the mounting table 16, an optical recording material 18 is rotated in the same plane with the rotation of the mounting table 16 and in a different direction from the mounting table 16 by using a turntable 19. This operation imprints distortion- free images from the reflective surfaces 14 and 15 on the optical recording materials 18 so that they overlap to each other. Namely, this invented interference device varies the angle of incidence of measuring luminous flux striking the reflecting mirror of the interferometer to record interference fringes on the same member, thus performing interference measurement with high precision.

Description

【発明の詳細な説明】 本発明は平面精度測定干渉装置、!に被検面と参照面へ
入射する光束の角度を制御することにより、干渉縞の発
生する感度を可変にし、干渉縞と干渉縞との間に、新た
な干渉縞を発生させる干渉装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a planar accuracy measurement interference device,! An interference device that changes the sensitivity of interference fringes and generates new interference fringes between the interference fringes by controlling the angle of the light beam incident on the test surface and the reference surface. It is.

従来から、被検面の面精度を測定するには、第1図に示
す様なくり返し反射干渉計が用いられている。レーザー
尋の単色光源からめ光束は、ピンホール等の絞り2を介
した後にコリメータレンズ3によシ平行光束となり、参
照反射鏡4と被検反射鏡5との間でくり返し反射された
後、結像レンズ′6を介して記会面7に到達する。この
参照反射面と被検反射面の反射率を高くすることによ染
土渉縞のフィネスを大きくしている。この種の装置では
、干渉縞が表わす2面間の空気間隔社波長の)の等高銀
である。干渉縞を高い精度で読み取るに社干渉縞の直線
からのと(微小な変位量をも検出することが必要であや
、その為には参照反射面と と被検反射面戸1成す角を小さクシ、第2図に示す様に
隣接する干渉縞の間隔を広(する必要がある。
Conventionally, a repeating reflection interferometer as shown in FIG. 1 has been used to measure the surface accuracy of a surface to be inspected. A beam from a monochromatic laser light source passes through an aperture 2 such as a pinhole, becomes a collimated beam by a collimator lens 3, is repeatedly reflected between a reference reflector 4 and a test reflector 5, and then becomes a condensed light beam. It reaches the recording surface 7 via the image lens '6. By increasing the reflectance of the reference reflective surface and the test reflective surface, the finesse of the dyed soil pattern is increased. In this type of device, the interference fringes represent an air spacing between the two planes (of the same wavelength). In order to read interference fringes with high accuracy, it is necessary to detect minute displacements from the straight line of the interference fringes. However, as shown in Figure 2, it is necessary to widen the distance between adjacent interference fringes.

しかし、この場合、干渉縞と干渉縞との間の領域(第2
囚の波線内)の形状ii測定出来ず5III定精度は高
くても、欄定密度祉低いことが難点でありた。
However, in this case, the area between the interference fringes (second
The problem was that the shape (within the wavy line) could not be measured, and even though the accuracy was high, the accuracy of the field was low.

本発明の目的は、上述した従来の欠点を改良し島高い測
定密度で高精度の干渉測定を可能にする平面測定干渉装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plane measurement interferometry device that improves the above-mentioned conventional drawbacks and enables highly accurate interferometry with a high measurement density.

本発明に係る平面測定干渉装置においては、被横面と参
照面との空気間隔を固定した状態で該空気間隔に異なる
角1で廁足元束を入射せしめる手段及び結ψ面上に投影
される被検面の結像倍率を一定に保持したままで結像面
と被検面とを光学的に共役にならしめる手段を備えるこ
とにより前記目的を達成するものである。以下、図面を
併用して本発明を詳述する。
In the plane measurement interference device according to the present invention, there is provided a means for making the beam of light incident on the air gap at different angles 1 into the air gap with the air gap between the transverse surface and the reference plane fixed, and a beam projected onto the ψ plane. The above object is achieved by providing means for making the image forming surface and the test surface optically conjugate while maintaining the imaging magnification of the test surface constant. Hereinafter, the present invention will be explained in detail using the drawings.

第3図は本発明に係る平面測定干渉装置の一災施例を示
す図で、11はレーザー等の単色fe W %12は光
源11からの光束をレンズ戚い社ピンホールによ、り絞
った点光源、13#i点元源12からの光束を平行光束
とするコリメータレンズ系、14及び15はそのいずれ
か一方が被検反射面(被検面)で他方が参照反射面(参
照面)16は被検反射面及び参照反射面(14,15)
の面の状態を固定したまま、測定装置の光軸に対して所
定量だけ回転することが可能な載物台、17け結像レン
ズ、18は写真感光材料あるい祉撮像管等の光の強度を
場所毎に記録する光記録材料箋19社元記録材料18を
載物台16の回転面内で回転し得る回転台である。
FIG. 3 is a diagram showing an example of a disaster in the planar measurement interference device according to the present invention, in which 11 is a monochromatic feW such as a laser, etc. %12 is a light beam from a light source 11 that is narrowed down by a lens pinhole. A collimator lens system 14 and 15 converts the light beam from the point source 12 into a parallel light beam, one of which is a test reflecting surface (test surface) and the other is a reference reflecting surface (reference surface). ) 16 is the test reflective surface and reference reflective surface (14, 15)
A stage that can be rotated by a predetermined amount with respect to the optical axis of the measuring device while keeping the state of the surface fixed; 17 imaging lenses; This is a rotary table capable of rotating an optical recording material sheet 19 for recording the intensity at each location within the rotating plane of the stage 16.

光1111から射出された光束は点光源12とし工形成
され、更にプリメーターレンズ系13によ抄平行光束と
なり、はぼその面が平行の状11に固定され且つ対向す
る様に設けられた被検反射鏡と参照反射鏡(14,15
)のペアーに入射する。
The luminous flux emitted from the light 1111 is formed into a point light source 12, and is further converted into a parallel luminous flux by a premeter lens system 13, and is fixed to a parallel luminous flux 11 with a parallel surface and is directed to a cover provided so as to face each other. Examination reflector and reference reflector (14, 15
) into the pair.

これ等二つの反射鏡(14,15)の反射面社、光を反
射すると同時に、その一部を透過されることが可能であ
る。これ等二つの反射1ii、(14,15)により干
渉した光束社、結像レンズ系17によ〉光記録材料18
上に干渉パターンとして記録される。崗、結像レンズ系
17社、極く近接して配された上記二つの反射面(14
,15)の形状を、光記録材料1B上に焦点を合わせる
位置に設けられているものである。
The reflective surfaces of these two reflective mirrors (14, 15) can reflect light and at the same time allow some of it to be transmitted. These two reflections 1ii, (14, 15) interfere with each other, and the optical recording material 18 is caused by the imaging lens system 17.
recorded as an interference pattern on the top. 17 manufacturers of imaging lens systems, and the above two reflective surfaces (14
, 15) is provided at a position to focus on the optical recording material 1B.

ここで、上記二つの反射面(14,15)Kより、透過
光が干渉して強め合5条件は以下の様に□  )1 表わせる。
Here, the five conditions in which the transmitted light interferes and strengthens from the two reflecting surfaces (14, 15) K are expressed as follows.

0は反射面間の媒質内において、光束が反射面15に入
射する角度1mは干渉a<強め合うため、明るい縞)の
次数(整数)、λは波長を表わす。すなわち入射角を変
化させると干渉パターンはあたかも2つの反射面間の距
llI!idが変化した様なふるまい、あるいは波長が
変化した様なふるまいを示す。
0 represents the order (integer) of the angle of 1 m at which the light beam enters the reflective surface 15 within the medium between the reflective surfaces (bright fringes because interference a is constructive), and λ represents the wavelength. In other words, when the angle of incidence is changed, the interference pattern appears as if the distance between the two reflecting surfaces is llI! It shows behavior as if the id has changed or the wavelength has changed.

そこで本発明で社回転可能な載物台16を使用する事に
より入射角θを制御する。ま−ずある入射角#lで上述
の測定を行ない光記録材料18に干渉パターンを記録す
る。その時干渉組法&I[rnとして記録されるd t
−dtとすると以下の様な関係が成や立つ。
Therefore, in the present invention, the angle of incidence θ is controlled by using a rotatable stage 16. First, the above-mentioned measurement is performed at a certain incident angle #l to record an interference pattern on the optical recording material 18. Then the interferometric method &I[rn is recorded as d t
-dt, the following relationship holds true.

ds−mλ/2acos#l また載物台16を回転し、反射鏡への入射角度を一烏と
した場合に社前述と同じ干渉縞次数とdの関係は以下の
様な関係となる。
ds-mλ/2acos#l Further, when the stage 16 is rotated and the angle of incidence on the reflecting mirror is set to one angle, the relationship between the interference fringe order and d, which is the same as described above, is as follows.

da −ml/2ncos#m すなわち、入射角度を変化するに従い同じ干渉縞次数で
あっても異なる距111dで干渉縞を形成す被検面の角
度をはとんど0にとり、巾の広い干渉縞を第4図の様に
生じさせたとする。このままであると、測定密度として
低い。そこで載物台16を回転して反射鏡に入射する光
束の入射角度を#島とし、光ダ記録材料18に多重露光
で#lの干渉パターン上に重ねて記録する。同様の手法
で6s#4s・・Φ・・#nと・重ねて記録する。第5
図社上述の様に多重露光された干渉パターンを表わす。
da -ml/2ncos#m In other words, as the incident angle changes, interference fringes are formed at different distances 111d even if the interference fringe order is the same.The angle of the test surface is set to almost 0, and interference fringes with a wide width are formed. Suppose that it occurs as shown in FIG. If this continues, the measured density will be low. Therefore, the stage 16 is rotated so that the angle of incidence of the light beam incident on the reflecting mirror is made into the # island, and the light beam is recorded on the optical recording material 18 by multiple exposure so as to be superimposed on the #l interference pattern. 6s #4s...Φ...#n are recorded in a similar manner. Fifth
This figure represents an interference pattern that has been subjected to multiple exposures as described above.

すなわち入射角度−1での干渉パターンとほとんど同形
の干渉縞が、−1での干渉縞の間をうめる様な形で記録
される。第1図の従来例で社干渉縞の1間隔社λ4毎の
等高層であったが本発明の手法で−nまで入射角を変化
させて測定をし記録された干渉縞が勢関隔の場合Ktj
干渉縞の1間隔はλ/2111となる。
In other words, interference fringes having almost the same shape as the interference pattern at the incident angle of -1 are recorded in such a way as to fill in the space between the interference fringes at the -1 angle. In the conventional example shown in Fig. 1, the interference fringes were at the same height every 1 interval λ4, but with the method of the present invention, the recorded interference fringes were measured by varying the incident angle up to -n. case Ktj
One interval of interference fringes is λ/2111.

すなわち干渉縞の読み取)精度が同じであれば第4図と
第5図韓同じ測定精度であるか1測足密度祉1倍となる
In other words, if the accuracy (reading of interference fringes) is the same, then the measurement accuracy in Figures 4 and 5 will be the same, or the measurement density will be 1 times higher.

また、入射角1i#lの場合と#急の場合で社、載物台
16が回転するために結像レンズ17による儂も回転し
、光記録材料面上の倫に歪を生ずる。この欠点を除くた
めに、載物台16の回転に合わせ回転する。この操作に
より光記録材料18に祉常に前記反射面(14,15)
の企のない像を正確に重ねて写し込む事が可能である。
Furthermore, since the stage 16 rotates when the incident angle is 1i#l and when the incident angle is sudden, the image formed by the imaging lens 17 also rotates, causing distortion on the surface of the optical recording material. In order to eliminate this drawback, it rotates in accordance with the rotation of the stage 16. By this operation, the optical recording material 18 is constantly exposed to the reflective surfaces (14, 15).
It is possible to accurately overlay images without any design.

結像レンズ系17ti2つの正のパワーを持つレンズ群
7aと7bる。このために上述の様に光記録材料上に位
のない像を記倚する事が可能となる〇 光記録材料18として、写真感光材料、あるいはTVカ
メラ等の撮像素子とコンピュータ等の演算回路等を用い
る。写真感光材料を用いる場合には言わゆる多重無光の
手法を用いる事となり、撮像素子を用いる場合に社名入
射角度での出力を各場所毎にメモリー上に加算する事に
なる。
The imaging lens system 17ti includes two lens groups 7a and 7b having positive power. For this reason, as mentioned above, it is possible to record a positionless image on the optical recording material. The optical recording material 18 may be a photographic material, or an image pickup device such as a TV camera, an arithmetic circuit such as a computer, etc. Use. When using photographic light-sensitive materials, a so-called multiple achromatic method is used, and when using an image sensor, the output at the incident angle of the company name is added to the memory for each location.

第61社本発明に係る他の実施例を示す図である。光源
21を射出した光はレンズ系あるい社ピンホール等で絞
られて点光源22蚤形成し、コリメーターレンズ系23
により平行テ、−?束化される。
FIG. 61 is a diagram showing another embodiment of the present invention. The light emitted from the light source 21 is focused by a lens system or a pinhole, etc. to form a point light source 22, and then to a collimator lens system 23.
Parallel Te, -? bundled.

この平行光束は多数の点光源を形かシするために設けら
れたレンズアレイ24により多数個の点光源25となる
。点光源25が形成されている場所をその儂面として設
けられているコリメーターレンズ系26により、これら
の多数個の点光源25からの党は多数の角度の平行光束
化される。すなわち2つの参照、被検、反射面(27,
28)には種々の入射角度で平行光束が入射する事にな
る。
This parallel light flux becomes a large number of point light sources 25 by a lens array 24 provided to shape the large number of point light sources. By means of a collimator lens system 26 whose surface is located at the location where the point light sources 25 are formed, the light beams from these multiple point light sources 25 are converted into parallel light beams at multiple angles. That is, there are two reference, test, and reflective surfaces (27,
28), parallel light beams will be incident at various angles of incidence.

レンズアレイ24中の1つのレンズLmによる点光源の
コリメーターレンズ系26に対する像高をbn。
The image height of a point light source with respect to the collimator lens system 26 by one lens Lm in the lens array 24 is bn.

コリメーターレンズ系26の焦点距離なfcとするなら
ば反射面に対する入射角度−nil #n−1an C
VrV7C)となる。すなわち前述実施例で社回転載物
台6を回転して1人射角度を変えていたが、本実施例で
はレンズアレイによる点光源のコリメーターレンズに対
する像高により入射角度の制御が可能で、かつ前記実施
例で祉多重量光法により干渉縞を多数個重ねていたが、
本実施例では同時に多数の入射角度の、米なる干渉縞を
記録する事が可能である。前記反射面(27,28)の
像は、結像レンズ系29により記録面30上に結像され
る。
If the focal length of the collimator lens system 26 is fc, then the angle of incidence on the reflecting surface is -nil #n-1an C
VrV7C). That is, in the above-described embodiment, the angle of incidence per person was changed by rotating the rotary stage 6, but in this embodiment, the angle of incidence can be controlled by the image height of the point light source with respect to the collimator lens using the lens array. In addition, in the above embodiment, a large number of interference fringes were superimposed by the multi-grain beam method, but
In this embodiment, it is possible to simultaneously record interference fringes at multiple incident angles. The image of the reflective surface (27, 28) is formed onto the recording surface 30 by the imaging lens system 29.

前記レンズアレイ24を、第7図に示す様なゾーンプレ
ート31のアレイに置き換えても同じ効果を示す。
The same effect can be obtained by replacing the lens array 24 with an array of zone plates 31 as shown in FIG.

第8図社レンズアレー又はゾーンプレートアレーに平行
光束金送るためのコリメーターレンズを小型化させる為
の光学系の実施例である。第8図において、レーザ光源
41からの光束はレンズ系あるいはピンホール(不図示
)等で絞られて点光源42を形成し、コリメーターレン
ズ43により平行光束とされた後に、半透鏡アレー44
に入射する。この半透鏡アレーにより複数本のビームに
分離された各平行光束はレンズアレー45に入射して、
枚数の点光源46を形成する。この彼の配置は第6図に
示す構成と同じであるので説明を省略する。
FIG. 8 is an embodiment of an optical system for miniaturizing a collimator lens for sending a parallel beam of light to a lens array or zone plate array. In FIG. 8, a light beam from a laser light source 41 is condensed by a lens system or a pinhole (not shown) to form a point light source 42, and after being made into a parallel light beam by a collimator lens 43, it is passed through a semi-transparent mirror array 44.
incident on . Each parallel light beam separated into a plurality of beams by this semi-transparent mirror array enters the lens array 45,
A number of point light sources 46 are formed. Since this arrangement is the same as the configuration shown in FIG. 6, a description thereof will be omitted.

以上、本発明に係る干渉装置においては、干渉計の反射
鏡へ入射する測定光像の入射角を変化させ、干渉縞を同
一の部材上に記録することにより、干渉縞による平面度
の高精度、妬密度な測定を具現化するものである。
As described above, in the interference device according to the present invention, by changing the incident angle of the measurement light image incident on the reflecting mirror of the interferometer and recording the interference fringes on the same member, the flatness of the interference fringes can be determined with high precision. , which embodies a jealousy density measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社従来の平面測定干渉に、flを示す図〜第2図
は従来の測定によ抄得られ2.干渉縞の様子を示す図、
第3図は本発明に係る平面測定干渉装置の一実施例を示
す図、第4図及び第5図は、本発明の装置により得られ
る干渉縞の様子を示す為の図、第61社本発明に係る平
面測定干渉装置の他の実施例を示す図、第7図は第6図
に示す装置のレンズアレーに置換可能なゾーンプレート
アレーを示す図、第8図社第6図に示す装置の一部分の
変形例を示す図。 11・Φ・・・レーザ光源、15・・・・・コリメータ
ーレンズ、14.15・・・・9参照反射面と被検反射
面、16・・・・・載物台s 17 m * 彎・・結
像レンズ系、18・・・・・光記録材料、19・・軸・
回転台。
Figures 1 to 2, which show fl in conventional planar measurement interference, were obtained by conventional measurement.2. A diagram showing the appearance of interference fringes,
FIG. 3 is a diagram showing an embodiment of the plane measurement interference device according to the present invention, and FIGS. 4 and 5 are diagrams showing the appearance of interference fringes obtained by the device of the present invention. Figures showing other embodiments of the plane measurement interference device according to the invention; FIG. 7 is a diagram showing a zone plate array that can be replaced with the lens array of the device shown in FIG. 6; FIG. 8 is a diagram showing the device shown in FIG. 6. The figure which shows the modification of a part of. 11・Φ...Laser light source, 15...Collimator lens, 14.15...9 Reference reflective surface and test reflective surface, 16...Product table s 17 m * Curvature ...Imaging lens system, 18...Optical recording material, 19...Axis...
Turntable.

Claims (1)

【特許請求の範囲】[Claims] (1)平面n!屓を測定する多光束干渉装置において、
被検面と参照面との空気間隔を同市した状態で、該空気
間隔に異なる角度で測定光束を′入射せしめる手段と、
結像面上に投影される被検■の結像倍率を一足に保持し
たま・まで、結像面と“被検に 面とを光学的に共役浜らしめる手段とを備えた事を特徴
とする平面測定干渉装置。
(1) Plane n! In a multi-beam interference device that measures beams,
means for causing measurement light beams to be incident on the air gap at different angles with the air gap between the test surface and the reference surface being the same;
It is characterized by being equipped with a means for optically making the imaging surface and the surface to be examined optically conjugate while maintaining the imaging magnification of the object projected onto the imaging surface at a constant level. A planar measurement interferometer.
JP14153881A 1981-09-08 1981-09-08 Interference device for plane measurement Pending JPS5842908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14153881A JPS5842908A (en) 1981-09-08 1981-09-08 Interference device for plane measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14153881A JPS5842908A (en) 1981-09-08 1981-09-08 Interference device for plane measurement

Publications (1)

Publication Number Publication Date
JPS5842908A true JPS5842908A (en) 1983-03-12

Family

ID=15294292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14153881A Pending JPS5842908A (en) 1981-09-08 1981-09-08 Interference device for plane measurement

Country Status (1)

Country Link
JP (1) JPS5842908A (en)

Similar Documents

Publication Publication Date Title
US3907438A (en) Contour measuring system for cylinders
US4969744A (en) Optical angle-measuring device
KR20000016177A (en) Interferometer for measuring thickness variations of semiconductor wafers
JP3185901B2 (en) Measurement and analysis method of interference fringes by hologram interferometer
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
US4072423A (en) Light interference device with low degree of spacial coherence
US4113388A (en) Optical apparatus for determining relative positioning of two members
US4395123A (en) Interferometric angle monitor
JPS5979104A (en) Optical device
JPS5842908A (en) Interference device for plane measurement
JP2831428B2 (en) Aspherical shape measuring machine
JPH0575246B2 (en)
JP2000097622A (en) Interferometer
JP2000097664A (en) Shearing interferometer
JP3916991B2 (en) Indenter shape measuring instrument
JP3164127B2 (en) Hologram interferometer
JP3010085B2 (en) Hologram interferometer
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPH05157532A (en) Computer hologram for measurement and measuring method using same
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
JPH0447243B2 (en)
JP2553662B2 (en) Hologram range finder
JP3067041B2 (en) Hologram interferometer
JP2000097657A (en) Interferometer