JPS60100665A - Apparatus for producing thin film - Google Patents
Apparatus for producing thin filmInfo
- Publication number
- JPS60100665A JPS60100665A JP20738283A JP20738283A JPS60100665A JP S60100665 A JPS60100665 A JP S60100665A JP 20738283 A JP20738283 A JP 20738283A JP 20738283 A JP20738283 A JP 20738283A JP S60100665 A JPS60100665 A JP S60100665A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- particles
- shutter mechanism
- shutters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は気相堆積法による薄膜製造において良質の薄膜
全製造することができる薄膜製造装置に関するものてら
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film manufacturing apparatus capable of manufacturing all thin films of good quality in thin film manufacturing using a vapor phase deposition method.
従来より用いられているこの種の薄膜製造装置として真
空蒸着法を利用したものがある。この装置は、蒸発母材
を通電加熱や電子ビーム加熱などの方法により気化せし
め、これに対向して設置された基板上に気化した母材原
子もしくは分子全付着、堆積せしめることにより、薄膜
を製造するものでるる。しかし、この場合、蒸発母材は
通常。There is a conventionally used thin film manufacturing apparatus of this type that utilizes a vacuum evaporation method. This device produces thin films by vaporizing a base material using methods such as electrical heating or electron beam heating, and then attaching and depositing all of the vaporized base material's atoms or molecules onto a substrate placed opposite the base material. There is something to do. However, in this case, the evaporation matrix is usually
数100℃以上の高温に加熱されるため、その熱ふく射
により基板が熱損傷金堂けたり、また蒸発源から発せら
れる飛沫が基板面に衝突し、薄膜に損傷を与える等の欠
点を有していた。Because it is heated to a high temperature of several hundred degrees Celsius or more, it has drawbacks such as thermal damage to the substrate due to the heat radiation, and droplets emitted from the evaporation source that collide with the substrate surface and damage the thin film. Ta.
また、他の代表的な薄膜製造装置としてスパッタ法によ
るものもめる。こ九は、母材に高速粒子を衝突させるこ
とにより母材原子もしくは分子のスパッタリング蒸発を
生じせしめ、これに対向する基板上に薄膜を形成するも
のでるる。しかし、この装置においては、通常、低圧力
ガス放電によって発生するプラズマ中のイオンの作用に
より母材のスパッタリングを行っているため、基板面上
にもイオン、電子等の高エネルギー粒子が入射し、薄膜
に損傷を与えるという欠点金有していた。Another typical thin film manufacturing device is one using sputtering. In this method, atoms or molecules of the base material are caused to sputter and evaporate by colliding high-speed particles with the base material, and a thin film is formed on the substrate facing the sputtering. However, in this device, the base material is normally sputtered by the action of ions in plasma generated by low-pressure gas discharge, so high-energy particles such as ions and electrons are also incident on the substrate surface. It had the disadvantage of damaging the thin film.
本発明は以上の点に鎌み、かかる欠点全解決するために
なされたもので、その目的は、基板面上への熱ふく射、
飛沫の入射または高エネルギー粒子の入射などを抑制し
て蒸発粒子のみを基板面上に入射させることにより、良
質の薄膜を製造することができる薄膜製造装置を提供す
ることにるる。The present invention has been made in order to solve all of the above drawbacks, and its purpose is to prevent heat radiation onto the substrate surface.
It is an object of the present invention to provide a thin film manufacturing apparatus capable of manufacturing a high-quality thin film by suppressing the incidence of droplets or high-energy particles and allowing only evaporated particles to be incident on a substrate surface.
このような目的を達成するために、本発明は、真空蒸着
法やスパッタ法などの気相堆積法による薄膜製造装置に
おいて、基板上に堆積すべき粒子の飛行通路上、空間的
に隔てられた少なくとも2箇所以上の位置にシャッタ機
構を備え、このシャッタ機構を蒸発粒子の飛行速度と一
定の関係を保ちつつ開閉することにより、蒸発粒子のみ
を基板面上に通過せしめるようにしたものでるる。以下
本発明の実施例を図面に基づき詳細に説明する。In order to achieve such an object, the present invention provides a thin film manufacturing apparatus using a vapor deposition method such as a vacuum evaporation method or a sputtering method. A shutter mechanism is provided at at least two positions, and by opening and closing the shutter mechanism while maintaining a constant relationship with the flight speed of the evaporated particles, only the evaporated particles are allowed to pass onto the substrate surface. Embodiments of the present invention will be described in detail below based on the drawings.
第1図は本発明にかかる薄膜製造装置の一実施例を示す
概略構成図でめり、真空蒸着法による場合を示す。同図
において、1は真空容器、2は真空容器1内を排気する
ために排気系に連通された排気口、3は真空容器1の所
定箇所に配置されたルツボ4と該ルツボ4内に入れられ
た蒸発母材5からなる蒸発源でめシ、この蒸発源3は蒸
発母材5を通常の抵抗加熱法るるいは電子ビーム加熱法
などによシ加熱してその母材原子もしくは分子上蒸発さ
せるものとなっている。また、6は蒸発源3に対向して
配置された基板支持台、Tはこの支持台6に支持された
基板、8は上記蒸発源3と基板Tとの間に所定の間隔で
配置された2個のシャツタ板9と10からなるシャッタ
機構でるり、これらシャツタ板9および10はそれぞれ
回転軸11.12に支持されていて、外部の回転装置(
図示せず)によって各回転軸11.12’に図示する矢
印42口の両方向に付勢することによシ、前記各シャッ
タ板s、io’i蒸発源3からの蒸発粒子の飛行速度に
対応して交互に開閉するものとなっている。FIG. 1 is a schematic diagram showing an embodiment of a thin film manufacturing apparatus according to the present invention, and shows a case using a vacuum evaporation method. In the figure, 1 is a vacuum container, 2 is an exhaust port connected to an exhaust system for evacuating the inside of the vacuum container 1, and 3 is a crucible 4 placed at a predetermined location in the vacuum container 1, and a crucible placed inside the crucible 4. This evaporation source 3 heats the evaporation base material 5 by the usual resistance heating method or electron beam heating method to form an evaporation source on the atoms or molecules of the base material. It is meant to evaporate. Further, 6 is a substrate support placed facing the evaporation source 3, T is a substrate supported by this support 6, and 8 is placed between the evaporation source 3 and the substrate T at a predetermined interval. The shutter mechanism consists of two shutter plates 9 and 10, which are supported by rotating shafts 11 and 12, respectively, and are connected to an external rotating device (
(not shown), the rotational shafts 11 and 12' are biased in both directions of the arrows 42 shown in the figure, thereby corresponding to the flight speed of the evaporated particles from the respective shutter plates s and io'i evaporation sources 3. It opens and closes alternately.
しかして、上記実施例装置全動作するには、まず、ルツ
ボ4内の蒸発母材5を通常の抵抗加熱法めるいは電子ビ
ーム加熱法により加熱しその母材を蒸発源3より蒸発さ
せる。次いで、この状態でシャック板9および10を第
2図に代表的に示される如き時間設定によジ開閉する。Therefore, in order to fully operate the apparatus of the above embodiment, first, the evaporation base material 5 in the crucible 4 is heated by the usual resistance heating method or electron beam heating method, and the base material is evaporated from the evaporation source 3. Next, in this state, the shack plates 9 and 10 are opened and closed at set times as typically shown in FIG.
すると、シャツタ板9はサイクルAsの開始に同期し時
刻t。Then, the shirt shirt plate 9 is synchronized with the start of the cycle As at time t.
で開いて時刻t1で閉じる。そして、シャツタ板10は
時刻t2で開き時刻t3で閉じる開閉動作全行い、かか
る動作金欠のサイクルA2の開始毎に同期して同様に行
う。したがって、このようなシャツタ板の開閉動作全行
う場合、シャツタ板9およびシャツタ板10を通過して
蒸発源3より基板1面に到達しうる蒸発粒子の飛行速度
Vはなる関係式で表わされる。ここで、Lはシャツタ板
9とシャツタ板10との距離でるる。しかるにたとえば
通常の真空蒸着法において蒸発粒子の飛行速度は100
〜1000m/sec程度でるるからL=20cm″t
6る場合、(h−tl)’fi−約0.2m5ec 以
下に設定すれば、蒸発粒子はシャツタ板9およびシャツ
タ板10の双方を通過して基板1面に到達しうろことに
なる。It opens at time t1 and closes at time t1. Then, the shirt shirt plate 10 performs all opening and closing operations, opening at time t2 and closing at time t3, and the same operation is performed in synchronization with each start of such operation cycle A2. Therefore, when all the opening and closing operations of the shirt flap plates are performed, the flight velocity V of the evaporated particles that can pass through the shirt flap plates 9 and 10 and reach the surface of the substrate 1 from the evaporation source 3 is expressed by the following relational expression. Here, L is the distance between the shirt flap plate 9 and the shirt flap plate 10. However, for example, in the normal vacuum evaporation method, the flight speed of evaporated particles is 100
〜1000m/sec, so L=20cm″t
In the case of 6, if (h-tl)'fi- is set to less than about 0.2 m5ec, the evaporated particles will pass through both the shutter plates 9 and 10 and reach the surface of the substrate 1.
第3図は本発明の別の実施例を示す概略構成図でめり、
第1図との異なる点は、蒸発源3と基板7との間に、モ
ーフ13の回転軸14上に等間隔で連結さf″した3個
の回転シャッタ15.16および17からなるシャッタ
機構を構成したものでるる。この場合、前記各回転シャ
ッタ15〜170円周上には第4図に示すように、45
°の角度で交互に遮へい部181〜183とスリット部
191〜193がそれぞれ施されていて、これら回転シ
ャッタ15.17は各遮へい部18+ 、 1111+
とスリット部19.,193が互に45°変位している
。FIG. 3 is a schematic configuration diagram showing another embodiment of the present invention.
The difference from FIG. 1 is that a shutter mechanism consisting of three rotary shutters 15, 16 and 17 connected at equal intervals f'' on the rotation axis 14 of the morph 13 is located between the evaporation source 3 and the substrate 7. In this case, on the circumference of each of the rotating shutters 15 to 170, as shown in FIG.
Shielding portions 181 to 183 and slit portions 191 to 193 are provided alternately at an angle of .
and slit portion 19. , 193 are displaced by 45° from each other.
そして、中間の回転シャッタ16はその遮へい部182
とスリット部192が各回転シャッタ15゜1γに対し
て22.5°変位しており、上記回転軸14が図示する
矢印ハの一定方向に1回転する間に各回転シャッタ15
〜1γは4回開閉金繰り返すものとなっている。したか
って、蒸発粒子が下方の回転シャッタ15のスリット部
191から中間の回転シャッタ16のスリット部192
を経て上方の回転シャック1γのスリット部193に達
するまでの時間、すなわちL/v(ただし、Lは各回転
シャッタ15〜17間の距離、■は蒸発粒子の飛行速度
)の間に回転軸14が1/4回転するようにモータ13
の回転数を設定すれば、蒸発粒子は各回転シャッタ15
〜17の辿へい部181〜183のいずれによっても遮
ぎられることなく、基板7面上に到達させることができ
る。The intermediate rotary shutter 16 has a shielding portion 182.
The slit portion 192 is displaced by 22.5° with respect to each rotating shutter 15°1γ, and each rotating shutter 15
~1γ is designed to repeat opening and closing four times. Therefore, the evaporated particles flow from the slit portion 191 of the lower rotary shutter 15 to the slit portion 192 of the intermediate rotary shutter 16.
During the time it takes to reach the slit part 193 of the upper rotating shack 1γ, that is, L/v (where L is the distance between each rotating shutter 15 to 17, and ■ is the flight speed of the evaporated particles), the rotating shaft 14 Motor 13 rotates 1/4 rotation.
If the rotation speed is set, the evaporated particles will pass through each rotating shutter 15.
It is possible to reach the surface of the substrate 7 without being obstructed by any of the tracing sections 181 to 183 of .about.17.
第5図は本発明のさらに別の実施例を示す概略構成図で
あって、モータ13の回転軸14に連結された側面にら
せん状のスリットヲ有する回転体20をシャッタ機構と
して蒸発源3と基板Tとの間に配置したものでるり、そ
の具体的な例が第6図に示してるる。第6図において上
記回転体20は円筒21の側面に一定の傾き角でかつ一
定の間隔?置いて複数個のフィン22が取付けられたも
のでるり、隣接する2個のフィン22によりらせん状の
スリット#!23が形成されている。しかして、第6図
(b)に示すように、スリット溝23の回転軸方向の長
さtL、スリット溝23の回転軸方向に対する傾き角を
θ99回転筒21の半径’r r +単位時間めたジの
回転数′(i:Nとすると、飛行速度Vの蒸発粒子が回
転軸方向に沿って距離りを飛行するのに要する時間、す
なわち L/vの間にスリット溝23が回転体の円周方
向にLta++θ だけ移動するならば、スリット溝2
3の一端に入射した蒸発粒子は途中スリット壁すなわち
フィン22によって遮ぎられることなく、スリット#2
3ffi通過することができる。なお、第6図(b)中
の符号30はフィン22の移動方向會示す。FIG. 5 is a schematic configuration diagram showing still another embodiment of the present invention, in which a rotating body 20 connected to the rotating shaft 14 of a motor 13 and having a spiral slit on the side surface is used as a shutter mechanism to connect the evaporation source 3 and the substrate. A specific example of this is shown in Figure 6. In FIG. 6, the rotating body 20 is attached to the side surface of the cylinder 21 at a constant angle of inclination and at a constant interval. A spiral slit is formed by two adjacent fins 22. 23 is formed. As shown in FIG. 6(b), the length tL of the slit groove 23 in the rotational axis direction and the inclination angle of the slit groove 23 with respect to the rotational axis direction are θ99 radius 'r r + unit time. The rotational speed of the rotating body (i:N) is the time required for an evaporated particle with a flight speed V to fly a distance along the rotational axis direction, that is, L/v, when the slit groove 23 is If it moves by Lta++θ in the circumferential direction, the slit groove 2
The evaporated particles incident on one end of slit #2 are not blocked by the slit wall, that is, the fin 22, on the way.
3ffi can be passed. Note that the reference numeral 30 in FIG. 6(b) indicates the moving direction of the fin 22.
以下に蒸発粒子の飛行速度Vと回転体20の回転速度R
との関係について述べる。すなわち、回転体20のらせ
ん状スリット溝23のピッチPはで与えられる。一方、
時間L/vの間にスリット溝23は回転体20の円周上
を、
2πr・1も・−(3)
■
たけ移動する。従って、蒸発粒子がスリット溝23全通
過できる条件は
2πr−R・−=Lb+nθ (4)
■
で与えられる。上記(4)式は(2)式によりさらに簡
便な式に改められる。すなわち、
なる式が最終的に回転体200回転速度とらせん状のス
リット溝23を通過てきる蒸発粒子の飛行速度との関係
を与えることになる。The flight speed V of the evaporated particles and the rotation speed R of the rotating body 20 are shown below.
I will explain the relationship with That is, the pitch P of the spiral slit grooves 23 of the rotating body 20 is given by: on the other hand,
During the time L/v, the slit groove 23 moves on the circumference of the rotating body 20 by a distance of 2πr·1·−(3) ■. Therefore, the condition under which the evaporated particles can pass through the entire slit groove 23 is given by 2πr-R.-=Lb+nθ (4) (4). The above equation (4) can be changed to a simpler equation by using equation (2). That is, the following equation finally gives the relationship between the rotational speed of the rotating body 200 and the flight speed of the evaporated particles passing through the spiral slit groove 23.
以上各実施例において具体的に説明したように本発明は
簡単な構成のシャッタを用いて所望の飛行速度(運動エ
ネルギー)をもつ蒸発粒子のみ全基板面に入射させるこ
と全可能としたものでろる。As specifically explained in each of the embodiments above, the present invention makes it possible to make only evaporated particles with a desired flight speed (kinetic energy) incident on the entire substrate surface using a shutter with a simple configuration. .
これにより、蒸発源より発せられる光およびふく射熱の
基板面への入射全完壁に防止できる。また、本発明をス
パッタ法に適用すれば、従来において膜形成上、有害と
されていた高いエネルギーをもつイオン、電子、中性粒
子等の基板への入射全防止できる。さらに、本発明は単
に光や高速粒子の基板への入射を防止できるのみならず
、巨視的な形状を有する蒸発母材の飛沫(飛行速度は通
常数m /′S e e以下)が基板面に入射するの全
防止するうえて効果を有する。This completely prevents light emitted from the evaporation source and radiant heat from entering the substrate surface. Further, if the present invention is applied to a sputtering method, it is possible to completely prevent high-energy ions, electrons, neutral particles, etc., which were conventionally considered harmful to film formation, from entering the substrate. Furthermore, the present invention can not only prevent light and high-velocity particles from entering the substrate, but also allow droplets of the evaporated base material having a macroscopic shape (flight speed is usually less than a few m/'S e e) to fly over the substrate surface. It has the effect of completely preventing any incident on the body.
以上説明したように、本発明の薄膜製造装置によれば、
従来では困難とされていた基板面への光。As explained above, according to the thin film manufacturing apparatus of the present invention,
Lighting the substrate surface, which was considered difficult in the past.
熱、高速粒子、母材飛沫の入射全抑制することが可能で
ろる。そのため、本発明装置により、感光性材料の薄膜
形成を行えば、堆積膜はその蒸発源の発する光にさらさ
れないので、光感度の高い感光性薄膜を形成できる。ま
た、本発明装置を用いれば、有機レジス、ト等の熱損傷
上受けやすい材料を塗布した基板でるってもこれを劣化
させることなく、その上に膜形成できるので、リフトオ
フ法による微細加工を行う上で有効でるる。さらに、Y
2O3、At203等の光学材料薄膜の形成に本発明装
置を適用すれば、光および高速粒子の照射によってもた
らされていた堆積膜中の格子欠陥の発生が抑制され、良
質の光学薄膜が得られる等の効果がある。It is possible to completely suppress the incidence of heat, high-velocity particles, and base material splashes. Therefore, when a thin film of a photosensitive material is formed using the apparatus of the present invention, the deposited film is not exposed to the light emitted from the evaporation source, so that a photosensitive thin film with high photosensitivity can be formed. Furthermore, by using the apparatus of the present invention, it is possible to form a film on a substrate coated with a material that is easily damaged by heat, such as an organic resist, without deteriorating it. It's effective in doing so. Furthermore, Y
If the apparatus of the present invention is applied to the formation of thin films of optical materials such as 2O3 and At203, the occurrence of lattice defects in deposited films caused by irradiation with light and high-speed particles can be suppressed, and optical thin films of good quality can be obtained. There are other effects.
なお、本発明装置の応用分野は上記の例のみにとどまら
ず、一般に結晶性の良好な高品質の作製に有効でるる。The field of application of the apparatus of the present invention is not limited to the above-mentioned examples, but is generally effective for producing high-quality products with good crystallinity.
第1図は本発明による薄膜製造装置の一実施例を示す概
略構成図、第2図はその実施例の動作に供する説明図、
第3図および第4図は本発明の別の実施例を示す概略構
成図およびその一部斜視図、第5図および第6図(a)
、(b)は本発明のさらに別の実′施・例を示す概略構
成図およびその主要部の具体的な斜視図、側面図でるる
。
1・・彎・真空容器、2−・・・排気口、3・・・・蒸
発源、4・・・・ルツボ、5・・・・蒸発母材、6・・
・・基板支持台、7・・・・基板、8・e拳・シャツ1
機m、9,10@φ・・シャツタ板、11,12・◆・
・回転軸、13・φ・・モータ、14・拳・・回転軸、
15,16゜17・・・・回転シャッタ、2o・・・・
回転体、21・・・φ円筒、22・・・・フィン、23
・拳争・スリット溝。
特許出願人 日本電信電話公社
代理人 山川政樹
141図
第2図
第3図
1
第5図
13FIG. 1 is a schematic configuration diagram showing an embodiment of a thin film manufacturing apparatus according to the present invention, FIG. 2 is an explanatory diagram showing the operation of the embodiment,
3 and 4 are schematic configuration diagrams and partial perspective views thereof showing another embodiment of the present invention, and FIGS. 5 and 6 (a).
, (b) are a schematic configuration diagram showing still another embodiment/example of the present invention, as well as a specific perspective view and a side view of the main parts thereof. 1... Curved vacuum container, 2-... Exhaust port, 3... Evaporation source, 4... Crucible, 5... Evaporation base material, 6...
... Board support stand, 7... Board, 8, e-fist, shirt 1
Machine m, 9, 10 @φ...Shaft plate, 11, 12...◆...
・Rotation axis, 13・φ・・Motor, 14・Fist・・Rotation axis,
15, 16° 17...Rotating shutter, 2o...
Rotating body, 21...φ cylinder, 22...fin, 23
-Fist fighting/slit groove. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Masaki Yamakawa 141 Figure 2 Figure 3 Figure 1 Figure 5 13
Claims (4)
薄膜製造装置において、基板上に堆積すべき粒子の飛行
通路上、空間的に隔てられた少なくとも2箇D1以上の
位散にシャッタ機構を備え、このシャッタ機構金、蒸発
粒子の飛行速度と一定の関係を保ちつつ開閉することに
よシ、蒸発粒子のみ全前記基板上に通過させるように構
成し/にと全特徴とする薄膜製造装置。(1) In a thin film manufacturing apparatus using a vapor deposition method such as a vacuum evaporation method or a sputtering method, a shutter mechanism is installed at at least two spatially separated locations on the flight path of particles to be deposited on a substrate at a distance of D1 or more. The shutter mechanism is configured to allow only the evaporated particles to pass over the substrate by opening and closing the shutter mechanism while maintaining a constant relationship with the flight speed of the evaporated particles. Device.
と金%徴とする特許請求の範囲第1項記載の薄膜製造装
置。(2) The thin film manufacturing apparatus according to claim 1, wherein the shutter mechanism is comprised of two or more shutter plates.
転シャッタからなることを特徴とする特許請求の範囲第
1項記載の薄膜製造装置。(3) The thin film manufacturing apparatus according to claim 1, wherein the shutter mechanism comprises two or more rotary shutters connected coaxially.
る回転体からなることを特徴とする特許請求の範囲第1
項記載の薄膜製造装置。(4) Claim 1, characterized in that the shutter mechanism consists of a rotating body having a spiral sulin on the side surface.
The thin film manufacturing apparatus described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20738283A JPS60100665A (en) | 1983-11-07 | 1983-11-07 | Apparatus for producing thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20738283A JPS60100665A (en) | 1983-11-07 | 1983-11-07 | Apparatus for producing thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60100665A true JPS60100665A (en) | 1985-06-04 |
JPS6338425B2 JPS6338425B2 (en) | 1988-07-29 |
Family
ID=16538800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20738283A Granted JPS60100665A (en) | 1983-11-07 | 1983-11-07 | Apparatus for producing thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60100665A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4942063A (en) * | 1989-04-20 | 1990-07-17 | North American Philips Corporation | Method for controlling the thickness distribution of an interference filter |
US4982695A (en) * | 1989-04-20 | 1991-01-08 | North American Philips Corporation | Method and apparatus for controlling the thickness distribution of an interference filter |
-
1983
- 1983-11-07 JP JP20738283A patent/JPS60100665A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4942063A (en) * | 1989-04-20 | 1990-07-17 | North American Philips Corporation | Method for controlling the thickness distribution of an interference filter |
US4982695A (en) * | 1989-04-20 | 1991-01-08 | North American Philips Corporation | Method and apparatus for controlling the thickness distribution of an interference filter |
Also Published As
Publication number | Publication date |
---|---|
JPS6338425B2 (en) | 1988-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024045748A1 (en) | Thin film deposition apparatus and thin film deposition method | |
JP2009003348A (en) | Film forming method of dimmer filter, manufacturing device of dimmer filter, dimmer filter and imaging diaphragm device using the same | |
JPS60100665A (en) | Apparatus for producing thin film | |
JP2836518B2 (en) | Vapor deposition equipment | |
JP2004256843A (en) | Vacuum vapor deposition apparatus | |
US6206975B1 (en) | Vacuum treatment system for application of thin, hard layers | |
JPS6115966A (en) | Sputtering apparatus | |
JP4177021B2 (en) | Method for controlling vapor deposition apparatus and vapor deposition apparatus | |
JPH05126999A (en) | Production of x-ray multilayered film reflecting mirror | |
JPS595666B2 (en) | sputtering equipment | |
JPH02173261A (en) | Vacuum film forming device | |
US4942063A (en) | Method for controlling the thickness distribution of an interference filter | |
JP2009001889A (en) | Film deposition method for neutral density filter, neutral density filter using the same, and image pick-up light quantity diaphragm device | |
JP2009007651A (en) | Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device | |
JPH04323362A (en) | Formation of multilayer film and its forming device | |
JPH01205071A (en) | Multilayered film forming device | |
US4982695A (en) | Method and apparatus for controlling the thickness distribution of an interference filter | |
JPH05166236A (en) | Apparatus for producing magneto-optical recording medium | |
JP2890686B2 (en) | Laser sputtering equipment | |
JPS61186472A (en) | Apparatus for producing non-crystalline film deposited by evaporation | |
JPS5852476A (en) | Vacuum evaporation method | |
JPS59226177A (en) | Thin film forming device | |
JPS63149367A (en) | Method for vapor-depositing multilayer interference film | |
JP2004253504A (en) | Apparatus and method for vacuum vapor deposition | |
JPH03254423A (en) | Method and device for vacuum vapor-deposition |