JP2004253504A - Apparatus and method for vacuum vapor deposition - Google Patents

Apparatus and method for vacuum vapor deposition Download PDF

Info

Publication number
JP2004253504A
JP2004253504A JP2003040580A JP2003040580A JP2004253504A JP 2004253504 A JP2004253504 A JP 2004253504A JP 2003040580 A JP2003040580 A JP 2003040580A JP 2003040580 A JP2003040580 A JP 2003040580A JP 2004253504 A JP2004253504 A JP 2004253504A
Authority
JP
Japan
Prior art keywords
evaporation source
evaporation
vacuum
dome
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040580A
Other languages
Japanese (ja)
Inventor
Takashi Asano
隆史 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003040580A priority Critical patent/JP2004253504A/en
Publication of JP2004253504A publication Critical patent/JP2004253504A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an apparatus and a method for vacuum vapor deposition which can maintain the deposition uniformity without increasing the size of the apparatus and which has proper productivity. <P>SOLUTION: The annular running path 141 of the shape that the ends of outside and inside circles are connected in a U shape by cutting out the parts of two concentric circles in a sector shape with the center 14a of a dome type disk 14 as a center is installed on the dome type disk 14 opposed to an evaporation source 114. A plurality of semiconductor substrates 112 are held on this annular running path 141, and are moved along the annular running path 141 while these semiconductor substrates 112 are rotated around their own axes. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被蒸着部材を真空槽内で回転移動させながら成膜する真空蒸着装置及び真空蒸着方法に関する。
【0002】
【従来の技術】
薄膜形成技術の一つである真空蒸着技術は、半導体集積回路や高密度情報記憶媒体などの電子部品の製造にとどまらず、機械部品の表面改質や超伝導薄膜のような新しい電子素子の開発など、幅広い用途に活用されている。
【0003】
図3に、例えば半導体基板上に金属電極を形成する、電子ビーム加熱方式による従来の真空蒸着装置の構成の一例を示す。この装置は、蒸着チャンバー11、高真空ポンプ部12、及び電子ビーム制御部13から構成されている。
【0004】
蒸着チャンバー11内の上部には複数枚の半導体基板112を保持するドーム型円盤111が設置されている。このドーム型円盤111は、一回の蒸着プロセスで複数枚の半導体基板112へ同時に蒸着することができるように構成されている。すなわち、例えば図4に示すように、中心がドーム型円盤111の中心113と一致する円111aの円周上に複数枚の半導体基板112を配置し、保持する。また、ドーム型円盤111の中心113の鉛直下方の蒸着チャンバー11底部には、蒸発源114が設置されている。
【0005】
この装置で蒸着を行なうには、まず被蒸着部材である半導体基板112をドーム型円盤111にセットし、この半導体基板112を加熱しながら高真空ポンプ部12により蒸着チャンバー11内の排気を行なう。次に、蒸着チャンバー11内が所定の真空状態になった後に蒸発物質114aを予備加熱するため、シャッター117を閉じたまま、電子ビーム制御部13からの制御により蒸着チャンバー11の底部に設置されているフィラメント115を加熱して熱電子を発生させ、電磁マグネット116により電子ビーム115aを形成して蒸発源114に配置された蒸発物質114aに照射し、これを加熱する。そして予備加熱が完了するとシャッター117を開け、蒸発源114から発生した蒸発流114bが半導体基板112に到達して蒸着膜が形成され、その成膜状態は膜厚モニタ118によりモニタされる。
【0006】
このように、前述の真空蒸着装置においては、ドーム型円盤111に保持された半導体基板112と蒸発源114とが蒸着チャンバー11内で上下に対向して設置され、蒸発源114から上方向への蒸発流114bにより半導体基板112に成膜されるが、通常、蒸発源114からの蒸発流114bの密度は、蒸着チャンバー11内で一様ではない。すなわち、蒸発源114の直上でその密度が最も高く、ドーム型円盤111の周縁部に向かうほど密度は低くなる傾向がある。このため、蒸着膜の厚さは、半導体基板112が保持されるドーム型円盤111の位置により大きく異なってしまう。
【0007】
この事象を改善するため、ドーム型円盤111を回転させながら半導体基板112自身も回転させることにより、ドーム型円盤111の円周方向及び半径方向の成膜の不均一性を軽減した、いわゆる自公転型の真空蒸着装置が提案されている(例えば、特許文献1参照。)。また、真空蒸着装置にも適用可能な自公転型基板保持装置も提案されている(例えば、特許文献2参照。)。
【0008】
上記の自公転型の場合には、図4においてドーム型円盤111に保持された半導体基板112は、回転駆動部(図示せず)により、その保持された中心112aを軸として自転しながらドーム型円盤の中心113を軸として円111aに沿って公転する。
【0009】
【特許文献1】
特開平10−280130号公報(第5頁、図1)
【0010】
【特許文献2】
特開平8−250577号公報(第4頁、図1)
【0011】
【発明が解決しようとする課題】
しかしながら、1バッチの蒸着プロセスの生産性を向上させるべく、より多くの半導体基板をドーム型円盤111に保持させたり、あるいは口径がより大きい半導体基板を保持させると、これら基板を配置する円111aの半径が大きくなってドーム型円盤111も大型化し、装置全体が大型化する。更に、ドーム型円盤111の中心部と周縁部での蒸発源114からの蒸発流114bの密度の差が一層大きくなり、成膜の均質性をますます損なっていた。
【0012】
また、装置の大型化を避けるために、例えばドーム型円盤111上において、公転軌道となる円111aの内側にこれと同心円となる円111bを設定し、これら2つの公転軌道と蒸発源114との距離を最適化した上で、円111bの円周上にも半導体基板112を保持することにより基板枚数を増加させる方法も考えられる。しかしこの場合にも、蒸発源114からの蒸発流114bの密度の方向依存性が蒸発物質114aの種類によって異なるため、蒸発物質114aを変えると均一な蒸着膜を形成することは困難であった。
【0013】
本発明は上記の事情を考慮してなされたものであり、装置を大型化することなく成膜の均質性を維持できる、生産性の良い真空蒸着装置及び真空蒸着方法を得ることを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の真空蒸着装置は、内部に蒸発源を有する真空槽内にこの蒸発源と対向させて前記蒸発源の上方に被蒸着部材を配置し、蒸発源からの蒸発流により被蒸着部材に成膜する真空蒸着装置において、前記真空槽内にあらかじめ設定された環状走路を備え、この環状走路に沿って前記被蒸着部材を移動させることを特徴とする。
【0015】
また、本発明の真空蒸着方法は、内部に蒸発源を有する真空槽内にこの蒸発源と対向させて前記蒸発源の上方に被蒸着部材を配置し、蒸発源からの蒸発流により被蒸着部材に成膜する真空蒸着方法において、前記真空槽内にあらかじめ設定された環状走路に沿って前記被蒸着部材を移動させることを特徴とする。
【0016】
本発明によれば、装置を大型化することなく成膜の均質性を維持できる、生産性の良い真空蒸着装置及び真空蒸着方法を得ることができる。
【0017】
【発明の実施の形態】
以下に、本発明に係る真空蒸着装置及び真空蒸着方法の実施の形態について、図1乃至図2を参照して説明する。なお、図3に示した従来の真空蒸着装置と同一構成には同一符号を付して詳細な説明は省略する。
【0018】
図1は、本発明に係る真空蒸着装置の一実施の形態を示す構成図である。この真空蒸着装置は、例えば、被蒸着部材を平面状の半導体基板とし、この基板上へ蒸着により金属電極を形成する場合等に用いられ、図1に示すように、蒸着チャンバー11、高真空ポンプ部12、電子ビーム制御部13及び環状走路駆動部15から構成されている。
【0019】
蒸着チャンバー11は、成膜を行なう内部の空間を真空に保つ。そして、その底部には蒸発源114、フィラメント115、電磁マグネット116が設置されており、蒸発源には蒸発物質114aが配置されている。フィラメント115は電子ビーム制御部13からの制御により加熱されると熱電子を発生する。この熱電子は電磁マグネット116により集束され、電子ビーム115aとなって蒸発物質114aを加熱する。また、蒸発源114の直上には、蒸発物質114aを加熱することにより発生する蒸発流114bを遮断するシャッター117が設けられている。
【0020】
蒸着チャンバー11内の上部には、蒸発源114と対向させてドーム型円盤14が設置されている。このドーム型円盤14の蒸発源114に対向した側の面には、被蒸着部材である複数の半導体基板112を保持し、更にこれらの半導体基板112を自転させながら移動できる環状走路141が設置されている。
【0021】
図2は、ドーム型円盤14の構成を示す概略図である。図2(a)はドーム型円盤14を蒸発源114側から見た平面の概略図であり、図2(b)はA−Aを断面とした立面の概略図である。本実施の形態においては、環状走路141の形状は、図2(a)に示すように、ドーム型円盤14の中心14aを中心とする2つの同心円の一部を扇形に切り取り、切り取られた外側及び内側の円のそれぞれの端部をU字型に接続した形状としている。これにより、ドーム型円盤14を大型化することなく、より多くの半導体基板112を環状走路141上に保持することを可能にしている。
【0022】
また、図2(b)に示すように、蒸発源114からの蒸発流114bの密度の方向依存性を補正するため、半導体基板112が外側部分の環状走路141aまたは内側部分の環状走路141bのどちらを移動中でも、蒸発源114との距離d1及びd2が最適になるよう、外側部分及び内側部分の環状走路141a及び141bのそれぞれの高さを設定している。更に、環状走路141上に配設された複数の保持具142により、半導体基板112の中心112aが蒸発源114に対して常に垂直になるように半導体基板112を保持すると共に、中心112aを中心として半導体基板112を円周方向に自転させる。
【0023】
環状走路駆動部15は、駆動機構(図示せず)を通じて環状走路141を駆動し、保持具142を環状走路141に沿って移動させる駆動力を与える。さらに、環状走路141を経由して移動中の保持具142に対して半導体基板を自転させるための回転力を与える。
【0024】
次に、このように構成した真空蒸着装置により蒸着を行なうプロセスを、図1及び図2を参照して説明する。
【0025】
まず、半導体基板112をドーム型円盤14上の環状走路141に配設された保持具142にセットする。環状走路141は、図2(a)に示したようにドーム型円盤14上の2つの同心円を結合した形状をしており、より多くの半導体基板112をセットできる。次に、これら半導体基板112を適切な温度になるよう加熱するとともに、高真空ポンプ部12を動作させて蒸着チャンバー11内を排気する。そして、蒸着チャンバー11内が所定の真空状態になった後、蒸発物質114aを予備加熱するために、シャッター117を閉じた状態で電子ビーム制御部13からの制御によりフィラメント115を加熱して熱電子を発生させ、電磁マグネット116により電子ビーム115aを形成して蒸発物質114aに照射する。
【0026】
電子ビーム115aの照射を継続して蒸発物質114aの予備加熱が終了し、半導体基板112への成膜が開始できる状態になると、環状走路駆動部15を動作させて半導体基板112を環状走路141に沿って回転移動させると同時にシャッター117を開く。この後、蒸発源114から発生した蒸発流114bが回転移動している半導体基板112に到達して蒸着膜が形成されてゆき、その成膜状態は膜厚モニタ118によりモニタされる。蒸着時間は、各半導体基板112の蒸着膜厚をより均一にするため、半導体基板112が環状走路141を一周する周期の整数倍としている。
【0027】
蒸着膜の成膜中には、半導体基板112はドーム型円盤14上の環状走路141に沿って移動を続けるが、外側部分の環状走路141a及び内側部分の環状走路141bの両方にまたがって移動することにより、ドーム型円盤14の半径方向に対する蒸発流114bの密度のばらつきによる成膜の不均一を軽減している。また、ドーム型円盤14の円周方向に沿って外側部分の環状走路141a及び内側部分の環状走路141bを移動することにより、ドーム型円盤14の円周方向に対する蒸発流114bの密度のばらつきによる成膜の不均一を軽減している。
【0028】
更に、半導体基板112は、その中心112aが蒸着源に対して常に垂直になるように保持されながら円周方向に自転することにより、蒸発源114からの方向に依存した蒸発流114bの密度のばらつきによる成膜の不均一を軽減している。
【0029】
以上説明したように、本実施の形態による真空蒸着装置及び真空蒸着方法によれば、ドーム型円盤14上に設置した環状走路141の形状を、2つの同心円の一部を扇形に切り取って外側及び内側の円のそれぞれの端部をU字型に接続した形状としている。これにより、ドーム型円盤14を大型化することなく、1回の蒸着プロセスにおいてより多くの半導体基板112を環状走路141上に保持することができ、蒸着の生産性を向上させることができる。
【0030】
また、蒸着膜の成膜中に半導体基板112を自転させながら上記形状の環状走路141に沿ってドーム型円盤14の半径方向及び円周方向に移動させている。これにより、蒸着チャンバー11内における蒸発流114bの密度の方向依存性やばらつきによる成膜の不均一を軽減し、成膜の均質性を高めることができる。
【0031】
なお、本実施の形態においては、環状走路141を2つの同心円の一部を扇形に切り取って外側及び内側の円のそれぞれの端部をU字型に接続した形状としたが、その形状はドーム型円盤14上で環状に構成されていればよく、例えばドーム型円盤14の中心14aを中心とした星形など、種々の変形が可能である。
【0032】
【発明の効果】
本発明によれば、装置を大型化することなく、成膜の均質性を維持できる、生産性の良い真空蒸着装置及び真空蒸着方法を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る真空蒸着装置の一実施の形態を示す構成図。
【図2】ドーム型円盤の構成を示す概略図。
【図3】電子ビーム加熱方式による従来の真空蒸着装置の一例を示す構成図。
【図4】ドーム型円盤への半導体基板の配置の一例を示す説明図。
【符号の説明】
11 蒸着チャンバー
12 高真空ポンプ部
13 電子ビーム制御部
14、111 ドーム型円盤
15 環状走路駆動部
112 半導体基板
113 ドーム型円盤の中心
114 蒸発源
115 フィラメント
116 電磁マグネット
117 シャッター
118 膜厚モニタ
141 環状走路
142 保持具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum deposition apparatus and a vacuum deposition method for forming a film while rotating a member to be deposited in a vacuum chamber.
[0002]
[Prior art]
Vacuum evaporation technology, one of the thin film forming technologies, is not limited to the production of electronic components such as semiconductor integrated circuits and high-density information storage media, but also the development of new electronic devices such as surface modification of mechanical components and superconducting thin films. It is used for a wide range of applications.
[0003]
FIG. 3 shows an example of the configuration of a conventional vacuum evaporation apparatus using an electron beam heating method, for example, in which a metal electrode is formed on a semiconductor substrate. This apparatus includes a vapor deposition chamber 11, a high vacuum pump unit 12, and an electron beam control unit 13.
[0004]
A dome-shaped disk 111 for holding a plurality of semiconductor substrates 112 is provided in the upper part of the evaporation chamber 11. The dome-shaped disk 111 is configured to be capable of simultaneously depositing a plurality of semiconductor substrates 112 by a single deposition process. That is, for example, as shown in FIG. 4, a plurality of semiconductor substrates 112 are arranged and held on the circumference of a circle 111a whose center coincides with the center 113 of the dome-shaped disk 111. An evaporation source 114 is provided at the bottom of the evaporation chamber 11 vertically below the center 113 of the dome-shaped disk 111.
[0005]
In order to perform vapor deposition with this apparatus, first, a semiconductor substrate 112 as a member to be vapor-deposited is set on a dome-shaped disk 111, and the inside of the vapor deposition chamber 11 is evacuated by a high vacuum pump unit 12 while heating the semiconductor substrate 112. Next, in order to pre-heat the evaporating substance 114a after the inside of the vapor deposition chamber 11 is brought into a predetermined vacuum state, the vapor deposition chamber 114 is installed at the bottom of the vapor deposition chamber 11 under the control of the electron beam control unit 13 with the shutter 117 closed. The filament 115 is heated to generate thermoelectrons, an electron beam 115a is formed by the electromagnetic magnet 116, and the electron beam 115a is irradiated on the evaporating substance 114a arranged in the evaporation source 114 to heat it. When the preheating is completed, the shutter 117 is opened, and the evaporation flow 114b generated from the evaporation source 114 reaches the semiconductor substrate 112 to form a deposited film, and the film formation state is monitored by the film thickness monitor 118.
[0006]
As described above, in the above-described vacuum evaporation apparatus, the semiconductor substrate 112 and the evaporation source 114 held on the dome-shaped disk 111 are vertically opposed in the evaporation chamber 11, and the evaporation source 114 is moved upward from the evaporation source 114. Although the film is formed on the semiconductor substrate 112 by the evaporation flow 114b, the density of the evaporation flow 114b from the evaporation source 114 is usually not uniform in the evaporation chamber 11. That is, the density tends to be highest immediately above the evaporation source 114, and the density tends to decrease toward the periphery of the dome-shaped disk 111. For this reason, the thickness of the deposited film greatly varies depending on the position of the dome-shaped disk 111 on which the semiconductor substrate 112 is held.
[0007]
In order to improve this phenomenon, by rotating the semiconductor substrate 112 itself while rotating the dome-shaped disk 111, the non-uniformity of film formation in the circumferential direction and the radial direction of the dome-shaped disk 111 has been reduced. 2. Description of the Related Art A vacuum evaporation apparatus of a mold type has been proposed (for example, see Patent Document 1). In addition, a self-revolving substrate holding device that can also be applied to a vacuum evaporation device has been proposed (for example, see Patent Document 2).
[0008]
In the case of the above-described self-revolving type, the semiconductor substrate 112 held on the dome-shaped disk 111 in FIG. 4 is rotated by a rotation drive unit (not shown) around the held center 112 a as a dome-shaped. It revolves along the circle 111a around the center 113 of the disk.
[0009]
[Patent Document 1]
JP-A-10-280130 (page 5, FIG. 1)
[0010]
[Patent Document 2]
JP-A-8-250577 (page 4, FIG. 1)
[0011]
[Problems to be solved by the invention]
However, in order to improve the productivity of a batch deposition process, when more semiconductor substrates are held on the dome-shaped disk 111, or when a semiconductor substrate having a larger diameter is held, the circle 111a on which these substrates are arranged is reduced. As the radius increases, the size of the dome-shaped disk 111 also increases, and the size of the entire apparatus increases. Further, the difference between the density of the evaporation flow 114b from the evaporation source 114 at the center and the periphery of the dome-shaped disk 111 is further increased, and the uniformity of film formation is further impaired.
[0012]
Further, in order to avoid an increase in the size of the apparatus, for example, on a dome-shaped disk 111, a circle 111b which is concentric with the circle 111a which is a revolving orbit is set. A method of optimizing the distance and holding the semiconductor substrate 112 also on the circumference of the circle 111b to increase the number of substrates may be considered. However, also in this case, since the direction dependency of the density of the evaporation flow 114b from the evaporation source 114 differs depending on the type of the evaporation material 114a, it is difficult to form a uniform vapor deposition film by changing the evaporation material 114a.
[0013]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum evaporation apparatus and a vacuum evaporation method that can maintain uniformity of film formation without increasing the size of the apparatus and have good productivity. .
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a vacuum evaporation apparatus of the present invention includes a member to be evaporated disposed above the evaporation source in a vacuum chamber having an evaporation source, the evaporation source being opposed to the evaporation source. In a vacuum deposition apparatus for forming a film on a member to be deposited by an evaporative flow, a predetermined annular running path is provided in the vacuum chamber, and the member to be deposited is moved along the annular running path.
[0015]
Further, in the vacuum vapor deposition method of the present invention, a member to be vapor-deposited is disposed above the evaporation source in a vacuum chamber having an evaporation source therein, the member being vapor-deposited by the evaporation source from the evaporation source. In the vacuum vapor deposition method for forming a film on the substrate, the member to be vapor-deposited is moved along an annular runway set in the vacuum chamber in advance.
[0016]
ADVANTAGE OF THE INVENTION According to this invention, the vacuum evaporation apparatus and vacuum evaporation method with good productivity which can maintain the uniformity of film formation without enlarging an apparatus can be obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a vacuum deposition apparatus and a vacuum deposition method according to the present invention will be described below with reference to FIGS. The same components as those of the conventional vacuum vapor deposition device shown in FIG. 3 are denoted by the same reference numerals, and detailed description is omitted.
[0018]
FIG. 1 is a configuration diagram showing one embodiment of a vacuum evaporation apparatus according to the present invention. This vacuum deposition apparatus is used, for example, when a member to be deposited is a planar semiconductor substrate and a metal electrode is formed on the substrate by vapor deposition. As shown in FIG. It comprises a section 12, an electron beam control section 13 and an annular track drive section 15.
[0019]
The vapor deposition chamber 11 keeps the internal space where the film is formed in a vacuum. An evaporation source 114, a filament 115, and an electromagnetic magnet 116 are provided at the bottom thereof, and an evaporation substance 114a is arranged at the evaporation source. The filament 115 generates thermal electrons when heated under the control of the electron beam control unit 13. These thermoelectrons are focused by the electromagnetic magnet 116 and become an electron beam 115a to heat the evaporant 114a. Further, a shutter 117 is provided directly above the evaporation source 114 to block an evaporation flow 114b generated by heating the evaporation material 114a.
[0020]
A dome-shaped disk 14 is provided at an upper portion in the evaporation chamber 11 so as to face the evaporation source 114. On the surface of the dome-shaped disk 14 on the side facing the evaporation source 114, an annular runway 141 that holds a plurality of semiconductor substrates 112 as members to be evaporated and that can move while rotating these semiconductor substrates 112 is installed. ing.
[0021]
FIG. 2 is a schematic diagram showing the configuration of the dome-shaped disk 14. FIG. 2A is a schematic plan view of the dome-shaped disk 14 as viewed from the evaporation source 114 side, and FIG. 2B is a schematic plan view of a cross section taken along line AA. In the present embodiment, as shown in FIG. 2A, the shape of the annular runway 141 is such that a part of two concentric circles centered on the center 14a of the dome-shaped disk 14 is cut into a fan shape, and the cut outer side is formed. And each end of the inner circle is connected in a U-shape. This allows more semiconductor substrates 112 to be held on the annular runway 141 without increasing the size of the dome-shaped disk 14.
[0022]
In addition, as shown in FIG. 2B, in order to correct the direction dependency of the density of the evaporation flow 114b from the evaporation source 114, the semiconductor substrate 112 is mounted on either the outer annular runway 141a or the inner annular runway 141b. The height of each of the annular runways 141a and 141b in the outer portion and the inner portion is set so that the distances d1 and d2 to the evaporation source 114 are optimized even during the movement. Furthermore, the semiconductor substrate 112 is held by the plurality of holders 142 arranged on the annular runway 141 so that the center 112a of the semiconductor substrate 112 is always perpendicular to the evaporation source 114, and the center 112a is centered on the center 112a. The semiconductor substrate 112 is rotated in the circumferential direction.
[0023]
The annular runway driving section 15 drives the annular runway 141 through a driving mechanism (not shown), and gives a driving force to move the holder 142 along the annular runway 141. Further, a rotational force for rotating the semiconductor substrate is applied to the holder 142 being moved via the annular runway 141.
[0024]
Next, a process of performing vapor deposition using the vacuum vapor deposition apparatus configured as described above will be described with reference to FIGS.
[0025]
First, the semiconductor substrate 112 is set on the holder 142 provided on the annular runway 141 on the dome-shaped disk 14. The annular runway 141 has a shape in which two concentric circles on the dome-shaped disk 14 are connected as shown in FIG. 2A, and more semiconductor substrates 112 can be set. Next, the semiconductor substrate 112 is heated to an appropriate temperature, and the inside of the evaporation chamber 11 is evacuated by operating the high vacuum pump unit 12. Then, after the inside of the vapor deposition chamber 11 is brought into a predetermined vacuum state, the filament 115 is heated under the control of the electron beam control unit 13 with the shutter 117 closed so as to preheat the evaporant 114a. Is generated, and an electron beam 115a is formed by the electromagnetic magnet 116 and is irradiated on the evaporating substance 114a.
[0026]
When the irradiation of the electron beam 115a is continued and the preheating of the evaporative substance 114a is completed, and the film formation on the semiconductor substrate 112 can be started, the circular runway driving unit 15 is operated to move the semiconductor substrate 112 to the circular runway 141. At the same time, the shutter 117 is opened. Thereafter, the evaporation flow 114b generated from the evaporation source 114 reaches the rotating semiconductor substrate 112 to form a deposited film, and the film formation state is monitored by the film thickness monitor 118. The vapor deposition time is set to an integral multiple of the cycle in which the semiconductor substrate 112 makes one round of the annular runway 141 in order to make the vapor deposition film thickness of each semiconductor substrate 112 more uniform.
[0027]
During the deposition of the vapor-deposited film, the semiconductor substrate 112 continues to move along the annular runway 141 on the dome-shaped disk 14, but moves over both the outer annular runway 141a and the inner annular runway 141b. This reduces unevenness in film formation due to variations in the density of the evaporation flow 114b in the radial direction of the dome-shaped disk 14. In addition, by moving the annular runway 141a on the outer portion and the annular runway 141b on the inner portion along the circumferential direction of the dome-shaped disk 14, variations in the density of the evaporation flow 114b in the circumferential direction of the dome-shaped disk 14 are generated. The unevenness of the film is reduced.
[0028]
Further, the semiconductor substrate 112 rotates in the circumferential direction while its center 112a is always kept perpendicular to the evaporation source, so that the variation of the density of the evaporation flow 114b depending on the direction from the evaporation source 114 is obtained. The unevenness of film formation due to is reduced.
[0029]
As described above, according to the vacuum vapor deposition apparatus and the vacuum vapor deposition method according to the present embodiment, the shape of the annular runway 141 installed on the dome-shaped disk 14 is obtained by cutting a part of two concentric circles into a fan shape, and Each end of the inner circle is connected in a U-shape. Accordingly, more semiconductor substrates 112 can be held on the annular runway 141 in one vapor deposition process without increasing the size of the dome-shaped disk 14, and the productivity of vapor deposition can be improved.
[0030]
Further, the semiconductor substrate 112 is moved in the radial direction and the circumferential direction of the dome-shaped disk 14 along the annular runway 141 while rotating the semiconductor substrate 112 during the formation of the deposition film. Thereby, the non-uniformity of the film formation due to the direction dependency and the variation of the density of the evaporation flow 114b in the evaporation chamber 11 can be reduced, and the uniformity of the film formation can be improved.
[0031]
In the present embodiment, the annular runway 141 has a shape in which a part of two concentric circles is cut into a fan shape and ends of the outer and inner circles are connected in a U-shape. Any shape may be used as long as it is formed in an annular shape on the mold disk 14, for example, a star shape centered on the center 14 a of the dome-shaped disk 14.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the vacuum evaporation apparatus and vacuum evaporation method with good productivity which can maintain the uniformity of film formation without enlarging an apparatus can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a vacuum evaporation apparatus according to the present invention.
FIG. 2 is a schematic diagram showing a configuration of a dome-shaped disk.
FIG. 3 is a configuration diagram showing an example of a conventional vacuum evaporation apparatus using an electron beam heating method.
FIG. 4 is an explanatory view showing an example of an arrangement of a semiconductor substrate on a dome-shaped disk.
[Explanation of symbols]
REFERENCE SIGNS LIST 11 evaporation chamber 12 high vacuum pump unit 13 electron beam control unit 14, 111 dome-shaped disk 15 annular runway drive unit 112 semiconductor substrate 113 center of dome-shaped disk 114 evaporation source 115 filament 116 electromagnetic magnet 117 shutter 118 film thickness monitor 141 annular runway 142 holder

Claims (6)

内部に蒸発源を有する真空槽内にこの蒸発源と対向させて前記蒸発源の上方に被蒸着部材を配置し、蒸発源からの蒸発流により被蒸着部材に成膜する真空蒸着装置において、
前記真空槽内にあらかじめ設定された環状走路を備え、この環状走路に沿って前記被蒸着部材を移動させることを特徴とする真空蒸着装置。
In a vacuum evaporation apparatus, a member to be deposited is disposed above the evaporation source in a vacuum chamber having an evaporation source therein, facing the evaporation source, and a film is formed on the member to be deposited by an evaporation flow from the evaporation source.
A vacuum deposition apparatus, comprising: a preset annular runway in the vacuum chamber; and moving the deposition target member along the annular runway.
前記被蒸着部材は、前記環状走路に沿って移動中は、自転することを特徴とする請求項1に記載の真空蒸着装置。The vacuum deposition apparatus according to claim 1, wherein the deposition target member rotates while moving along the annular runway. 前記被蒸着部材は表面の少なくとも一部が平面に形成され、前記蒸発源から前記平面への法線が常に存在するように、前記蒸発源と前記被蒸着部材とを対向させたことを特徴とする請求項1または請求項2に記載の真空蒸着装置。At least a part of the surface of the deposition target member is formed in a plane, and the evaporation source and the deposition target member are opposed to each other so that a normal line from the evaporation source to the plane always exists. The vacuum evaporation apparatus according to claim 1 or 2, wherein 内部に蒸発源を有する真空槽内にこの蒸発源と対向させて前記蒸発源の上方に被蒸着部材を配置し、蒸発源からの蒸発流により被蒸着部材に成膜する真空蒸着方法において、
前記真空槽内にあらかじめ設定された環状走路に沿って前記被蒸着部材を移動させることを特徴とする真空蒸着方法。
In a vacuum deposition method in which a member to be deposited is disposed above the evaporation source in a vacuum vessel having an evaporation source inside the evaporation source so as to face the evaporation source, and a film is formed on the member to be deposited by an evaporation flow from the evaporation source,
A vacuum deposition method, wherein the member to be deposited is moved along an annular runway set in the vacuum chamber in advance.
前記被蒸着部材は、前記環状走路に沿って移動中は、自転することを特徴とする請求項4に記載の真空蒸着方法。The vacuum deposition method according to claim 4, wherein the deposition target member rotates while moving along the annular runway. 前記被蒸着部材は表面の少なくとも一部が平面に形成され、前記蒸発源から前記平面への法線が常に存在するように、前記蒸発源と前記被蒸着部材とを対向させたことを特徴とする請求項4または請求項5に記載の真空蒸着方法。At least a part of the surface of the deposition target member is formed in a plane, and the evaporation source and the deposition target member are opposed to each other so that a normal line from the evaporation source to the plane always exists. The vacuum deposition method according to claim 4 or 5, wherein
JP2003040580A 2003-02-19 2003-02-19 Apparatus and method for vacuum vapor deposition Pending JP2004253504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040580A JP2004253504A (en) 2003-02-19 2003-02-19 Apparatus and method for vacuum vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040580A JP2004253504A (en) 2003-02-19 2003-02-19 Apparatus and method for vacuum vapor deposition

Publications (1)

Publication Number Publication Date
JP2004253504A true JP2004253504A (en) 2004-09-09

Family

ID=33024403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040580A Pending JP2004253504A (en) 2003-02-19 2003-02-19 Apparatus and method for vacuum vapor deposition

Country Status (1)

Country Link
JP (1) JP2004253504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224354A (en) * 2006-02-23 2007-09-06 Hitachi Zosen Corp Vacuum vapor deposition method, and vacuum vapor deposition apparatus
KR101760257B1 (en) * 2017-02-15 2017-07-21 (주)프라임광학 Glass product vacuum evaporation coating apparatus using electron beam and vacuum evaporation coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224354A (en) * 2006-02-23 2007-09-06 Hitachi Zosen Corp Vacuum vapor deposition method, and vacuum vapor deposition apparatus
KR101760257B1 (en) * 2017-02-15 2017-07-21 (주)프라임광학 Glass product vacuum evaporation coating apparatus using electron beam and vacuum evaporation coating method

Similar Documents

Publication Publication Date Title
JP5500593B2 (en) Combination processing system
JP6963551B2 (en) Vacuum processing equipment and methods for processing substrates
KR101188163B1 (en) Organic material evaporation source and organic vapor deposition device
EP3064609B1 (en) Deposition device and deposition method
JP4321785B2 (en) Film forming apparatus and film forming method
JP2004253504A (en) Apparatus and method for vacuum vapor deposition
KR100889762B1 (en) Method of vacuum evaporation and apparatus the same
JP5193487B2 (en) Vapor deposition apparatus and vapor deposition method
KR101009558B1 (en) Equipments for forming layers in vacuum condition
JP2002164303A (en) Vacuum deposition apparatus
JP5179716B2 (en) Electron beam vacuum deposition method and apparatus
JP2004232006A (en) Vapor deposition system and method
JP2004043880A (en) Film deposition method, film deposition apparatus, optical element, and projection aligner
JP2002371353A (en) Electron beam bombardment type evaporation source
JP2003313657A (en) Vapor deposition device and method for controlling the same
JPH0726378A (en) Film forming substrate holding device in film forming device
US20240071712A1 (en) Ion beam deposition apparatus and ion beam deposition method using the same
JPH05166236A (en) Apparatus for producing magneto-optical recording medium
KR200454322Y1 (en) Apparatus for supplying of deposition gas
JPS6396268A (en) Sputtering device
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JP2009228120A (en) Film deposition system and film deposition method
JPH10245671A (en) Film deposition apparatus and method
JP2004131749A (en) Vacuum film deposition system, and film deposition method
JP2004027306A (en) Ion beam sputtering apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606