JPS60100471A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60100471A
JPS60100471A JP20767183A JP20767183A JPS60100471A JP S60100471 A JPS60100471 A JP S60100471A JP 20767183 A JP20767183 A JP 20767183A JP 20767183 A JP20767183 A JP 20767183A JP S60100471 A JPS60100471 A JP S60100471A
Authority
JP
Japan
Prior art keywords
insulating layer
substrate
patterns
wiring
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20767183A
Other languages
Japanese (ja)
Inventor
Yoshiro Nakayama
中山 吉郎
Hiroaki Onishi
大西 裕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20767183A priority Critical patent/JPS60100471A/en
Publication of JPS60100471A publication Critical patent/JPS60100471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To reduce the capacity due to a wiring pattern for coupling a plurality of circuit elements formed on a compound semiconductor substrate by coupling the circuit elements with each other, and removing by etching an insulating layer between signal lines wired in parallel on the insulating layer. CONSTITUTION:Air is used for a dielectric material for producing a capacity between wirings, thereby reducing the capacity value. After a resist is, for example, coated on a substrate which includes wiring patterns 3, 3', 3'', a selective exposure and developing are performed to allow the resist to remain only on the patterns 3, 3', 3'', an SiO2 insulating film 2 is chemically etched with an etchant of fluoric acid to a GaAs substrate 1, thereby removing the layer 2 between the wirings except the wiring pattern formed portion. Thus, since the electric line of force passing the layer 2 is replaced by that passing the atmosphere, the capacity between the patterns 3 and 3' can be reduced to substantially a half of the conventional one.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は配線間容量を減少させた半導体装置の構成に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a structure of a semiconductor device with reduced inter-wiring capacitance.

(b) 技術の背景 化合物半導体の中にはガリウム・砒素(GaAりやイン
ジウムリン(Ink)のように電子の移動度が大きなも
のがあり、この点を利用した半導体装置が実用化されて
いる。
(b) Background of the Technology Some compound semiconductors have high electron mobility, such as gallium arsenide (GaA) and indium phosphide (Ink), and semiconductor devices that take advantage of this feature have been put into practical use.

例えば高周波用のMH8FETとしてGaAs基板を用
いるものが既に実用化されている、このMB8F’BT
を集積したGaAsICの高周波限界を決定するものと
して配線間容量がある。
For example, the MB8F'BT, which uses a GaAs substrate as a high frequency MH8FET, has already been put into practical use.
Inter-wiring capacitance determines the high frequency limit of GaAs ICs integrated with .

(C) 従来技術と問題点 化合物半導体材料の内現在最も多く用いられているもの
はGa Asであり、その理由の1つとして電子の移動
度が高いことが挙げられる。
(C) Prior Art and Problems GaAs is currently the most commonly used compound semiconductor material, and one of the reasons for this is that it has high electron mobility.

すなわち81が1350〔cd/V−8〕であるのに対
しGa Asは8600 (d/V−S)と遥かに再い
値を示す。
That is, while 81 has a value of 1350 [cd/V-8], GaAs has a much higher value of 8600 (d/V-S).

そこでこの高速性を生かすデバイスとしてFETがあり
、数多くのF、E Tを集積して論理回路や記憶回路が
作られている。
FETs are devices that take advantage of this high speed, and logic circuits and memory circuits are made by integrating large numbers of FETs and ETs.

か\る集積回路を高速動作させる場合に問題となるのは
個々の単位素子の構造以外に単位素子を結んで設けられ
ている配線パターンの静電容量(以下略して容量)であ
る。以後化合物半導体としでOa ASを用いる実施例
Iこついて説明する。
When operating such an integrated circuit at high speed, a problem that arises is not only the structure of the individual unit elements but also the electrostatic capacitance (hereinafter simply referred to as capacitance) of the wiring pattern connecting the unit elements. Embodiment I using Oa AS as a compound semiconductor will be explained below.

第1図はチップ上にパターン形成されている数多くの回
路素子(TPT)を連絡して平行に布線されている配線
パターンの断面を示すものであり、半絶縁性のGa A
s基板1の上に二酸化硅素(8i02)からなる絶縁層
2があり、この上に金(Au、!或はアルミニウム(A
t)からなる3本の配線ノ寸ターン3.3’、3〃が互
に平行にパターン形成されて1.−る状態を示している
。こ\で配線パターン3.3’、3”の線幅は集頂度が
増すに従って少さくなり、本実施例の場合幅2〔μm〕
で高さは1〔μm〕であり、また配線パターン3と3′
間の間隔は4〔μm〕であり、才だ配線パターン3′と
3Nとの間隔は10〔声〕である。
Figure 1 shows a cross section of a wiring pattern that connects many circuit elements (TPT) patterned on a chip and is wired in parallel.
There is an insulating layer 2 made of silicon dioxide (8i02) on the s-substrate 1, and on this is gold (Au, ! or aluminum (A)).
The three wiring length turns 3.3' and 3' consisting of 1. - indicates a state of Here, the line width of the wiring patterns 3.3', 3'' decreases as the degree of convergence increases, and in this example, the width is 2 [μm].
The height is 1 [μm], and the wiring patterns 3 and 3'
The distance between them is 4 [μm], and the distance between the wiring patterns 3' and 3N is 10 [μm].

この例のように′4.lj!i、個の配線パターン3.
3’。
As in this example, '4. lj! i, wiring patterns 3.
3'.

3〃が互に接近して設けられている場合は配線開存iこ
よる信号の遅延が無視できなくなる。
3 are provided close to each other, the signal delay caused by the wiring patency i cannot be ignored.

すなわちGa As基板1は高抵抗であり、才た厚さ約
200〔μm)と厚く、この上に厚さ0.8〔μm〕の
N!3祿)?t 2の上に配線パターン3,3r、3t
rが設けられているので基板1の下に設けられるアース
と個々の配蘇パターン3’、3’、3’との間に生ずる
容量の他に配線パターン間の容量も問題となる。こ\で
平行平板コンデンサの容量Cは C=j X10 ’ CμF〕 3.9πd 但し S・・・・・・・・電極面積 (ctl Jd・
・・・・・・・・電極間距離1ニーcmJε・・・・・
・・・・媒体の比誘電率 で表わされ、−極間距離dに反比例するので第1図で示
す実施例の場合は配線パターン3と3′との間の容量が
配線間容量の大部分を占めること\なる。
That is, the GaAs substrate 1 has a high resistance and is thick with a thickness of about 200 [μm], and on top of this is an N! 3 yen)? Wiring patterns 3, 3r, 3t on top of t2
Because of the provision of a capacitance r, not only the capacitance generated between the ground provided under the board 1 and the individual resuscitation patterns 3', 3', 3' but also the capacitance between the wiring patterns becomes a problem. Here, the capacitance C of the parallel plate capacitor is C=j
......Distance between electrodes 1 knee cmJε...
...It is expressed by the dielectric constant of the medium, and is inversely proportional to the distance between the two electrodes, d. Therefore, in the case of the embodiment shown in FIG. To occupy a part\become.

さて現実の半導体HIjlにおいては回路素子の実装密
度は益々増加し、これと共に各回路構成用配線パターン
数も比例して増加しており、線間容量が半導体装置の高
速動作をあげていることは判っていたが、特別な対策は
施されることなく現在に到っている。
Now, in actual semiconductor HIJL, the packaging density of circuit elements is increasing more and more, and along with this, the number of wiring patterns for each circuit configuration is also increasing proportionally, and it is clear that line capacitance increases the high-speed operation of semiconductor devices. Although this was known, no special measures have been taken to this day.

(d) 発明の目的 本発明は半導体装置の各回路素子を結線している配線パ
ターンlこよる容量を減少した半導体装置の構成を提供
することを目的とする。
(d) Object of the Invention An object of the present invention is to provide a structure of a semiconductor device in which the capacitance caused by the wiring pattern l connecting each circuit element of the semiconductor device is reduced.

(e) 発明の構成 本発明の目的は化合物半導体基板上に配タルで形成され
1こ複数個の回路素子を相互に結んで絶縁層上を1部平
行して布線されている信号ライン間の前記絶縁層がエツ
チング除去されてなる構危を有することを特徴とする半
導体装置により達成することができる。
(e) Structure of the Invention The object of the present invention is to connect signal lines formed on a compound semiconductor substrate by interconnecting one or more circuit elements and partially parallel to each other on an insulating layer. This can be achieved by a semiconductor device characterized in that the insulating layer is removed by etching.

(f) 発明の実施例 本発明は配線間容量を生ずる誘電体な¥気とすることに
より容量値を減らすものである。
(f) Embodiments of the Invention The present invention reduces the capacitance value by using a dielectric material that causes inter-wiring capacitance.

すなわち第1図で線1@2〔μtrt〕、間隔4〔μm
〕の配線パターン3.3′開には30 Cf F /+
a:lの容量が認められる。こ5で絶縁層2を構成する
8iU。
In other words, in Figure 1, the line 1@2 [μtrt], the interval 4 [μm
] Wiring pattern 3.3' open has 30 Cf F /+
A capacity of a:l is recognized. This 5 constitutes 8iU of the insulating layer 2.

の比誘電率(ε)は3.9であり、またGa As基板
1を構成するGa Asの6は12.9である。
The dielectric constant (ε) of Ga As substrate 1 is 3.9, and the dielectric constant (ε) of Ga As constituting the Ga As substrate 1 is 12.9.

第1図で配線パターン3 + 3’ 13’の相互間に
電界が印加した場合の電気力感の分布を考えると配線パ
ターン間の空気層を通る電気力線4.絶縁層を通る電気
力線5と絶縁層2と基板1を通る電気力線6との3種類
がある。
Considering the distribution of electric force when an electric field is applied between wiring patterns 3 + 3'13' in Fig. 1, lines of electric force 4. There are three types: lines of electric force 5 passing through the insulating layer, and lines of electric force 6 passing through the insulating layer 2 and substrate 1.

こNで空気の比誘電率ははゾ1であるから対印面積を同
一とすると空気層を通る場合が最も谷社が少く、次はg
A&層2を通る場合であり、一方絶縁層2と基板1とを
通る場合は複合誘電体を形成しこの場合が最も容量が大
きくなる。
At this N, the relative dielectric constant of air is 1, so if the area between the marks is the same, there is the least valley when passing through an air layer, and the next is g.
When passing through the A & layer 2, on the other hand, when passing through the insulating layer 2 and the substrate 1, a composite dielectric is formed and the capacitance is the largest in this case.

本発明は電気力線の分布の内、空気層を通る電気力線4
の比率を増すことjこより線間容量を減らすものである
In the present invention, among the distribution of electric lines of force, 4 lines of electric force passing through the air layer
By increasing the ratio of , the line capacitance is reduced.

第2図は配線間の絶縁層をエツチングして除いた場合は
写真蝕刻技術(ホトリソグラフィ〕を用いて行うことが
できる。
In FIG. 2, when the insulating layer between the wirings is removed by etching, this can be done using photolithography.

すなわちレジストを配線パターン3 、3’ 、 3#
を含む基板面上lこ塗布した後選沢露元と現像処理を施
して配線パターン3,3′13〃の上にのみレジストを
残し、弗酸(HF)糸のエッチャントを用いて8i(J
In other words, resist wiring patterns 3, 3', 3#
After coating the surface of the substrate containing 8I (J
.

絶縁層2をGa八へ基板1まで化学エツチングするか或
はフレオン(CF4)と酸素カス(02)をエッチャン
トとしてリアクティブイオンエツチングなどのドライエ
ッチンクを施すことにより第2図Iこ示すように配線パ
ターン形成部ン除いて配線間の絶縁層2を除去する。こ
のようにする場合は第1図で絶縁層2を通る電気力線5
が大気を通る電気力線4に置き替るため配線パターン3
,3′間の容量は約15 [fF/瓢〕と従来のはゾ当
分の値に減少する。
By chemically etching the insulating layer 2 down to the Ga substrate 1 or performing dry etching such as reactive ion etching using freon (CF4) and oxygen scum (02) as etchants, as shown in FIG. The insulating layer 2 between the wirings is removed except for the wiring pattern forming area. In this case, the lines of electric force 5 passing through the insulating layer 2 in FIG.
Wiring pattern 3 is replaced by electric line of force 4 passing through the atmosphere.
.

第3図は更lこ線間容量を減らす場合の実施例で第2図
で行ったドライエツチングを更に続けて厚さ0.8〔μ
m〕の絶縁層2の厚さだけ基板1を堀り下げた場合で絶
縁層2と基板1を通る電気力線6も大気を通る電気線4
1こ置き換えることができるので線間容量最小にするこ
とができる。
Figure 3 shows an example of reducing the capacitance between lines.The dry etching process shown in Figure 2 was further continued until the thickness was 0.8 μ
When the substrate 1 is dug down by the thickness of the insulating layer 2 of
Since one line can be replaced, the line capacitance can be minimized.

(g) 発明の効果 本発明をGa As基板上に形成された乗算器(マルチ
プライヤノ1と通用した例を述べると乗算速度は回路素
子(Fl(T)による信号の遅れと配線lこよる信号の
遅れとにより決るが基板1の面まで絶縁層2をエツチン
グする本発明の実施により配線による遅nを従来の半分
まで縮めることができた。
(g) Effects of the invention To describe an example in which the present invention is applicable to a multiplier (multiplier 1) formed on a GaAs substrate, the multiplication speed depends on the signal delay caused by the circuit elements (Fl(T) and the wiring l). Although it depends on the delay of the signal, by implementing the present invention in which the insulating layer 2 is etched up to the surface of the substrate 1, the delay n due to wiring can be reduced to half that of the conventional method.

具体的には8×8ビツトの乗算器Iこおいて乗算速度8
(n秒〕の内配線による遅れは4(n秒〕をを占めてい
たがこれを半分に減らすことができその結果乗算速度を
6[n秒]にまで速めることができた。
Specifically, the multiplication speed is 8 in the 8×8 bit multiplier I.
The delay due to the internal wiring (n seconds) occupied 4 (n seconds), but this could be reduced by half, and as a result, the multiplication speed could be increased to 6 (n seconds).

本発明は半導体装置の高速度化に伴い問題となってい配
線容量にJ:る信号の遅延を少くするためなされたもの
で本発明の実施により移動度の大きな化合物半導体装置
の高速性を妨げる容量の影響を下げることができる。
The present invention was made in order to reduce the signal delay caused by wiring capacitance, which has become a problem with the increase in speed of semiconductor devices. can reduce the impact of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は配線パターンが設けられている基板の断面図、
第2図および第3図は本発明を実施した配線基板の断面
図である。 図において1は基板、2は絶縁層、3.3’、3’は配
線パターン、4,5.6は電気力線。
Figure 1 is a cross-sectional view of a board on which a wiring pattern is provided;
2 and 3 are cross-sectional views of a wiring board embodying the present invention. In the figure, 1 is a substrate, 2 is an insulating layer, 3.3', 3' are wiring patterns, and 4, 5.6 are lines of electric force.

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板上に配列して形成された複数個の回路
素子を相互に結んで絶縁層上を1部平行して有線されて
いる信号ライン間の前記絶縁層がエツチング除去されて
なる構造を有することを特徴とする半導体装置。
It has a structure in which a plurality of circuit elements arranged and formed on a compound semiconductor substrate are connected to each other and the insulating layer between the signal lines is partially wired in parallel on the insulating layer, and the insulating layer is removed by etching. A semiconductor device characterized by:
JP20767183A 1983-11-05 1983-11-05 Semiconductor device Pending JPS60100471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20767183A JPS60100471A (en) 1983-11-05 1983-11-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20767183A JPS60100471A (en) 1983-11-05 1983-11-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60100471A true JPS60100471A (en) 1985-06-04

Family

ID=16543631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20767183A Pending JPS60100471A (en) 1983-11-05 1983-11-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60100471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378614B1 (en) * 1994-05-27 2003-06-18 텍사스 인스트루먼츠 인코포레이티드 Multilevel interconnect structure with air gaps formed between metal leads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378614B1 (en) * 1994-05-27 2003-06-18 텍사스 인스트루먼츠 인코포레이티드 Multilevel interconnect structure with air gaps formed between metal leads

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JP3074713B2 (en) Method for manufacturing semiconductor device
JPH0226392B2 (en)
JPH029198A (en) Method of bonding metal layer to board
JPH01266786A (en) Construction of conductor of hybrid integrated circuit and its manufacture
JPS60100471A (en) Semiconductor device
JPH0945866A (en) Microwave integrated circuit
JP2871222B2 (en) Manufacturing method of wiring board
JPS58127326A (en) Preparation of semiconductor device
JP2000058549A (en) Formation of integrated circuit wiring
JP3082807B2 (en) Wiring structure of semiconductor device
JPH04287326A (en) Semiconductor device and its manufacture
JPS58216441A (en) Multilayer wiring structure for semiconductor device
JPS6378552A (en) Formation of throughhole
JP3064664B2 (en) Method of manufacturing wiring structure for semiconductor device
JPS61104643A (en) Formation of fine pattern
JPS60201634A (en) Manufacture of semiconductor device
JPH0465540B2 (en)
JPH04372133A (en) Semiconductor integrated circuit and manufacture thereof
JPH0529474A (en) Semiconductor device and manufacture thereof
JPH04215458A (en) Air bridge of integrated circuit
JPS6336546A (en) Wiring structure of semiconductor device and manufacture thereof
JPS5918640A (en) Manufacture of semiconductor device
JPH05121561A (en) Manufacture of semiconductor device
JPH01296642A (en) Formation of contact hole