JPS60100310A - Method of controlling coolant level of cable continuous crosslinking device - Google Patents

Method of controlling coolant level of cable continuous crosslinking device

Info

Publication number
JPS60100310A
JPS60100310A JP20816983A JP20816983A JPS60100310A JP S60100310 A JPS60100310 A JP S60100310A JP 20816983 A JP20816983 A JP 20816983A JP 20816983 A JP20816983 A JP 20816983A JP S60100310 A JPS60100310 A JP S60100310A
Authority
JP
Japan
Prior art keywords
water
cooling
pipe
section
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20816983A
Other languages
Japanese (ja)
Other versions
JPH0142564B2 (en
Inventor
明 野神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20816983A priority Critical patent/JPS60100310A/en
Publication of JPS60100310A publication Critical patent/JPS60100310A/en
Publication of JPH0142564B2 publication Critical patent/JPH0142564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は、ケーブルの連続架橋装置における冷却水の水
位を一定に制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for controlling the level of cooling water in a continuous cable crosslinking device to a constant level.

(従来技術) ゴム プラスチック絶縁ケーブルの連続架橋装置におい
ては、押出機でゴム、プラスチック等を押出被覆したケ
ーブルを、架橋管の加熱部内に走行させて加熱架橋し、
ついで冷却部の冷却水中を走行させて冷却し、冷却部終
端のエンドシールを通して架橋管外に引出しており、こ
のエンドシールからはある程度の量の冷却水を漏出させ
ているので、その漏出水量を補うとともに冷却水を低湿
にするために、連続架橋運転中に絶えず冷却水を補給し
て冷却部における冷却水の水位を所定の水位に保持して
いた。このため従来は、第1図示のように、架橋管lの
冷却部3に高圧ポンプ4で水槽5の冷却水を送給循環さ
せていた。そして架橋管1内の加熱部2とこれに続く冷
ブイ1部3を走行するケーブルCが冷却部終端のエンド
シール6から管外に出る際のエンドシール6から漏出す
る冷却水量の補給については、加熱VAX2の圧力検出
センサαと冷却部3の圧力検出センサbの各検出圧力を
差圧発振器7に入力させ、冷却水の水位変動に基づく雨
検出圧力の差による差■発振器の出力で弁開度調整部8
を駆動してグイヤフラム弁9の開度を調整するようにし
た電気量−空気圧変換の電空変換器を用いて冷却部3に
補給する水量を調整していた。
(Prior art) In a continuous cross-linking device for rubber or plastic insulated cables, a cable extruded and covered with rubber, plastic, etc. using an extruder is run through a heating section of a cross-linked pipe to heat cross-link.
The cooling water is then run through the cooling section, cooled, and drawn out of the bridge pipe through the end seal at the end of the cooling section.A certain amount of cooling water leaks from this end seal, so the amount of leaked water can be reduced. In order to compensate for this and keep the cooling water at a low humidity, cooling water was constantly replenished during continuous crosslinking operation to maintain the cooling water level in the cooling section at a predetermined level. For this reason, conventionally, as shown in the first diagram, cooling water from a water tank 5 was supplied and circulated to the cooling section 3 of the bridge pipe 1 using a high-pressure pump 4. Regarding replenishment of the amount of cooling water leaking from the end seal 6 when the cable C running between the heating section 2 in the bridge pipe 1 and the following cold buoy 1 section 3 exits the pipe from the end seal 6 at the end of the cooling section. , the detected pressures of the pressure detection sensor α of the heating VAX 2 and the pressure detection sensor b of the cooling unit 3 are input to the differential pressure oscillator 7, and the difference between the rain detection pressures based on the fluctuation of the cooling water level is detected by the output of the oscillator. Opening adjustment part 8
The amount of water to be supplied to the cooling unit 3 was adjusted using an electro-pneumatic converter that converts electricity from air pressure to adjust the opening degree of the Guyafram valve 9 by driving.

しかしながら、架橋管内を走行するケーブルの走行を開
始する際には走行先端のケーブル先口にリード線を連結
しこれを引張ってケーブルを走行させるために、ケーブ
ル先口の径とリード線の径との差が大であると、ケーブ
ル先口がエンドシール6を通過するときに漏出水量に急
激な変動が生ずるので冷却部における冷却水位の急激な
低下を避けることはできなかった。これに対し、従来の
ような電空変換器では応答速度が遅く急激な水位変動に
対しては直ちに追従動作することができないので水位の
ハンチングを生じ、まだ連続架橋装置の運転開始に当り
架橋管内圧を上昇させるときにもダイヤフラム弁9の応
答遅れのだめに水位のハンチングが生ずる欠点があった
However, when a cable starts running in a cross-linked pipe, a lead wire is connected to the cable end at the running end and the cable is pulled to run, so the diameter of the cable end and the diameter of the lead wire are different. If the difference is large, a sudden change in the amount of leaking water occurs when the cable tip passes through the end seal 6, making it impossible to avoid a sudden drop in the cooling water level in the cooling section. On the other hand, conventional electro-pneumatic converters have slow response speeds and cannot immediately follow sudden changes in water level, resulting in water level hunting, and when the continuous cross-linking equipment starts operating, Even when the pressure is increased, there is a drawback that hunting occurs in the water level due to the delayed response of the diaphragm valve 9.

前記の冷却水の変動は、架橋管の傾斜が緩いとわずかな
水位変化でも冷却長の変化が大きく水量の変化量も大と
なるので、架橋管の傾斜はある程度以上に緩くすること
ができず、その傾斜分だけ架橋管設置の建屋を高くする
か、もしくは地下ビット描背にして冷却管部を設置する
ととてなり、構築費の高騰を避けることはできなかった
As for the above-mentioned fluctuations in cooling water, if the slope of the cross-linked pipe is gentle, even a slight change in the water level will cause a large change in the cooling length and a large change in water volume, so the slope of the cross-linked pipe cannot be made gentler than a certain level. However, it would be necessary to raise the building where the bridge pipes were installed by that slope, or to install the cooling pipes on the back of the underground bit, making it impossible to avoid a rise in construction costs.

また、架橋管の加熱部に充填するMv媒体七して油剤、
金属溶融塩等を使用する場合に1l−1l熱媒体と冷却
水を直接に接触させないために加熱部と冷却部を分離す
る必要があるが、何等かの原因により架橋圧力の変動も
しくは冷a水位制御梁の不調等が生ずると、熱媒体と冷
却水が瞬時に混合し合って蒸気爆発等瓜大な災害を発生
し、装置を損傷させるおそれがあった。
In addition, the Mv medium and oil agent filled in the heating part of the crosslinked pipe,
When using molten metal salt, etc., it is necessary to separate the heating section and the cooling section to prevent direct contact between the 1l-1l heat medium and cooling water, but due to some reason, the crosslinking pressure may fluctuate or the cooling water level may change. If a control beam were to malfunction, the heat medium and cooling water would instantly mix together, potentially causing a huge disaster such as a steam explosion and damaging the equipment.

前記の加熱を輻射加熱によりfjなう場合にも、冷却水
がその加熱部に入ると管壁の急激な冷却により歪み、き
裂や損傷が生じたり蒸気爆発を発生ずる危険があり、軽
い蒸気を発生ずる程度であってもケーブル絶縁波器の電
気特性を悪化させるおそれがあった。
Even when the above-mentioned heating is carried out by radiation heating, if cooling water enters the heated part, there is a risk that the pipe wall will be distorted due to rapid cooling, causing cracks and damage, or a steam explosion. Even if the amount of noise generated is small, there is a risk that the electrical characteristics of the cable insulated wave device will be deteriorated.

このように、冷却水の水位を所定の水位に制御して保持
し、水位の急激な変動や暴走を防ぐことはきわめて重要
であるが、水位の急激な変動に対しこれを直ちに防ぐこ
とができるような手段は従来実現していなかった。
In this way, it is extremely important to control and maintain the cooling water level at a predetermined level to prevent sudden fluctuations or runaway changes in the water level, but it is possible to immediately prevent sudden fluctuations in the water level. Such a method had not been realized before.

(発明の目的) 本発明は、前述の点に鑑み、架橋管内圧の変動や外乱等
いかなる事態が生じても冷却水位の急激な変動を防ぎ、
冷却部における冷却水を常に所定の水位に保持すること
ができるようにしたケーブル連続架橋装置の冷却水位制
御方法を提供するものである。
(Object of the Invention) In view of the above-mentioned points, the present invention prevents rapid fluctuations in the cooling water level even if any situation occurs such as fluctuations in the internal pressure of the bridge pipe or disturbances.
The present invention provides a cooling water level control method for a continuous cable bridging device that allows cooling water in a cooling section to be always maintained at a predetermined water level.

(発明の横G) 以下、その6176を第2図乃至第5図示の実施例によ
り説明する。第2図は本発明の一実施例を示し、第3図
はそのオーバーフロ一部を示し、第4図および第5図は
それぞれ他の実施例を示す。
(Horizontal G of invention) Hereinafter, the 6176 will be explained with reference to the embodiments shown in FIGS. 2 to 5. FIG. 2 shows one embodiment of the present invention, FIG. 3 shows a portion of its overflow, and FIGS. 4 and 5 each show other embodiments.

第2図示の実施例において、10は架橋管であり、11
けその加熱架橋部、12は冷却部である。冷却部12に
はその終端にエンドシール13を設けて冷力j水Wを入
れ、加熱架橋部11には配管工4から弁15を介して不
活性ガスその他の熱媒体16を送給充填し加熱架橋部1
1の先端は押出機17の押出ヘッド18に連結する。メ
ータリングキャプスタン19を経て押出・−ノド18(
テ送給された導体」二にゴム、プラスチック等の未架橋
絶縁物を押出被覆されたケーブルCは前記の架橋管10
内を走行し加熱架橋部1〕において加熱架橋され、冷却
部12の冷却水Wにより冷却されてエンドシール13を
通り架橋管外に進行する0前記の架橋管10には加熱架
橋部11と冷却部12との中間部にオーバーフロ一部2
0を設置する。A−バーフロ一部20は、架橋管10の
中間部に接続した受入管部21とその底部から下方に伸
びる流下管部22とよりなり、この受入管部21は冷却
部12(ておける冷却水Wの水頭がオーバーフローした
水量をその受入管部21内に落下流入させて受け入れる
ものであり、流下管部22は受入管部21内に落下流入
したオーバーフロー水を下方の水位安定槽23に流下さ
せるものである。
In the embodiment shown in the second figure, 10 is a bridge pipe, and 11
The heating crosslinking section 12 is a cooling section. The cooling section 12 is provided with an end seal 13 at its end to fill with cold water W, and the heating bridging section 11 is filled with an inert gas or other heat medium 16 from a plumber 4 through a valve 15. Heating crosslinking section 1
1 is connected to an extrusion head 18 of an extruder 17. Extrusion via metering capstan 19 - throat 18 (
The cable C, which is covered with an extruded uncrosslinked insulator such as rubber or plastic, is connected to the above-mentioned crosslinked pipe 10.
The crosslinked pipe 10 is heated and crosslinked in the heating crosslinking section 1], is cooled by the cooling water W of the cooling section 12, passes through the end seal 13, and advances to the outside of the crosslinked pipe. Overflow part 2 in the middle part with part 12
Set 0. The A-bar flow part 20 consists of a receiving pipe part 21 connected to the middle part of the bridge pipe 10 and a downstream pipe part 22 extending downward from the bottom part. The water head of W allows the overflowed water to fall and flow into the receiving pipe section 21 and is received therein, and the downflow pipe section 22 allows the overflow water that has fallen and flowed into the receiving pipe section 21 to flow down into the water level stabilizing tank 23 below. It is something.

水位安定槽23には、前記の流下管部22を接続すると
ともに、高圧ポンプ24、給水弁25に通ずる給水配管
26を接続して槽内に給水し冷却水を貯溜する。この槽
内には流下管部22から流下する水ffkと給水配管2
6から給水される水量が貯溜されるが、その貯溜水量は
水位検出センサ27により検出されレベル制御器28の
出力で弁開閉駆動部29を駆動して給水弁25を開閉制
御することにより水舒調整が行なわれる。
The water level stabilizing tank 23 is connected to the above-mentioned downflow pipe section 22, and also connected to a water supply pipe 26 leading to a high-pressure pump 24 and a water supply valve 25 to supply water into the tank and store cooling water. This tank contains water ffk flowing down from the downstream pipe section 22 and the water supply pipe 2.
The amount of water supplied from 6 is stored, and the amount of stored water is detected by the water level detection sensor 27, and the output of the level controller 28 drives the valve opening/closing drive unit 29 to control the opening/closing of the water supply valve 25. Adjustments are made.

また、前記の水位安定槽23には槽内に貯溜されている
冷却水を冷却部に送給する送給配管30を接続し、この
送給配管30は低圧ラインポンプ31、流Hkft32
、弁33を介して架橋管の冷却部12に接続する。送給
配管30の中間部にはバイパス管34を分岐させバイパ
スバルブ35を介して前記の水位安定槽23に連通させ
、送給配管30からバイパス管34に分流する水量をバ
イパスバルブ35の開度により調整することによって低
圧ラインポンプ31から冷却部12に送給される冷却水
の水母を調整する。
In addition, a feed pipe 30 for feeding the cooling water stored in the tank to the cooling section is connected to the water level stabilizing tank 23, and this feed pipe 30 is connected to a low pressure line pump 31, a flow Hkft32
, are connected to the cooling section 12 of the bridge pipe via a valve 33. A bypass pipe 34 is branched in the middle of the feed pipe 30 and communicated with the water level stabilizing tank 23 via a bypass valve 35, and the amount of water diverted from the feed pipe 30 to the bypass pipe 34 is controlled by the opening degree of the bypass valve 35. The water base of the cooling water sent from the low-pressure line pump 31 to the cooling unit 12 is adjusted by adjusting.

36は冷却部12の管壁から立設した立上管であり、そ
の上端の高さは冷却部12内における冷却水の許容水頭
に合せておき、弁37を介して連通管38により水位安
定槽23に連通させる。これにより仮にオーバーフロ一
部に異物等が詰まり冷却部12内における冷却水の水頭
が許容水頭に達するようなととがあっても、立上管36
、連通管38を通して冷却部12内の冷却水が水位安定
槽23に流送きねるのて安全が確保されることになる。
Reference numeral 36 denotes a riser pipe that stands up from the pipe wall of the cooling section 12. The height of its upper end is adjusted to the permissible water head of the cooling water in the cooling section 12, and the water level is stabilized by the communicating pipe 38 via the valve 37. It communicates with the tank 23. As a result, even if a part of the overflow is clogged with foreign matter and the head of cooling water in the cooling section 12 reaches the allowable head, the riser pipe 36
Since the cooling water in the cooling unit 12 is sent to the water level stabilizing tank 23 through the communication pipe 38, safety is ensured.

Jだ、39は圧力連通管であり、架橋管内は高1−Hに
加圧されているので水位安定槽23内の圧力を架橋管内
の圧力に連通させて同じ圧力にしておくものである。
39 is a pressure communication pipe, and since the inside of the bridge pipe is pressurized to a high level of 1-H, the pressure in the water level stabilizing tank 23 is communicated with the pressure in the bridge pipe to keep it at the same pressure.

前記の給水配管26に設置6シた高圧ポンプ24は、そ
の吐出圧力が架橋管の加熱架橋部11内の架橋圧力以上
たとえば約5 kg /cnf以上の能力のものであれ
ばよく、これには多段タービンポンプ博を使用する。ま
た、送給配管30に設置した低圧ラインポンプ31は、
配管のわずかな送水抵抗に対抗して冷却水を送給する能
力があれば充分である。すなわち、このポンプ31の吸
入側と吐出側には常に架橋管内の同じ圧力P1がかかっ
ており、配管の抵抗による損失水頭分を△Pとずれば、
ポンプ31の吸入側における圧力はPlであり、吐出側
における必要最小圧力はP1+△Pである。したがって
、ポンプ31が冷却水を吐出し送給するに必要な最小[
T:、力は(p1+ΔF)−El−△P となり、この
△Pは配管によって定まる一定値であるから、架橋管内
の圧力に変動が生じてもポンプ31の吐出圧力は常に一
定であり、しかもわずかな圧力で充分である。
The high-pressure pump 24 installed in the water supply pipe 26 may have a discharge pressure higher than the cross-linking pressure in the heated cross-linking section 11 of the cross-linked pipe, for example, approximately 5 kg/cnf or higher. Using a multi-stage turbine pump. In addition, the low pressure line pump 31 installed in the feed pipe 30 is
It is sufficient to have the ability to supply cooling water against the slight water supply resistance of the piping. That is, the same pressure P1 in the crosslinked pipe is always applied to the suction side and the discharge side of the pump 31, and if the water head loss due to the resistance of the pipe is set as △P, then
The pressure on the suction side of the pump 31 is Pl, and the required minimum pressure on the discharge side is P1+ΔP. Therefore, the minimum [
T:, the force is (p1 + ΔF) - El - ΔP, and since this ΔP is a constant value determined by the piping, the discharge pressure of the pump 31 is always constant even if the pressure inside the crosslinked pipe fluctuates. A slight pressure is sufficient.

前記のように構成した第2図示の実施例において、未架
橋絶縁被覆ケーブルCを架橋g10内に走行させ、加熱
架橋部工1において未架橋絶縁被覆を加熱架橋し、つい
で冷却部12において冷却水Wにより冷却する0このた
め冷却水Wの温度は上昇するが、冷却部12のケーブル
の走行とともにエンドシール13からある程度の水量が
漏出しており、その漏出水量以上の水母を低圧ラインポ
ンプ31で絶えず冷却部12に送給することにより冷却
部12における冷却水Wを常に冷水状態に維持する。
In the embodiment shown in the second figure configured as described above, the uncrosslinked insulated cable C is run inside the bridge g10, the uncrosslinked insulation sheath is heated and crosslinked in the heating crosslinking section 1, and then the cooling water is applied in the cooling section 12. Therefore, the temperature of the cooling water W increases, but a certain amount of water leaks from the end seal 13 as the cable of the cooling section 12 runs, and the low-pressure line pump 31 removes more water than the leaked water. By constantly feeding the cooling water W to the cooling unit 12, the cooling water W in the cooling unit 12 is always maintained in a cold water state.

前記のようにエンドシール13からの漏出水量以上の水
量を低圧ラインポンプ31により冷却部12に送給する
と、冷却部12における冷却水Wの水頭は所定の水頭を
越えようとするが、所定の水頭以上の余分の水量はオー
バーフロ一部20の受入管部21にオーバーフローして
落下流入し流下管部22から水位安定槽23に流入する
ので、冷却水位は所定の水頭に維持されることになる0
このようなA−バー70一部20に流入するオーバーフ
ロー水量は、エンドシール13からの漏出水量に変動が
なく低1丁ラインポンプ31による送給水量も変動しな
い安定な定常状態においては常に一定であり、しかも、
たとえエンドシール13からの漏出水litに変動が生
じたり架橋管内圧に変動が生じたりするようなことがあ
っても、オーバーフロ一部20に落下流入する水量が増
減するだけであって、冷却部12における冷却水の所定
の水頭は何等変動せず一定に維持される。したがって、
架橋管内にケーブルの走行を開始させリード線を繋いだ
ケーブル先口がエンドシールを通過するときに漏出水1
,1の急激な変(lljや架橋管内圧の急激な変動が生
しても、冷却部]2における冷却水の水頭を常に一定に
M(持することができるのである。
As described above, when the low-pressure line pump 31 supplies an amount of water greater than the amount of water leaking from the end seal 13 to the cooling section 12, the head of the cooling water W in the cooling section 12 tends to exceed a predetermined water head; The excess amount of water above the water head overflows into the receiving pipe section 21 of the overflow section 20 and flows into the water level stabilizing tank 23 from the downstream pipe section 22, so that the cooling water level is maintained at a predetermined water head. Naru 0
The amount of overflow water flowing into the part 20 of the A-bar 70 is always constant in a stable steady state where the amount of water leaking from the end seal 13 does not change and the amount of water supplied by the low line pump 31 does not change either. Yes, and
Even if there is a change in the leakage water lit from the end seal 13 or a change in the internal pressure of the bridge pipe, the amount of water falling into the overflow part 20 will only increase or decrease, and the cooling The predetermined water head of the cooling water in the section 12 is maintained constant without any fluctuation. therefore,
When the cable starts running inside the bridge pipe and the end of the cable with the lead wire connected passes through the end seal, water leaks 1.
, 1 (even if sudden changes in llj or the internal pressure of the bridge pipe occur, the water head of the cooling water in the cooling section 2 can always be kept constant M).

実験の結呆によれは、冷却部12に冷却水Wを送給する
低圧ラインポンプ31を、吐出圧2 ’cg /cm′
、吐出圧4OO〜500.../分の能力のものとし、
エンドシール13を締切にした場合に、オーバーフロー
部20は、第3図において、内径dが約150mmの架
橋管冷却部12かも受入管部21内に落下流入するj−
バー70−水WOの流入幅りは約200〜250m1て
あって、受入管部21の内径りは300を以上あれば充
分であった。
Due to the conclusion of the experiment, the low pressure line pump 31 that supplies cooling water W to the cooling section 12 was adjusted to a discharge pressure of 2'cg/cm'.
, discharge pressure 4OO~500. .. .. / minute capacity,
When the end seal 13 is closed, the overflow part 20 is caused to fall into the receiving pipe part 21, as shown in FIG.
The inflow width of the bar 70 - water WO was about 200 to 250 m1, and it was sufficient that the inner diameter of the receiving pipe section 21 was 300 mm or more.

第4図は、架橋管1oを下方に湾曲させて加熱架橋部1
1を形成し、これに充填する熱媒体16としてシリコン
オイル、金属溶融塩等を用い、加熱架橋部11と冷却部
12とを分離させた連続架橋装置に本発明を適用した実
施例であり、前記第2図と同一符号は同一部分を示す0
この実施例においても、前記第2図示の実施例と同様に
、オーバーフロ一部20は、冷却水Wのオーバーフロー
水量を流入させて冷却部12における冷却水Wの水位を
所定の水位に維持する。
FIG. 4 shows a heated cross-linked section 1 by curving the cross-linked pipe 1o downward.
This is an embodiment in which the present invention is applied to a continuous crosslinking device in which a heating crosslinking section 11 and a cooling section 12 are separated, using silicone oil, molten metal salt, etc. as the heating medium 16 filled in the heating medium 16. The same reference numerals as in Fig. 2 indicate the same parts.
In this embodiment as well, similarly to the embodiment shown in the second drawing, the overflow part 20 allows the overflow amount of the cooling water W to flow in to maintain the water level of the cooling water W in the cooling part 12 at a predetermined water level. .

まだ、第5図は、架橋管の冷却部12の2ケ所に前記の
ようなオーバーフロ一部20.20″ヲe iiJ [
、、一方のオーバーフロ一部20の受入管部21がら垂
下する流下管部22は前記実施例と同様に直接水位安定
槽23に接続し、他方のメーバー70一部2σの受入管
部21”から垂下する流下a・部22“はfp40を介
して水位安定槽23に接続した実晦例を示す。なおこの
第5図においても前記第2図、第4図と同一符号は同一
部分を示す。この実施例においては、冷却水の水位を水
頭Hに保持することを要する連続架橋運転の場合には、
下方のオーバーフロ一部20′の流下管部22′に設け
た弁40を閉じておく。
Still, FIG. 5 shows that the above-mentioned overflow portions 20.20" are installed at two locations in the cooling section 12 of the bridge pipe.
,,The downstream pipe part 22 hanging down from the receiving pipe part 21 of one overflow part 20 is directly connected to the water level stabilizing tank 23 as in the previous embodiment, and the receiving pipe part 21 of the other part of the overflow part 20 is directly connected to the water level stabilizing tank 23. A practical example is shown in which the downstream part 22'' hanging down from the water level is connected to the water level stabilizing tank 23 via the fp40. In this FIG. 5 as well, the same reference numerals as in FIGS. 2 and 4 indicate the same parts. In this example, in the case of continuous crosslinking operation that requires the cooling water level to be maintained at head H,
The valve 40 provided in the downflow pipe portion 22' of the lower overflow portion 20' is kept closed.

これにより下方のオーバーフロ一部20′に流入する冷
却水はオーバーフロ一部20′を弁40まで満たすたけ
で市まりそれ以上には流入しないから、冷却部12の水
fiはオーバーフロ一部20により所要の水頭Hに保持
されることになる。また冷却水量を下方の水頭H”に保
持して連続架橋j■転をする場合には、前記の弁40を
開くとともに冷却水の送給配管30における上方の弁3
3を閉して4−3<。これにより冷却水はメーバーフロ
一部20′に流入し弁40を通って水位安定槽23に送
られ、とのH”よりも上方には冷却水が送給されないか
ら、このときの冷却水の水頭はこのオーバーフロ一部2
0”における水頭H′に保持されることになる。このよ
うにしてオーバー70一部を冷却部12に2ケ所設置す
ることにより架橋するケーブルに応して冷却水の水頭を
異ならせることが可能となる。
As a result, the cooling water flowing into the lower overflow part 20' only fills the overflow part 20' up to the valve 40 and does not flow any further, so that the water fi in the cooling part 12 flows into the overflow part 20'. 20 to maintain the required water head H. Further, when continuous cross-linking is performed while maintaining the amount of cooling water at the lower water head H'', the above-mentioned valve 40 is opened and the upper valve 3 in the cooling water supply pipe 30 is opened.
Close 3 and 4-3<. As a result, the cooling water flows into the Meverflow part 20' and is sent to the water level stabilizing tank 23 through the valve 40. Since the cooling water is not sent above H", the water head of the cooling water at this time is is this overflow part 2
In this way, by installing parts of the over 70 in two locations in the cooling section 12, it is possible to vary the head of cooling water depending on the cable to be bridged. becomes.

なお、前記した各実施例において、オーバーフロ一部の
受入管部21.21′は円筒形、角筒形のいずれの形状
であっても差支えなく、冷却部12は傾斜せずに水平で
あってもオーバーフロ一部により水位を制御することが
可能であり、また、第2図、第4図示のレベル制御器2
8のかわりに差圧発振器を利用することもできる。
In each of the above-described embodiments, the receiving pipe portions 21 and 21' of the overflow portion may have either a cylindrical shape or a prismatic shape, and the cooling portion 12 may be horizontal without being inclined. However, the water level can be controlled by the overflow part, and the level controller 2 shown in Figs.
A differential pressure oscillator can also be used instead of 8.

(発明の効果) 前述したように、本発明は、架橋管の冷却部にオーバー
フロ一部を設け、これを架橋管内の圧力と同じ圧力にし
た水位安定槽に連通させ、冷却部における冷却水のオー
バーフロー水量をオーバーフロ一部に流入させるように
したので、架橋管内の圧力やエンドシールからの冷却水
の漏出量に変動が生じても、その変動に影響されること
なく冷却部における冷却水の水位を常に所定の水位に保
つことが可能となり、しだがって、従来のような冷却水
位の急激な変動や暴走による蒸気爆発や架橋管の損傷等
の小数の発生が防止されるばかりでなく、冷却部の長さ
が一定長に安定するので均一良好な特性のケーブルを得
ることができるものである。
(Effects of the Invention) As described above, the present invention provides an overflow part in the cooling part of the cross-linked pipe, and communicates this with a water level stabilizing tank that has the same pressure as the pressure inside the cross-linked pipe, so that the cooling water in the cooling part is Since the amount of overflow water flows into the overflow part, even if there are fluctuations in the pressure inside the bridge pipe or the amount of cooling water leaking from the end seal, the cooling water in the cooling section will not be affected by the fluctuations. This makes it possible to always maintain the water level at a predetermined level, thereby preventing the occurrence of sudden changes in the cooling water level or runaway, such as steam explosions and damage to bridge pipes, which occur in the past. Since the length of the cooling section is stabilized at a constant length, it is possible to obtain a cable with uniform and good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す図面、第2図は本発明の一実施例
を示す図面、第3図はオーツく一フロ一部を示す図面、
第4図、第5図はそれぞれ他の実施例を示す図面である
。 10:架橋管 12:冷却部 20 オーバーフロ一部 23二水位安& 槽特許出願
人 古河電気工業株式会社 代 理 人 弁理士岡10 1′イ久泊(ほか1名) 第15 第3図
FIG. 1 is a drawing showing a conventional example, FIG. 2 is a drawing showing an embodiment of the present invention, and FIG. 3 is a drawing showing a part of an oat floor.
FIG. 4 and FIG. 5 are drawings showing other embodiments, respectively. 10: Cross-linked pipe 12: Cooling section 20 Overflow part 23 2 Water level & tank Patent applicant Furukawa Electric Co., Ltd. Agent Patent attorney Oka 10 1' Ikudomari (and 1 other person) 15 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 架橋管内圧と同じ内圧にした水位安定槽から冷却水を冷
却部に送給し、前記冷却部に設置されかつ前記水位安定
槽と連通させたオーバーフロ一部に冷却水のオーバーフ
ロー水量を流入させることにより冷却部における冷却水
の水位を一定に制御することを特徴とするケーブル連続
架橋装置の冷却水位制御方法。
Cooling water is fed to the cooling unit from a water level stabilizing tank whose internal pressure is the same as the internal pressure of the bridge pipe, and the overflow amount of the cooling water flows into an overflow part installed in the cooling unit and communicating with the water level stabilizing tank. 1. A cooling water level control method for a continuous cable bridging device, characterized in that the cooling water level in a cooling section is controlled to be constant.
JP20816983A 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device Granted JPS60100310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20816983A JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20816983A JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Publications (2)

Publication Number Publication Date
JPS60100310A true JPS60100310A (en) 1985-06-04
JPH0142564B2 JPH0142564B2 (en) 1989-09-13

Family

ID=16551797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20816983A Granted JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Country Status (1)

Country Link
JP (1) JPS60100310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149019U (en) * 1987-03-20 1988-09-30
JPS63149020U (en) * 1987-03-20 1988-09-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863U (en) * 1978-06-23 1980-01-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863B2 (en) * 1972-05-27 1980-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863U (en) * 1978-06-23 1980-01-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149019U (en) * 1987-03-20 1988-09-30
JPS63149020U (en) * 1987-03-20 1988-09-30
JPH0546175Y2 (en) * 1987-03-20 1993-12-02
JPH0546176Y2 (en) * 1987-03-20 1993-12-02

Also Published As

Publication number Publication date
JPH0142564B2 (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JP2933718B2 (en) Liquid cooling system using air purge mechanism
US7093651B2 (en) Water pressure system with pressure tank installed within well casing of well
JPS60100310A (en) Method of controlling coolant level of cable continuous crosslinking device
US6283207B1 (en) Method for controlling a hydrocarbons production well of the gushing type
JP7349738B2 (en) Cable installation inside the duct
CN1121580C (en) Expansion control for closed fluid circulation system
JPH06181018A (en) Vertical cable cooler
JPS6044757A (en) Constant pressure and constant temperature apparatus in hot water supply system
JPH08326683A (en) Variable speed water feed device
US1933313A (en) Cable system
CN215448359U (en) Motor water route pressurize test device
JP2006316687A (en) Pressure feed method of fluid, pressure feed device, fuel gas supply device and relay station of gas transportation line
CN118275153B (en) Shallow water injection tree test system and method based on hydraulic power
KR860003364Y1 (en) Apparatus for manufacturing insulating wire
JP7224887B2 (en) Increased pressure water supply device and control method for increased pressure water supply device
JPH08338607A (en) Cavitation prevention apparatus for feed water pump
KR830001587Y1 (en) Vulcanization and crosslinking equipment for rubber and polyethylene wires
JP3929111B2 (en) Insertion pressure maintenance device in pipe regeneration method
US1969722A (en) Cable system for the underground transmission of high tension electrical energy
JP2655962B2 (en) Cooling water level control device for the inclined cable continuous bridge device
JPH0968003A (en) Cooling water unit for turbine auxiliary machine
JPS589494Y2 (en) Sealing oil treatment equipment for rotating electric machines
JPS63304116A (en) Failsafe type monitor
JP3929110B2 (en) Heavy liquid supply method for regeneration of old pipes
JPS608966Y2 (en) Pressure vulcanization equipment for long rubber and plastic bodies