JPH0142564B2 - - Google Patents

Info

Publication number
JPH0142564B2
JPH0142564B2 JP58208169A JP20816983A JPH0142564B2 JP H0142564 B2 JPH0142564 B2 JP H0142564B2 JP 58208169 A JP58208169 A JP 58208169A JP 20816983 A JP20816983 A JP 20816983A JP H0142564 B2 JPH0142564 B2 JP H0142564B2
Authority
JP
Japan
Prior art keywords
water
pipe
cooling
section
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58208169A
Other languages
Japanese (ja)
Other versions
JPS60100310A (en
Inventor
Akira Nogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20816983A priority Critical patent/JPS60100310A/en
Publication of JPS60100310A publication Critical patent/JPS60100310A/en
Publication of JPH0142564B2 publication Critical patent/JPH0142564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ケーブルの連続架橋装置における冷
却水の水位を一定に制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling the water level of cooling water at a constant level in a continuous cable bridging device.

[従来の技術] ゴム・ブラスチツク絶縁ケーブルの連続架橋装
置においては、押出機でゴム・プラスチツク等を
押出被覆したケーブルを架橋管の加熱部内に走行
させて加熱架橋し、ついで冷却部の冷却水中を走
行させて冷却し、冷却部終端のエンドシールを通
して架橋管外に引出しているが、このエンドシー
ルからはある程度の量の冷却水を漏出させている
ので、その漏出水量を補うとともに冷却水を低温
にするために連続架橋運転中に絶えず冷却水を補
給して冷却部における冷却水の水位を所定の水位
に保持している。
[Prior Art] In a continuous cross-linking device for rubber/plastic insulated cables, a cable extruded and coated with rubber/plastic, etc. using an extruder is run through a heating section of a cross-linked pipe to heat cross-linking, and then passed through cooling water in a cooling section. The cooling water is cooled by running and drawn out of the bridge pipe through the end seal at the end of the cooling section, but since a certain amount of cooling water leaks from this end seal, the amount of leaked water is supplemented and the cooling water is kept at a low temperature. In order to maintain the cooling water level in the cooling section at a predetermined level, cooling water is constantly replenished during continuous crosslinking operation.

このため従来は第4図示のように、架橋管1の
冷却部3に高圧ポンプ4で水槽5の冷却水を送給
循環させ、架橋管1内の加熱部2と冷却部3を走
行するケーブルCが冷却部終端のエンドシール6
から管外に出るときのエンドシール6から漏出す
る冷却水量の補給は、加熱部2の圧力検出センサ
aと冷却部3の圧力検出センサbの各検出圧力を
差圧発振器7に入力させ、冷却水の水位変動に基
づく両検出圧力の差による差圧発振器の出力で弁
開度調整部8を駆動してダイヤフラム弁9の開度
を調整する電気量−空気圧変換の電空変換器を用
いて冷却部3に補給する水量を調整していた。
For this reason, conventionally, as shown in FIG. 4, cooling water from a water tank 5 is supplied and circulated to the cooling section 3 of the cross-linked pipe 1 by a high-pressure pump 4, and a cable runs between the heating section 2 and the cooling section 3 in the cross-linked pipe 1. C is the end seal 6 at the end of the cooling section
To replenish the amount of cooling water leaking from the end seal 6 when it exits the pipe, the pressures detected by the pressure detection sensor a of the heating section 2 and the pressure detection sensor b of the cooling section 3 are input to the differential pressure oscillator 7, and the cooling water is Using an electro-pneumatic converter that converts electricity to pneumatic pressure, the valve opening adjustment unit 8 is driven by the output of a differential pressure oscillator based on the difference between the two detected pressures based on water level fluctuations, and the opening of the diaphragm valve 9 is adjusted. The amount of water supplied to the cooling section 3 was adjusted.

[発明が解決しようとする課題] 前記ケーブルの架橋管内走行を開始するときは
走行先端のケーブル先口にリード線を連結しこれ
を引張つてケーブルを走行させるので、ケーブル
先口の径とリード線の径との差が大きくケーブル
先口がエンドシール6を通過するときに漏出水量
に急激な変動が生ずると冷却部における冷却水位
が急激に低下し、このため従来のような電空変換
器では応答速度が遅く急激な水位変動に対しては
直ちに追従動作することができないので水位のハ
ンチングを生じ、また連続架橋装置の運転開始に
当り架橋管内圧を上昇させるときにもダイヤフラ
ム弁9の応答遅れのために水位のハンチングが生
ずる欠点があつた。
[Problems to be Solved by the Invention] When the cable starts running in a bridged pipe, a lead wire is connected to the cable tip at the tip of the cable and is pulled to run the cable, so the diameter of the cable tip and the lead wire are If there is a large difference between the diameter of The response speed is slow and it is not possible to immediately follow sudden changes in the water level, resulting in water level hunting. Also, when the internal pressure of the bridge pipe is increased at the start of operation of the continuous bridge equipment, the response of the diaphragm valve 9 is delayed. Therefore, there was a drawback that water level hunting occurred.

前記の冷却水の変動は、架橋管の傾斜が緩いと
わずかな水位変化でも冷却長の変化が大きく水量
の変化量も大となるので、架橋管の傾斜はある程
度以上に緩くすることができず、その傾斜分だけ
架橋管設置建屋を高くするか地下ピツト構造にし
て冷却管部を設置することになり、構築費の高騰
を招いていた。
As for the above-mentioned fluctuations in cooling water, if the slope of the cross-linked pipe is gentle, even a slight change in the water level will cause a large change in the cooling length and a large change in water volume, so the slope of the cross-linked pipe cannot be made gentler than a certain level. Therefore, the building for installing the bridge pipes had to be raised to account for the slope, or the cooling pipes had to be installed in an underground pit structure, leading to a rise in construction costs.

また架橋管の加熱部に充填する熱媒体として油
剤、金属溶融塩等を使用する場合は熱媒体と冷却
水を直接に接触させないために加熱部と冷却部を
分離する必要があり、架橋圧力の変動や冷却水位
制御系の不調等が生ずると、熱媒体と冷却水が瞬
時に混合して蒸気爆発等重大な災害を発生し、装
置を損傷させるおそれがあつた。
In addition, when using an oil agent, molten metal salt, etc. as a heating medium to be filled in the heating section of a crosslinked pipe, it is necessary to separate the heating section and cooling section to prevent direct contact between the heating medium and cooling water. If fluctuations or malfunctions in the cooling water level control system occurred, the heat medium and cooling water would instantly mix, causing a serious disaster such as a steam explosion, and potentially damaging the equipment.

前記の加熱を輻射加熱により行なう場合にも、
冷却水がその加熱部に入ると管壁の急激な冷却に
より歪み、き裂や損傷が生じたり蒸気爆発を発生
する危険があり、軽い蒸気を発生する程度であつ
てもケーブル絶縁被覆の電気特性を悪化されるお
それがあつた。
Even when the above heating is performed by radiation heating,
If cooling water enters the heated part, the pipe wall will rapidly cool and become distorted, creating a risk of cracking, damage, or a steam explosion.Even if only a light steam is generated, the electrical characteristics of the cable insulation coating There was a risk that this would worsen.

冷却水の水位を所定の水位に制御して保持し水
位の急激な変動や暴走を防ぐことはきわめて重要
であり、このため水位を所定水位に保持し制御す
るために、本出願人はさきに実開昭55−3863号に
おいて、オーバーフロー部内に滞留したオーバー
フロー水の水位を検出するようにした装置を提案
したが、制御系が複雑になるという問題点があつ
た。
It is extremely important to control and maintain the water level of the cooling water at a predetermined level to prevent rapid fluctuations or runaway of the water level. Therefore, in order to maintain and control the water level at a predetermined level, the applicant has In Utility Model Application Publication No. 55-3863, a device was proposed to detect the level of overflow water stagnant in the overflow section, but there was a problem that the control system became complicated.

そこで本発明は、架橋管内圧の変動や外乱等い
かなる事態が生じても冷却水位の急激な変動を防
ぎ、冷却部における冷却水を常に所定の水位に保
持することができるようにしたケーブル連続架橋
装置の冷却水位制御方法を提供することを目的と
するものである。
Therefore, the present invention has developed a continuous cable bridge that prevents sudden changes in the cooling water level even if any situation such as fluctuations in the internal pressure of the bridge pipe or disturbances occurs, and that the cooling water in the cooling section can always be maintained at a predetermined water level. The object of the present invention is to provide a method for controlling the cooling water level of an apparatus.

[課題を解決するための手段] 前記の目的を達成するために本発明は、 架橋管10の加熱架橋部11と冷却部12との
間にオーバーフロー部20を設けてこれに冷却水
のオーバーフロー水量を流入させ、 また水位安定槽23を設けて、これにオーバー
フロー部の下部から延びる流下管部22の下端を
接続するとともに、高圧ポンプ24に連通する給
水管26を接続し、これにより流下管部22を流
下するオーバーフロー水と高圧ポンプ24からの
給水を水位安定槽23内に貯水させ、 また低圧ラインポンプ31を中間に設けた冷却
水送給管30を水位安定槽23と冷却部12の間
に接続して水位安定槽23内の貯水を冷却部12
に送給させ、 また前記水位安定槽23と架橋管10内の圧力
を連通させる圧力連通管39を設けて水位安定槽
23の内圧を架橋管10内圧と同圧にして、ケー
ブル連続架橋装置の冷却水位制御装置を構成した
ものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides the following features: An overflow section 20 is provided between the heating bridge section 11 and the cooling section 12 of the bridge pipe 10, and an overflow amount of cooling water is provided in the overflow section 20. In addition, a water level stabilizing tank 23 is provided, to which the lower end of the downflow pipe section 22 extending from the lower part of the overflow section is connected, and a water supply pipe 26 communicating with the high pressure pump 24 is connected. 22 and the water supplied from the high pressure pump 24 are stored in the water level stabilizing tank 23, and a cooling water supply pipe 30 with a low pressure line pump 31 installed in the middle is connected between the water level stabilizing tank 23 and the cooling unit 12. The water stored in the water level stabilizing tank 23 is connected to the cooling unit 12.
In addition, a pressure communication pipe 39 is provided to communicate the pressure inside the water level stabilizing tank 23 and the bridge pipe 10, so that the internal pressure of the water level stabilizing tank 23 is the same as the internal pressure of the bridge pipe 10, and the continuous cable bridge system is This constitutes a cooling water level control device.

[作用] 水位安定槽23は、高圧ポンプ24からの給水
を貯水するとともに、オーバーフロー部20に流
入した冷却水のオーバーフロー水が流下して貯水
される。
[Function] The water level stabilizing tank 23 stores the water supplied from the high-pressure pump 24, and the overflow water of the cooling water that has flowed into the overflow portion 20 flows down and is stored therein.

冷却部12の冷却水は、水位安定槽23内の貯
水が低圧ラインポンプ31により冷却水送給管3
0を通つて冷却部12に送られ冷却水となる。
The cooling water in the cooling unit 12 is supplied from the water stored in the water level stabilizing tank 23 to the cooling water supply pipe 3 by the low pressure line pump 31.
0 to the cooling unit 12 and becomes cooling water.

この水位安定槽23の内圧は、連通管39を介
して架橋管10内に連通することにより架橋管内
圧と同内圧となる。
The internal pressure of this water level stabilizing tank 23 becomes the same internal pressure as the internal pressure of the bridge pipe 10 by communicating with the inside of the bridge pipe 10 via the communication pipe 39.

このため低圧ラインポンプ31の吸入側と吐出
側には常に架橋管内の同じ圧力がかかり、架橋管
内の圧力に変動が生じてもポンプ31の吐出圧力
は常に一定となつて小圧力で済み、ポンプを小型
化することができる。
Therefore, the same pressure in the cross-linked pipe is always applied to the suction side and the discharge side of the low-pressure line pump 31, and even if the pressure in the cross-linked pipe fluctuates, the discharge pressure of the pump 31 is always constant and only a small pressure is required. can be downsized.

また水位安定槽23は、オーバーフロー水を貯
水して再び冷却水として冷却部12に送給するの
で使用水量が節水され、この冷却部で温度が上昇
したオーバーフロー水はこの水位安定槽23にお
いて高圧ポンプからの給水と混合して冷却され水
温が低下することになる。
In addition, the water level stabilization tank 23 stores the overflow water and supplies it again as cooling water to the cooling unit 12, so the amount of water used is saved. The water is mixed with the water supplied from the source and cooled, resulting in a drop in water temperature.

しかも送給水量が安定するので、前記公開公報
の装置のような複雑な制御系を使用する必要がな
くなるものである。
Moreover, since the amount of water to be fed is stabilized, there is no need to use a complicated control system like the device disclosed in the above-mentioned publication.

[実施例] 以下本発明の実施例を図面により説明する。第
1図は本発明の1実施例を示し、第2図はオーバ
ーフロー部を示し、第3図は他の実施例を示す。
[Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows one embodiment of the invention, FIG. 2 shows an overflow section, and FIG. 3 shows another embodiment.

第1図示の実施例において、10は架橋管であ
り、11はその加熱架橋部、12は冷却部であ
る。冷却部12にはその終端にエンドシール13
を設けて冷却水Wを入れ、加熱架橋部11には配
管14から弁15を介して不活性ガスその他の熱
媒体16を送給充填し加熱架橋部11の先端は押
出機17の押出ヘツド18に連結する。メータリ
ングキヤプスタン19を経て押出ヘツド18に送
給された導体上にゴム、プラスチツク等の未架橋
絶縁物を押出被覆されたケーブルCは前記の架橋
管10内を走行し加熱架橋部11において加熱架
橋され、冷却部12の冷却水Wにより冷却されて
エンドシール13を通り架橋管外に進行する。
In the embodiment shown in the first figure, 10 is a crosslinked pipe, 11 is a heating crosslinking section thereof, and 12 is a cooling section thereof. The cooling section 12 has an end seal 13 at its end.
The heating cross-linking section 11 is filled with an inert gas or other heat medium 16 from the piping 14 through the valve 15, and the tip of the heating cross-linking section 11 is connected to the extrusion head 18 of the extruder 17. Connect to. The cable C, in which the conductor is fed to the extrusion head 18 via the metering capstan 19 and coated with an uncrosslinked insulator such as rubber or plastic, runs inside the bridge pipe 10 and is heated at the heating bridge section 11. It is heated and crosslinked, cooled by the cooling water W in the cooling section 12, and passes through the end seal 13 to proceed to the outside of the crosslinked pipe.

前記の架橋管10には加熱架橋部11と冷却部
12との中間部にオーバーフロー部20を設置す
る。オーバーフロー部20は、架橋管10の中間
部に接続した受入管部21とその底部から下方に
伸びる流下管部22とよりなり、この受入管部2
1は冷却部12における冷却水Wの水頭がオーバ
ーフローした水量をその受入管部21内に落下流
入させて受け入れるものであり、流下管部22は
受入患部21内に落下流入したオーバーフロー水
を下方の水位安定槽23に流下させるものであ
る。
An overflow section 20 is installed in the bridge pipe 10 at an intermediate portion between the heating bridge section 11 and the cooling section 12 . The overflow section 20 consists of a receiving pipe section 21 connected to the middle part of the bridge pipe 10 and a downstream pipe section 22 extending downward from the bottom of the receiving pipe section 21.
1 is for receiving the overflowing water head of the cooling water W in the cooling section 12 by dropping it into the receiving pipe section 21, and receiving the overflow water that has fallen and flowed into the receiving affected section 21. The water is allowed to flow down into the water level stabilizing tank 23.

水位安定槽23には、前記の流下管部22を接
続し、高圧ポンプ24,給水弁25に通ずる給水
管26を接続して槽内に給水し冷却水を貯水す
る。この水位安定槽23内には流下管部22から
流下する水量と給水管26から給水される水量が
貯水されるが、その貯水量は、水位検出センサ2
7により検出されレベル制御器28の出力で弁開
閉駆動部29を駆動して給水弁25を開閉制御す
ることにより吸水量が調整されて貯水量の調整が
行なわれる。
The water level stabilizing tank 23 is connected to the above-mentioned downflow pipe section 22, and is connected to a water supply pipe 26 leading to a high pressure pump 24 and a water supply valve 25 to supply water into the tank and store cooling water. In this water level stabilizing tank 23, the amount of water flowing down from the downstream pipe section 22 and the amount of water supplied from the water supply pipe 26 are stored.
7 and the output of the level controller 28 drives the valve opening/closing drive section 29 to control the opening/closing of the water supply valve 25, thereby adjusting the amount of water absorbed and the amount of water stored.

また、前記の水位安定槽23には槽内に貯水さ
れている冷却水を冷却部に送給する冷却水送給管
30を接続し、この冷却水送給管30は低圧ライ
ンポンプ31、流量計32、弁33を介して架橋
管の冷却部12に接続する。冷却水送給管30の
中間部にはバイパス管34を分岐させバイパスバ
ルブ35を介して前記の水位安定槽23に連通さ
せ、冷却水送給管30からバイパス管34に分流
する水量をバイパスバルブ35の開度により調整
することによつて低圧ラインポンプ31から冷却
部12に送給される冷却水の水量を調整する。
A cooling water supply pipe 30 is connected to the water level stabilizing tank 23 for supplying the cooling water stored in the tank to the cooling section. A total of 32 pipes are connected to the cooling section 12 of the bridge pipe via a valve 33. A bypass pipe 34 is branched in the middle part of the cooling water supply pipe 30 and communicated with the water level stabilizing tank 23 via a bypass valve 35, and the amount of water to be diverted from the cooling water supply pipe 30 to the bypass pipe 34 is controlled by the bypass valve. By adjusting the opening of 35, the amount of cooling water fed from the low pressure line pump 31 to the cooling unit 12 is adjusted.

36は冷却部12の管壁から立設した立上管で
あり、その上端の高さは冷却部12の冷却水の許
容水頭に合せておき、弁37を介して連通管38
により水位安定槽23に連通させる。これにより
仮にオーバーフロー部に異物等が詰まり冷却部1
2の冷却水頭が許容水頭に達するようなことがあ
つても、立上管36、連通管38を通して冷却部
12内の冷却水が水位安定槽23に流送されるの
で安全が確保される。
Reference numeral 36 denotes a riser pipe that stands up from the pipe wall of the cooling section 12, the height of its upper end is adjusted to the permissible water head of the cooling water of the cooling section 12, and the riser pipe 36 is connected to the communication pipe 38 through a valve 37.
It communicates with the water level stabilizing tank 23. As a result, if the overflow section is clogged with foreign matter, the cooling section 1
Even if the cooling water head of No. 2 reaches the allowable water head, safety is ensured because the cooling water in the cooling section 12 is sent to the water level stabilizing tank 23 through the riser pipe 36 and the communication pipe 38.

前記の水位安定槽23と架橋管の加熱架橋部1
1とを連通する圧力連通管39を設け、高圧に加
圧されている架橋管内の圧力と水位安定槽23内
の圧力を連通させて同じ圧力にする。
The water level stabilizing tank 23 and the heating bridge section 1 of the bridge pipe
A pressure communication pipe 39 is provided to communicate with the water level stabilizing tank 23, and the pressure inside the bridge pipe which is pressurized to a high pressure is communicated with the pressure inside the water level stabilizing tank 23 to make them the same pressure.

前記の給水配管26に設置した高圧ポンプ24
は、その吐出圧力が架橋管の加熱架橋部11内の
架橋圧力以上たとえば約5Kg/cm2以上の能力であ
ればよく、これには多段タービンポンプ等を使用
する。
High pressure pump 24 installed in the water supply pipe 26
It is sufficient that the discharge pressure is higher than the crosslinking pressure in the heating crosslinking section 11 of the crosslinked pipe, for example, approximately 5 kg/cm 2 or higher, and a multistage turbine pump or the like is used for this purpose.

また、冷却水送給管30に設置した低圧ライン
ポンプ31は、送給管のわずかな送水抵抗に対抗
して冷却水を送給する能力があれば充分である。
この低圧ラインポンプ31の吸入側と吐出側には
常に架橋管内の同じ圧力P1がかかつているので、
このポンプ31の吸入側における圧力はP1であ
り、また送給管の抵抗による損失水頭分をΔPと
すれば、吐出側における必要最小圧力はP1+ΔP
であるから、ポンプ31が冷却水を吐出し送給す
るのに必要な最小圧力は(P1+ΔP)−P1=ΔPと
なり、このΔPは配管により定まる一定値である
から、架橋管内の圧力に変動が生じてもポンプ3
1の吐出圧力ΔPは常に一定であり、しかもこの
ポンプ31の吐出圧力ΔPはわずかな圧力で充分
となり、低圧ラインポンプ31を小型化すること
ができる。
Furthermore, it is sufficient that the low-pressure line pump 31 installed in the cooling water supply pipe 30 has the ability to supply cooling water against slight water supply resistance of the supply pipe.
Since the same pressure P1 in the bridge pipe is always applied to the suction side and discharge side of this low pressure line pump 31,
The pressure on the suction side of this pump 31 is P1, and if the head loss due to the resistance of the feed pipe is ΔP, the minimum required pressure on the discharge side is P1 + ΔP.
Therefore, the minimum pressure required for the pump 31 to discharge and feed cooling water is (P1 + ΔP) - P1 = ΔP, and since this ΔP is a constant value determined by the piping, there is no fluctuation in the pressure inside the bridge pipe. Pump 3 even if it occurs
The discharge pressure ΔP of the pump 31 is always constant, and a small pressure is sufficient for the discharge pressure ΔP of the pump 31, so that the low pressure line pump 31 can be downsized.

前記のように水位安定槽23は、圧力連通管3
9により架橋管10の内圧と同圧にされているの
で低圧ラインポンプ31を小型化するだけでな
く、オーバーフロー水を貯水して再び冷却水とし
て冷却部12に送給するので使用水量が節水され
る。また冷却部12で温度が上昇したオーバーフ
ロー水はこの水位安定槽23において高圧ポンプ
24からの給水と混合して冷却され水温が低下す
ることになる。
As mentioned above, the water level stabilization tank 23 is connected to the pressure communication pipe 3.
9 makes the pressure the same as the internal pressure of the cross-linked pipe 10, which not only makes the low-pressure line pump 31 smaller, but also saves water usage by storing overflow water and feeding it again to the cooling unit 12 as cooling water. Ru. Further, the overflow water whose temperature has increased in the cooling section 12 is mixed with the water supplied from the high pressure pump 24 in the water level stabilizing tank 23 and cooled, thereby lowering the water temperature.

前記のように構成した第1図示の実施例におい
て、未架橋絶縁被覆ケーブルCを架橋管10内に
走行させ、加熱架橋部11において未架橋絶縁被
覆を加熱架橋し、ついで冷却部12において冷却
水Wにより冷却する。このため冷却水Wの温度は
上昇するが、冷却部12のケーブルの走行ととも
にエンドシール13からある程度の水量が漏出し
ており、その漏出水量以上の水量を低圧ラインポ
ンプ31で絶えず冷却部12に送給することによ
り冷却部12における冷却水Wを常に冷水状態に
維持する。
In the embodiment shown in the first figure configured as described above, the uncrosslinked insulated cable C is run inside the crosslinked pipe 10, the uncrosslinked insulation sheath is crosslinked by heating in the heating crosslinking section 11, and then cooling water is applied in the cooling section 12. Cool with W. For this reason, the temperature of the cooling water W increases, but a certain amount of water leaks from the end seal 13 as the cable of the cooling unit 12 runs, and the low-pressure line pump 31 constantly pumps water in excess of the leaked water to the cooling unit 12. By feeding, the cooling water W in the cooling unit 12 is always maintained in a cold water state.

前記のようにエンドシール13からの漏出水量
以上の水量を低圧ラインポンプ31により冷却部
12に送給すると、冷却部12における冷却水W
の水頭は所定の水頭を越えようとするが、所定の
水頭以上の余分の水量はオーバーフロー部20の
受入管部21にオーバーフローして落下流入し流
下管部22から水位安定槽23に流入するので、
冷却水位は所定の水頭に維持されることになる。
このようなオーバーフロー部20に流入するオー
バーフロー水量は、エンドシール13からの漏出
水量に変動がなく低圧ラインポンプ31による送
給水量も変動しない安定な定常状態においては常
に一定であり、しかも、たとえエンドシール13
からの漏出水量に変動が生じたり架橋管内圧に変
動が生じたりするようなことがあつても、オーバ
ーフロー部20に落下流入する水量が増減するだ
けであつて、冷却部12における冷却水の所定の
水頭は何等変動せず一定に維持される。したがつ
て、架橋管内にケーブルの走行を開始させリード
線を繋いだケーブル先口がエンドシールを通過す
るときに漏出水量の急激な変動や架橋管内圧の急
激な変動が生じても、冷却部12における冷却水
の水頭を常に一定に維持することができるのであ
る。
As described above, when the amount of water exceeding the amount of water leaking from the end seal 13 is supplied to the cooling part 12 by the low-pressure line pump 31, the cooling water W in the cooling part 12 is
The water head tries to exceed the predetermined water head, but the excess water amount exceeding the predetermined water head overflows into the receiving pipe section 21 of the overflow section 20 and flows into the water level stabilizing tank 23 from the downflow pipe section 22. ,
The cooling water level will be maintained at a predetermined head.
The amount of overflow water flowing into the overflow part 20 is always constant in a stable steady state where the amount of water leaking from the end seal 13 does not change and the amount of water supplied by the low pressure line pump 31 does not change. Seal 13
Even if there is a change in the amount of water leaking from the pipe or a change in the internal pressure of the bridge pipe, the amount of water falling and flowing into the overflow section 20 will only increase or decrease; The water head remains constant without any fluctuation. Therefore, even if there is a sudden change in the amount of leakage water or a sudden change in the internal pressure of the bridge pipe when the cable starts running inside the bridge pipe and the end of the cable with the lead wire connected passes through the end seal, the cooling section Therefore, the water head of the cooling water at 12 can be kept constant at all times.

実験の結果によれば、冷却部12に冷却水Wを
送給する低圧ラインポンプ31を、吐出圧2Kg/
cm2、吐出量400〜500〓/分の能力のものとし、エ
ンドシール13を締切にした場合に、オーバーフ
ロー部20は、第2図において内径dが約150mm
の架橋管冷却部12から受入管部21内に流下す
るオーバーフロー水W0の流入幅Lは約200〜250
mmであつて、受入管部21の内径Dは300mm以上
あれば充分であつた。
According to the results of the experiment, the low-pressure line pump 31 that supplies cooling water W to the cooling section 12 has a discharge pressure of 2 kg/
cm 2 , a discharge rate of 400 to 500〓/min, and when the end seal 13 is closed, the overflow part 20 has an inner diameter d of approximately 150 mm in Fig. 2.
The inflow width L of the overflow water W0 flowing down from the bridge pipe cooling section 12 into the receiving pipe section 21 is approximately 200 to 250.
mm, and it was sufficient that the inner diameter D of the receiving tube portion 21 was 300 mm or more.

第3図は、架橋管10を下方に湾曲させて加熱
架橋部11を形成し、これに充填する熱媒体16
としてシリコンオイル、金属溶融塩等を用い、加
熱架橋部11と冷却部12とを分離させた連続架
橋装置に本発明を適用した実施例であり、第1図
と同一符号は同一部分を示す。この実施例におい
ても第1図示の実施例と同様にオーバーフロー部
20は、冷却水Wのオーバーフロー水量を流入さ
せて冷却部12における冷却水Wの水位を所定の
水位に維持する。
FIG. 3 shows a heating bridge section 11 formed by curving the bridge pipe 10 downward, and a heating medium 16 filled in the heating bridge section 11.
This is an embodiment in which the present invention is applied to a continuous crosslinking apparatus in which a heating crosslinking section 11 and a cooling section 12 are separated using silicone oil, metal molten salt, etc., and the same reference numerals as in FIG. 1 indicate the same parts. In this embodiment as well, as in the first illustrated embodiment, the overflow portion 20 allows the overflow amount of the cooling water W to flow in to maintain the water level of the cooling water W in the cooling portion 12 at a predetermined level.

なお、前記の各実施例において、オーバーフロ
ー部は冷却部12に2か所設置することができる
ものであり、これにより架橋するケーブルに応じ
て冷却水の水頭を異ならせることが可能となる。
またオーバーフロー部の受入管部21は円筒形、
角筒形のいずれの形状であつても差支えなく、冷
却部12は傾斜せずに水平であつてもオーバーフ
ロー部により水位を制御することが可能であり、
また、第1図、第3図示のレベル制御器28のか
わりに差圧発振器を利用することもできる。
In each of the above-described embodiments, two overflow sections can be installed in the cooling section 12, so that the head of cooling water can be varied depending on the cables to be bridged.
Moreover, the receiving pipe part 21 of the overflow part is cylindrical,
It does not matter if it has any shape such as a rectangular cylinder, and even if the cooling part 12 is not tilted but horizontal, the water level can be controlled by the overflow part,
Furthermore, a differential pressure oscillator may be used instead of the level controller 28 shown in FIGS. 1 and 3.

[発明の効果] 前述したように本発明は、架橋管の冷却部にオ
ーバーフロー部と水位安定槽を設け、この水位安
定槽は、冷却水のオーバーフロー水を受けて貯水
しこの貯水を冷却部に送り冷却水として使用する
ので、使用水量を節水することができ、また冷却
部で温度が上昇したオーバーフロー水はこの水位
安定槽に貯水されてポンプからの給水と混合され
るので水温を低下させることができる。
[Effects of the Invention] As described above, the present invention provides an overflow part and a water level stabilizing tank in the cooling part of a cross-linked pipe, and this water level stabilizing tank receives overflow water of cooling water, stores water, and supplies this stored water to the cooling part. Since it is used as feed cooling water, the amount of water used can be saved, and the overflow water whose temperature has increased in the cooling section is stored in this water level stabilization tank and mixed with the water supplied from the pump, reducing the water temperature. Can be done.

また水位安定槽は圧力連通管により架橋管内圧
と同圧にされ、冷却水送給用のラインポンプの吸
入側と吐出側には常に架橋管内の同じ圧力がかか
るので、架橋管内の圧力に変動が生じてもポンプ
の吐出圧力は常に一定となつて小圧力で済み、冷
却水送給用のポンプを小型化することができる。
In addition, the water level stabilization tank is kept at the same pressure as the internal pressure of the cross-linked pipe by a pressure communication pipe, and the same pressure inside the cross-linked pipe is always applied to the suction and discharge sides of the line pump for supplying cooling water, so the pressure inside the cross-linked pipe fluctuates. Even if this occurs, the discharge pressure of the pump is always constant, so only a small pressure is required, and the pump for supplying cooling water can be downsized.

さらに、オーバーフロー部に冷却水のオーバー
フロー水を流入させることにより、架橋管内の圧
力やエンドシールからの冷却水の漏出量に変動が
生じても、その変動に影響されることなく冷却部
における冷却水の水位を常に所定の水位に保つこ
とが可能となり、従来のような冷却水位の急激な
変動や暴走による蒸気爆発や架橋管の損傷等の事
故の発生が防止されるばかりでなく、冷却部の長
さが一定長に安定するので均一良好な特性のケー
ブルを得ることができるものである。
Furthermore, by allowing the overflow water to flow into the overflow section, even if there are fluctuations in the pressure inside the bridge pipe or the amount of cooling water leaking from the end seal, the cooling water in the cooling section is not affected by the fluctuations. This not only prevents the occurrence of accidents such as steam explosions and damage to bridge pipes due to sudden fluctuations and runaway of the cooling water level, but also prevents the occurrence of accidents such as damage to bridge pipes. Since the length is stabilized at a constant length, a cable with uniform and good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す図、第2図は
オーバーフロー部を示す図、第3図は他の実施例
を示す図、第4図は従来例を示す図である。 10:架橋管、11:加熱架橋部、12:冷却
部、20:オーバーフロー部、22:流下管部、
23:水位安定槽、24:高圧ポンプ、26:給
水管、30:冷却水送給管、31:低圧ラインポ
ンプ、39:圧力連通管。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing an overflow section, FIG. 3 is a diagram showing another embodiment, and FIG. 4 is a diagram showing a conventional example. 10: crosslinked pipe, 11: heating crosslinking section, 12: cooling section, 20: overflow section, 22: downflow pipe section,
23: Water level stabilization tank, 24: High pressure pump, 26: Water supply pipe, 30: Cooling water supply pipe, 31: Low pressure line pump, 39: Pressure communication pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 架橋管の加熱架橋部と冷却部との間に冷却水
のオーバーフロー水量を流入させるオーバーフロ
ー部20を設け、前記オーバーフロー部の水が流
下する流下管部22を水位安定槽23に接続する
とともに、高圧ポンプの給水管26を前記水位安
定槽に接続して、オーバーフロー水と給水を前記
水位安定槽内に貯水し、低圧ラインポンプ31を
中間に設けた冷却水送給管30を前記水位安定槽
と冷却部の間に接続して水位安定槽内の貯水を冷
却部に送給し、前記水位安定槽と架橋管を圧力通
管39で接続して水位安定槽の内圧を架橋管の内
圧と同圧にしたことを特徴とするケーブル連続架
橋装置の冷却水位制御装置。
1. An overflow part 20 is provided between the heating cross-linking part and the cooling part of the cross-linked pipe to allow the overflow of cooling water to flow in, and the downstream pipe part 22 through which the water of the overflow part flows is connected to the water level stabilizing tank 23. The water supply pipe 26 of the high pressure pump is connected to the water level stabilizing tank, overflow water and supply water are stored in the water level stabilizing tank, and the cooling water supply pipe 30 with the low pressure line pump 31 provided in the middle is connected to the water level stabilizing tank. and a cooling section to supply water stored in the water level stabilizing tank to the cooling section, and connecting the water level stabilizing tank and the bridge pipe with a pressure passage pipe 39 to change the internal pressure of the water level stabilizing tank to the internal pressure of the bridge pipe. A cooling water level control device for continuous cable bridging equipment, characterized by having the same pressure.
JP20816983A 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device Granted JPS60100310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20816983A JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20816983A JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Publications (2)

Publication Number Publication Date
JPS60100310A JPS60100310A (en) 1985-06-04
JPH0142564B2 true JPH0142564B2 (en) 1989-09-13

Family

ID=16551797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20816983A Granted JPS60100310A (en) 1983-11-05 1983-11-05 Method of controlling coolant level of cable continuous crosslinking device

Country Status (1)

Country Link
JP (1) JPS60100310A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546176Y2 (en) * 1987-03-20 1993-12-02
JPH0546175Y2 (en) * 1987-03-20 1993-12-02

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863B2 (en) * 1972-05-27 1980-01-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863U (en) * 1978-06-23 1980-01-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553863B2 (en) * 1972-05-27 1980-01-28

Also Published As

Publication number Publication date
JPS60100310A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
TWI840534B (en) Temperature control apparatus
GB2298239A (en) Regulating multiphase pump unit
JPS6018287B2 (en) Cooling device for plastic molds
CA1174558A (en) Liquid circulation method and apparatus
JPH0142564B2 (en)
US2037994A (en) Apparatus for metering fluids
CN213024106U (en) Central liquid cooling energy-saving control system applied to professional charging station
EP0130306A3 (en) Method and device for adjusting the threshold pressure to the prevailing pressure conditions in the drain conduits of a device for preventing the back-flow of a liquid to the supply conduit
JP7349738B2 (en) Cable installation inside the duct
US5759454A (en) Method of injecting a filler in controlled manner into a protective tube for protecting optical fibers, and an installation for implementing the method
SU1751422A1 (en) Method of control of pump station
JPH10103605A (en) Number-of-working-fluid-heaters control method for fluid heater
US3480025A (en) Flow divider
JPH06181018A (en) Vertical cable cooler
EP2944885B1 (en) Hot water supply apparatus
JPS59136817A (en) Speed control method for blower of combustion air in heating furnace
CN116839223B (en) Intelligent oil gas heating device and control method thereof
US2534597A (en) Apparatus for handling gases
SE500272C2 (en) Device for quick sectioning
CN210892054U (en) Movable spraying device
JP7224887B2 (en) Increased pressure water supply device and control method for increased pressure water supply device
KR830001587Y1 (en) Vulcanization and crosslinking equipment for rubber and polyethylene wires
KR860003364Y1 (en) Apparatus for manufacturing insulating wire
JP2006183496A (en) Operation method of pump for supplying fluid