JPS5999760A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS5999760A
JPS5999760A JP57210725A JP21072582A JPS5999760A JP S5999760 A JPS5999760 A JP S5999760A JP 57210725 A JP57210725 A JP 57210725A JP 21072582 A JP21072582 A JP 21072582A JP S5999760 A JPS5999760 A JP S5999760A
Authority
JP
Japan
Prior art keywords
memory element
memory device
floating gate
transistor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57210725A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuo
龍一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57210725A priority Critical patent/JPS5999760A/en
Publication of JPS5999760A publication Critical patent/JPS5999760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent the soft light of the titled memory device by a method wherein a differential sensing amplifier, in which the variable signal sent from the field effect type nonvolatile memory element having floating and control gates and the signal sent from the FET having no floating gate are inputted, is provided. CONSTITUTION:The group 21 of a field-effect type non-volatile element 8, and the group 24 of FET of enhancement type 22 and depletion type 23, and an FET 26 for reference are provided on a P type Si substrate 1. A P<++> channel 26 is provided on the group 21 by performing a B-ion implantation, and on the group 24 having no floating gate, a P<+> channel 28 is provided on the enhancement type by performing a B-ion implantation and an N<++> channel 29 is provided on the depletion type by performing a P-ion implantation. The reference FET for differential sensing amplifier has no floating gate, the insulating film thickness of which is to be formed approximately twice (500- 1,000Angstrom ) that of the memory element 8, and besides, a channel 31 is formed into P type by implanting a B-ion of 4-6X10<11>/cm<2> or thereabout, and the element 25 is brought to the same IV characteristics of blanking condition of the element 8 by adjusting the threshold voltage. As the element 25 has no floating gate, no soft light is generated, thereby enabling to improve the readout reliability of the titled memory device.

Description

【発明の詳細な説明】 この発明は、メモリ素子の記憶跡態を検出スる差動セン
スアンプ用のレファレンス用トランジスタのソ、フトラ
イトを防止する。半導体記憶装置に門するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention prevents a reference transistor for a differential sense amplifier that detects a memory state of a memory element from floating. It belongs to semiconductor memory devices.

第1図は可変しきい値型電界効果不揮発性記憶素子・(
以、購メモリ素、子と呼ぶ)の断面図であや。
Figure 1 shows a variable threshold field-effect nonvolatile memory element (
This is a cross-sectional view of a memory element (hereinafter referred to as a child).

図においてP型Si半導体基板(1)内にドレインN、
型不純物拡散層(2〕(以後ドレインと呼ぶ)およびソ
−スN型不純物拡散層(3)(以後ソースと呼ぶ)が離
れて形成されている。このドレイン(2)とソース(3
)の間の表面に近い部分がチャネル領域であり、このチ
ャネル領域上に第1の絶縁膜(4)、フローティングゲ
ート(5)、第2の絶縁膜(6)、コントロールゲート
(7)が順番に積層されている。
In the figure, a drain N,
A type impurity diffusion layer (2) (hereinafter referred to as drain) and a source N-type impurity diffusion layer (3) (hereinafter referred to as source) are formed separately.
) is the channel region, and the first insulating film (4), floating gate (5), second insulating film (6), and control gate (7) are formed on this channel region in this order. are laminated on.

第2図はメモリ素子を利用した従来のレファレンス用ト
ランジスタを用いて構成した半導体記憶装置の読み出し
に係わるメモリ素子から出力までのブロック回路図であ
る。第2図において複数個のメモリ素子(8)がマトリ
ックス状に配列されてメモリエリア(9)が構成され、
メモリ素子(8)のコントロールゲート(7)はXデコ
ーダαOで選択されるように接続され、ドレイン(2)
はYデコーダOpで選択されるように接続され、ソース
(1)はGND(イ)に接続されている。Yデコーダα
ηで選択されたときにドレイン(2)は抵抗(至)を介
して電源α荀に接続されると共に差動アンプα6)の一
方の入力に接続されている。
FIG. 2 is a block circuit diagram from a memory element to an output related to reading of a semiconductor memory device configured using a conventional reference transistor using a memory element. In FIG. 2, a plurality of memory elements (8) are arranged in a matrix to form a memory area (9),
The control gate (7) of the memory element (8) is connected to be selected by the X decoder αO, and the drain (2)
is connected to be selected by the Y decoder Op, and the source (1) is connected to GND (A). Y decoder α
When selected by η, the drain (2) is connected to the power supply α through a resistor (to) and is also connected to one input of the differential amplifier α6).

またメモリ素子を利用したレファレンス用トランジスタ
Q6のゲート(7)は電源α◆に接続され、ドレイン(
2)は差動センスアンプ(15+の他方の入力に接続さ
れると共に抵抗αのを介して電源α機に接続され、ソー
ス(3)はGND(2)に接続されている。さらに差動
センスアンプ(16)の出力は出力バッファ0→の入力
に接続され、出力バッファ(嗜の出力は出力端子09)
に接続されている。
Further, the gate (7) of the reference transistor Q6 using a memory element is connected to the power supply α◆, and the drain (
2) is connected to the other input of the differential sense amplifier (15+) and is connected to the power supply α via the resistor α, and the source (3) is connected to GND (2). The output of the amplifier (16) is connected to the input of the output buffer 0→, and the output of the output buffer (the output of the output is output terminal 09)
It is connected to the.

次に動作について説明する。まず第1図に示すメモリ素
子(8)において、書き込みは、P型半導体基板(1)
トソース(3)を接地し、ドレイン(2)とコントロー
ルゲート(7)に高電圧を加えてドレイン(2)とソー
ス(3)間のドレイン(2)近傍でアバランシェブレイ
クダウンを生じさせ、ホットエレクトロンを70−ティ
ングゲート(5)に注入することによって行なわれる。
Next, the operation will be explained. First, in the memory element (8) shown in FIG. 1, writing is performed on the P-type semiconductor substrate (1).
The source (3) is grounded and a high voltage is applied to the drain (2) and control gate (7) to cause avalanche breakdown near the drain (2) between the drain (2) and the source (3), and hot electrons are generated. This is done by injecting 70-ting gate (5).

読み出しは、フローティングゲート(5)に電子が注入
されているか否かによってコントロールゲート(7)の
しきい値電圧が異なシ、したがってコントロールゲート
(7)に高低2つのしきい値電圧の中間の電圧を印加し
たときチャネル電流が異なるので、この差を検出するこ
とによって行なえる。
For reading, the threshold voltage of the control gate (7) differs depending on whether or not electrons are injected into the floating gate (5). Therefore, the voltage between the two high and low threshold voltages is applied to the control gate (7). This can be done by detecting this difference since the channel currents differ when .

次に第2図においてメモリ情報の読み出し方法について
説明する。まずメモリエリア(9)内のメモリトランジ
スタ(8)の選択はXデコーダ(10でコントロールゲ
ート(7)を選択し、Yデコーダα◇でドレイン(2)
を選択し、1つのメモリ素子(8)のみがコントロール
ゲート(7)とドレイン(2)の両方に電圧が印加され
る。フローティングゲート(5)に電子が無い場合は、
メモリ素子のドレイン(2)、ソース(3)間は導通し
、差動センスアンプQ61に接地レベルすなわち「Lo
w jレベルの電圧が伝わる。フローテイングゲ−) 
(5)に電子が蓄積されている場合は、メモリ素子のド
レイン(2)、ソース(3)間にはほとんど電流が流れ
ず、電源α→から抵抗0を通って[I−1l−1iレベ
ル艇差動センスアンプ(16+に伝わる。一方しファレ
ンス用トランジスタOユは、メモリ素子と同じ構造・機
能を持っているが、メモリ素子として用いるのでなく電
子をフローティングゲート(5)に注入することなくト
ランジスタとして用いる。この場合レファレンス用トラ
ンジスタα→は常に導通状態とナリ、差動センスアンプ
(151の他の入力には常に「Low Jレベルの電圧
が伝わる。したがってレファレンス用トランジスタαQ
からの「Low Jと同程度の信号がメモリエリア(9
)から差動センスアンプ([51に伝われば”1”と判
定し、レファレンスαQからの「LOW」レベルよシ高
い「HighJレベルの信号が伝われば0”と判淀し、
出力バッファQ8]を通って出力端09)に出力される
。ここでレファレンス用トランジスタ0的の構造・機能
が、メモリ素子(8)のそれと同じものが使われている
のは以上説明したように、メモリ素子(8)の消去状態
のID−VG特性と同じ特性を持つトランジスタを容易
に得られるからである。
Next, a method for reading memory information will be explained with reference to FIG. First, the memory transistor (8) in the memory area (9) is selected using the X decoder (10 to select the control gate (7), and the Y decoder α◇ to select the drain (2).
is selected, and only one memory element (8) has a voltage applied to both its control gate (7) and drain (2). If there are no electrons in the floating gate (5),
The drain (2) and source (3) of the memory element are electrically connected, and the differential sense amplifier Q61 is connected to the ground level, that is, "Lo
A voltage of w j level is transmitted. floating game)
When electrons are accumulated in (5), almost no current flows between the drain (2) and source (3) of the memory element, and the current flows from the power supply α→ to the [I-1l-1i level] through the resistor 0. This is transmitted to the differential sense amplifier (16+).On the other hand, the reference transistor O has the same structure and function as a memory element, but instead of being used as a memory element, it is used without injecting electrons into the floating gate (5). Used as a transistor.In this case, the reference transistor α→ is always in a conductive state, and the other inputs of the differential sense amplifier (151 always receive a “Low J” level voltage. Therefore, the reference transistor αQ
A signal of the same level as “Low J” from the memory area (9
) to the differential sense amplifier ([51], it is determined to be "1", and if a signal of "HighJ level", which is higher than the "LOW" level from the reference αQ, is transmitted, it is determined to be "0",
output buffer Q8] and is output to output terminal 09). Here, the structure and function of the reference transistor 0 are the same as those of the memory element (8).As explained above, the ID-VG characteristics of the memory element (8) in the erased state are the same. This is because a transistor with characteristics can be easily obtained.

ところが、上記のようにレファレンス用トランジスタの
ドレインとソース間に常に電圧を加えておく必要がちシ
、レファレンス用トランジスタの構造・機能をメモリ素
子のそれと同じにした場合、長時1’jiの動作でフロ
ーティングゲート構造特有の、ドレイン・ソース間の低
電圧で少しずつフローティングゲートに電子が注入され
て電荷が保持される現象でるるソフトライトが起こるこ
とがめる。
However, as mentioned above, it is necessary to always apply a voltage between the drain and source of the reference transistor, and if the structure and function of the reference transistor are made the same as that of the memory element, it will not work at 1'ji for a long time. A soft write, which is unique to the floating gate structure, occurs in which electrons are gradually injected into the floating gate at a low voltage between the drain and source, causing charge to be retained.

ソフトライト状態になると基準となるレフアレンス用ト
ランジスタのしきい値が変化してしまい、しきい値変化
が大きくなった場合誤った信号を読み出して伝えること
になり、信頼性が悪くなるという欠点があった。
When in a soft write state, the threshold value of the reference transistor that serves as the standard changes, and if the threshold value change becomes large, an incorrect signal will be read and transmitted, resulting in poor reliability. Ta.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、フローティングゲートとコントロ
ールゲートとを有する電界効果不揮発性記憶素子と、フ
ローティングゲートを持たない電界効果トランジスタと
、前記記憶素子によって得る可変信号および前記電界効
果トランジスタによって得る信号を2つの入力とする差
動七/スアンプとを備えることによシ、ソフトライトを
防ぎしたがって信頼性を向上させる半導体記憶装置を提
供することを目的としている。
The present invention was made in order to eliminate the drawbacks of the conventional devices as described above, and includes a field effect nonvolatile memory element having a floating gate and a control gate, a field effect transistor having no floating gate, and the memory element. An object of the present invention is to provide a semiconductor memory device which prevents soft writes and improves reliability by providing a differential amplifier having two inputs: a variable signal obtained by the field effect transistor and a signal obtained by the field effect transistor. It is said that

以下、この発明の一実施例を図について説明する。第8
図は半導体記憶装置の側断面図である。
An embodiment of the present invention will be described below with reference to the drawings. 8th
The figure is a side sectional view of a semiconductor memory device.

第8図においてP型S1半導体基板(1)にメモリ素子
゛(8)すなわち電界効果型不揮発性記憶素子からなる
In FIG. 8, a P-type S1 semiconductor substrate (1) is provided with a memory element (8), that is, a field-effect nonvolatile memory element.

メモリ素子群C21)、内部回路のエンハンスメントト
ランジスタ122およびデプレッショントランジスタ(
財)からなるトランジスタ群(財)、レファレンス用ト
ランジスタ(ハ)が形成されている。メモリ素子群@1
)においてドレイン(2〕およびソース(3)が所定間
隔離れて形成され、そのソース・ドレイン聞出すなわち
チャネル領域上には第1の絶縁膜(4)、ポリシリコン
等の電荷の保持および放出が可能な導電体のフローテイ
ングゲー)’ (5)、第2の絶縁膜(6)、ポリ、シ
リコン等の導電体□のコントロールゲート(7)が積層
のブレイクダウン電圧を下げてフローテイングゲー)(
51zの電子注入効率を上げるため、8xxou〜10
 、X 、10 ’、’儂で平均値が6.、 X 10
”cxのボロンが注入されてP型不純物拡散層(261
(以後rと呼ぶ)が    ゛形成されている。トラン
ジスタ群Hにおいては、チャネル領域上に第1の絶縁M
(4)、フローティングゲート(5)と同時に形成さ糺
るゲートシカが積層さ1       。
memory element group C21), an enhancement transistor 122 and a depletion transistor (
A transistor group (product) consisting of transistors (product) and a reference transistor (c) are formed. Memory element group @1
), a drain (2) and a source (3) are formed at a predetermined distance apart, and a first insulating film (4), polysilicon, etc., which holds and releases charges, is formed on the source/drain region, that is, the channel region. Possible floating conductor (5), second insulating film (6), control gate (7) of conductor such as poly or silicon lowers the breakdown voltage of the stack, resulting in floating gate) (
In order to increase the electron injection efficiency of 51z, 8xxou ~ 10
,X,10','I have an average value of 6. , X 10
``Cx boron is implanted to form a P-type impurity diffusion layer (261
(hereinafter referred to as r) is formed. In the transistor group H, a first insulating layer M is provided on the channel region.
(4) At the same time as the floating gate (5), the glued gate layer is laminated 1.

トド多ンジスタ翰の一合はメモリ□素子(8)のP+1
よシ少ない平均値で4×10”cIrLのボロンが五人
されてP型不純物拡散層(ハ)(品後 と呼ぶ)が形成
され、デプレッショントランジスタ(2)の場合はリン
が注入されてN型不純物拡散層@(以後N++と呼ぶ)
が形成されている。レファレンス用トランジ′スタ0力
においては、チャネル領域上にメモリ素子(8)の第1
の絶縁膜(4)および第2の絶縁膜(6)と同時に形成
されるゲート絶縁膜、コントロールゲート(7)と同時
に形成されるゲート国が積層され、ドレイン(2)とソ
ース(3)間にはメモリ素子(8)のp++ fiおよ
びエンハンスメントトランジスタ(社)のP+□□□の
少なくとも一方の注入量と同じボロンが注入されてP型
不純物拡散層0υが形成されている。
The combination of Todo multi-disaster wire is P+1 of memory □ element (8)
Five boron particles of 4 x 10"cIrL are injected with a small average value to form a P-type impurity diffusion layer (c) (referred to as "Shinago"), and in the case of a depletion transistor (2), phosphorus is injected and N Type impurity diffusion layer @ (hereinafter referred to as N++)
is formed. At zero power, the reference transistor's first transistor of the memory element (8) is placed on the channel region.
The insulating film (4) and the gate insulating film formed simultaneously with the second insulating film (6), and the gate insulating film formed simultaneously with the control gate (7) are stacked, A P-type impurity diffusion layer 0υ is formed by implanting boron in an amount equal to that of at least one of the p++ fi of the memory element (8) and the P+□□□ of the enhancement transistor (Inc.).

上記のように構成したものにおいて、レファレンス用ト
ランジスターにはフローティングゲート(5)は無いが
メモリ素子(8)で使われている第1の絶縁膜(4)お
よび第2の絶縁膜(6)がゲート絶縁膜として使われて
いる。一般に第1の絶縁膜(4)おより第2の絶縁膜(
6)の膜厚は400〜700穴なので、レファレンス用
トランジスタ彌のゲート絶縁膜の厚みはそれの2倍程に
なり、しき買値電圧は0.1〜0.8 V程上がる。第
4図にしきい値電産とゲート膜厚の関係を示す。第4図
においてしきい値電圧のばらつきは±0.1v程度であ
る。さらにP型不純物拡散層SOには、平均f 6X1
0”c7iL”か、4X10”l”か、両方を合わせた
1θxio”(7)のボロンが注入されているので、第
5図のしき鳩値電圧〜ボロン注大量特性に示すようにレ
ファレンス用トランジスタ(社)のしきい値電圧は広い
範囲に亘って変えられる。通常メモリ素子(8)の消去
状態のしきい値電圧は1.0〜2.QVであシ、レファ
レンス用トラニ/ジスタ(社)のゲート膜厚を厚くする
ことと、チャネル領域を含むP型不純物拡散層0◇のボ
ロン注入量を調節することで、レファレンス用トランジ
スタ(社)のしきい値電圧も1.0〜2.OV K設定
でき、メモリ素子(8]とほぼ同じ工程で作ることがで
きるので、メモリ素子(8)の消去状態の電流・電圧特
性と同、じ特性を容易に持たせることができる。したが
ってこのレファレンス用トランジスタ(21itを第2
図のレファレンス用トランジスタaQと替えて用いるこ
とにょシ、従来と同様に出力端子(iから所望の“1”
または0”の出力を取り出すことができ、且っし7アレ
ンス用トランジスタt2aにはフローティングゲート(
5)が存在しないので、ソフトライトが生じることがな
くしたがって読み出しの信頼性を向上させることができ
る。
In the structure described above, the reference transistor does not have a floating gate (5), but the first insulating film (4) and second insulating film (6) used in the memory element (8) are Used as a gate insulating film. Generally, the first insulating film (4) and the second insulating film (
Since the film thickness of 6) is 400 to 700 holes, the thickness of the gate insulating film of the reference transistor is about twice that, and the threshold voltage increases by about 0.1 to 0.8 V. FIG. 4 shows the relationship between threshold voltage and gate film thickness. In FIG. 4, the variation in threshold voltage is about ±0.1v. Furthermore, the P-type impurity diffusion layer SO has an average f 6X1
Since boron is implanted with a value of 0"c7iL", 4X10"l", or 1θxio" (7), which is a combination of both, the reference transistor The threshold voltage of the memory element (8) in the erased state is usually 1.0 to 2.QV, ) by increasing the gate film thickness and adjusting the amount of boron implanted into the P-type impurity diffusion layer 0◇ including the channel region, the threshold voltage of the reference transistor (Inc.) can also be increased from 1.0 to 2. Since the OV K can be set and it can be manufactured in almost the same process as the memory element (8), it can easily have the same current and voltage characteristics as the erased state of the memory element (8). Reference transistor (21it)
When used in place of the reference transistor aQ shown in the figure, the output terminal (from i to the desired "1"
or 0'' output can be taken out, and the 7 array transistor t2a has a floating gate (
5) does not exist, so soft writing does not occur, and therefore read reliability can be improved.

なお、上記実施例ではレファレンス用トランジスタ(2
句はメモリ素子(8)の消去時のID−■G特性と同じ
特性したがこれに限るものでなく、特性に差があっても
メモリ素子(8)と同じ出力であればよく、さらにメモ
リ素子(8)と異なる出力であってもよい。
Note that in the above embodiment, the reference transistor (2
Although the phrase has the same characteristics as the ID-■G characteristics when erasing the memory element (8), it is not limited to this, and even if there is a difference in characteristics, it is sufficient that the output is the same as that of the memory element (8). The output may be different from that of the element (8).

また上記実施例ではレファレンス用トランジスタ(2均
のゲート彌はメモリ素子(8)のコントロールゲ−ト(
7)の材質と同じとしたが、異なる材質であってもよく
、ゲート絶縁膜はメモリ素子(8〕の第1の絶縁膜(4
)および第2の絶縁膜(6)を積層した構造であったが
、例えば第1の絶縁膜(4)のみとした他の構造であっ
てもよく、さらKP型不純物拡散層0])のボロン注入
量はメモリ素子(8)のP++(26)のボロン注入量
および内部回路のエンノ・ンスメントトランジスタ翰の
P+e28)のボロン注入量の少なくとも一方の注入量
としたが、他の注入量でもよく、また他の不純物でもよ
く、同様に所期の目的を達し得る。
In addition, in the above embodiment, the reference transistor (the 2-equal gate gate is the control gate (8) of the memory element (8)).
Although the material is the same as that of 7), it may be a different material, and the gate insulating film is the same as the first insulating film (4) of the memory element (8).
) and the second insulating film (6), for example, other structures including only the first insulating film (4) may be used. The amount of boron implanted was set to be at least one of the amount of boron implanted into P++ (26) of the memory element (8) and the amount of boron implanted into P+e28) of the enhancement transistor in the internal circuit, but other implanted amounts may also be used. Alternatively, other impurities may also be used to achieve the desired purpose as well.

以上のように、この発明によればフローティングゲート
とコントロールゲートとを有する電界効果不揮発性記憶
素子と、フローティングゲートを持たない電界効果トラ
ンジスタと、前記記憶素子によって得る可変信号および
前記電界効果トランジスタによって得る信号を2つの入
力とする差動センスアンプとを備えたので、前記電界効
果トランジスタを前記記憶素子のレファレンス用トラン
ジスタとし動作させることができ、且つソフトライトを
防止することができ、したがって信頼性を向上させるこ
とができるという効果がある。
As described above, according to the present invention, there is provided a field effect nonvolatile memory element having a floating gate and a control gate, a field effect transistor having no floating gate, a variable signal obtained by the memory element, and a variable signal obtained by the field effect transistor. Since the field effect transistor is provided with a differential sense amplifier that receives two signals as inputs, it is possible to operate the field effect transistor as a reference transistor for the memory element, and it is also possible to prevent soft write, thereby improving reliability. The effect is that it can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電界効果不揮発性記憶素子を示す側断面図、第
2図は従来の半導体記憶装置の読み出し回路図、第8図
はこの発明の一実施例による半導体記憶装置の側断面図
、第4図はしきい値電圧−ゲート膜厚特性図、第5図は
しきい値電圧−ボロン注入量特性図である。 図において(1)は半導体基板、(5)はフローティン
グゲート、(7)はコントロールゲート、(8)は電界
効果不揮発性記憶素子、θ51は差動センスアンプ、伐
4)ハ電界効果トランジスタである。 なお、図中、同一符号は同一または相当部分を示す。 代理人 葛野信− 第1図 第2図
FIG. 1 is a side sectional view showing a field-effect nonvolatile memory element, FIG. 2 is a read circuit diagram of a conventional semiconductor memory device, and FIG. 8 is a side sectional view of a semiconductor memory device according to an embodiment of the present invention. FIG. 4 is a threshold voltage vs. gate film thickness characteristic diagram, and FIG. 5 is a threshold voltage vs. boron implantation amount characteristic diagram. In the figure, (1) is a semiconductor substrate, (5) is a floating gate, (7) is a control gate, (8) is a field effect nonvolatile memory element, θ51 is a differential sense amplifier, and 4) C is a field effect transistor. . In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板内に形成され、コント白−ルゲートに
電圧を印加するととによって、フローティ7グゲートが
消萎・書き込みのどちらかの状態にあるかを読み出し可
能な可変しきい値型電界効果不揮発性記憶素子、前記半
導体基板と四二基板内に形成された電界効果トランジス
タ、前記記憶素子から得る可変信号および前記トランジ
スタから得る信号を2つの入力とする差動センスアンプ
を備えた半導体記憶装置。
(1) Variable threshold field-effect non-volatile device formed in a semiconductor substrate and capable of reading out whether a floating gate is in the erased or written state by applying a voltage to the control gate. 1. A semiconductor memory device comprising a differential sense amplifier having two inputs: a variable signal obtained from the memory element and a signal obtained from the transistor.
(2)電界効果トランジスタは記憶素子の消去状態の出
力と同じ出力を持つ特許請求の範囲第1項に記載の半導
体記憶装置。     □
(2) The semiconductor memory device according to claim 1, wherein the field effect transistor has the same output as the erased state output of the memory element. □
(3)電界効果トランジスタのゲート絶縁膜は、記憶□
素子のフローティングゲート絶縁膜にコントロニールゲ
ート絶縁膜を積層させた構造である特許請求の範囲第1
項ま、たは第2項に記載の半導体記憶装置。
(3) The gate insulating film of a field effect transistor is a memory □
Claim 1 has a structure in which a control gate insulating film is laminated on a floating gate insulating film of an element.
3. The semiconductor memory device according to item 1 or 2.
(4)電界効果トランジスタのゲートの材質は記憶素子
(D ニア 7 )ロールゲートの材質勺同じである特
許請求の範囲第1項ないし第8項のいずれかに記載の半
導体記憶装置。 (5J電界効果トランジスタのチャネル領域の不純物注
入量、は記憶素子のチャネル領域の不純物注入量および
同一半導体基板内の他のMOS)ランジスタノチャネル
領域の不純物注入量の少なくとも一方の不純物注入量で
ある特許請求の範囲第1項ないし第4項のいずれかに記
載の半導体記憶装置。
(4) The semiconductor memory device according to any one of claims 1 to 8, wherein the material of the gate of the field effect transistor is the same as that of the roll gate of the memory element (D near 7 ). (The amount of impurity implanted in the channel region of the 5J field effect transistor is the amount of impurity implanted in the channel region of the storage element and the amount of impurity implanted in the transistor channel region of other MOSs in the same semiconductor substrate). A semiconductor memory device according to any one of claims 1 to 4.
JP57210725A 1982-11-29 1982-11-29 Semiconductor memory device Pending JPS5999760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210725A JPS5999760A (en) 1982-11-29 1982-11-29 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210725A JPS5999760A (en) 1982-11-29 1982-11-29 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS5999760A true JPS5999760A (en) 1984-06-08

Family

ID=16594064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210725A Pending JPS5999760A (en) 1982-11-29 1982-11-29 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5999760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947221A (en) * 1985-11-29 1990-08-07 General Electric Company Memory cell for a dense EPROM
EP0424172A2 (en) * 1989-10-20 1991-04-24 Fujitsu Limited Nonvolatile semiconductor memory apparatus
US5243210A (en) * 1987-02-21 1993-09-07 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947221A (en) * 1985-11-29 1990-08-07 General Electric Company Memory cell for a dense EPROM
US5243210A (en) * 1987-02-21 1993-09-07 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method thereof
EP0424172A2 (en) * 1989-10-20 1991-04-24 Fujitsu Limited Nonvolatile semiconductor memory apparatus
US5642308A (en) * 1989-10-20 1997-06-24 Fujitsu Limited Nonvolatile semiconductor memory apparatus

Similar Documents

Publication Publication Date Title
US6873004B1 (en) Virtual ground single transistor memory cell, memory array incorporating same, and method of operation thereof
US6252799B1 (en) Device with embedded flash and EEPROM memories
US6277689B1 (en) Nonvolatile memory
US6255690B1 (en) Non-volatile semiconductor memory device
KR950011025B1 (en) Semiconductor memory device
US6653685B2 (en) Nonvolatile memory device
US7166509B2 (en) Write once read only memory with large work function floating gates
JPS6313353B2 (en)
US20040213048A1 (en) Nonvolatile memory having bit line discharge, and method of operation thereof
JPH0219980B2 (en)
US7570521B2 (en) Low power flash memory devices
US6570212B1 (en) Complementary avalanche injection EEPROM cell
US6215700B1 (en) PMOS avalanche programmed floating gate memory cell structure
US5589700A (en) Semiconductor nonvolatile memory
US3653002A (en) Nonvolatile memory cell
JPS5999760A (en) Semiconductor memory device
US7102188B1 (en) High reliability electrically erasable and programmable read-only memory (EEPROM)
US7200046B2 (en) Low power NROM memory devices
JP2544569B2 (en) Semiconductor memory device
JP2544570B2 (en) Method for manufacturing semiconductor memory device
JPS6241431B2 (en)
JPH0352269A (en) Ultraviolet ray erasable semiconductor nonvolatile memory
JP2628673B2 (en) Semiconductor storage device
JPS584460B2 (en) handmade takiokusouchi
JPH05226665A (en) Semiconductor storage device