JPS5999663A - Production method of silver (ii) oxide cell - Google Patents

Production method of silver (ii) oxide cell

Info

Publication number
JPS5999663A
JPS5999663A JP57209736A JP20973682A JPS5999663A JP S5999663 A JPS5999663 A JP S5999663A JP 57209736 A JP57209736 A JP 57209736A JP 20973682 A JP20973682 A JP 20973682A JP S5999663 A JPS5999663 A JP S5999663A
Authority
JP
Japan
Prior art keywords
silver
mixture
oxide
lead dioxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57209736A
Other languages
Japanese (ja)
Inventor
Kazuo Ishida
和雄 石田
Akira Asada
浅田 朗
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57209736A priority Critical patent/JPS5999663A/en
Publication of JPS5999663A publication Critical patent/JPS5999663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a cell with low internal resistance and excellent discharge characteristics by using a mixture of lead dioxide and silver (II) oxide both oxidized and synthesized in the same reaction system as a raw material for a positive electrode black mix. CONSTITUTION:One (1) of a mixture of a lead nitrate aqueous solution and a silver nitrate aqueous solution with a predetermined density is heated at 80 deg.C, then 80g of potassium persulfate and 35g of potassium hydroxide are added and stirred, and the precipitate is water-washed and dried to obtain a mixture of silver (II) oxide and lead dioxide. Silver (II) oxide is added to this mixture so that the weight ratio between silver (II) oxide and lead dioxide becomes 95/5, and it is pressurized and molded at 5t/cm<2> to obtain a molded positive electrode black mix 1. This black mix 1 is inserted into a positive electrode can 2 injected with part of an alkaline electrolyte, a separator 3 and an electrolyte absorber 4 are mounted in sequence, an annular gasket 7 is inserted in the peripheral section and is coupled with a negative electrode terminal plate 5 filled with a negative electrode 6 using amalgamated zinc as an active material and most of the remaining alkaline electrolyte, and the opening section of the positive electrode can 2 is tightened and bent inward so that its inner periphery is brought into contact by pressure with the annular gasket 7 for sealing.

Description

【発明の詳細な説明】 この発明は酸化第二銀(APO)を陽極主活物質としそ
の導電助剤として二酸化鉛(pbo2)を用いた酸化第
二銀電池の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silver oxide battery using silver oxide (APO) as the main active material for the anode and lead dioxide (pbo2) as a conductive agent.

従来のこの種電源は、酸化第二銀と二酸化鉛とを混合し
た陽極合剤を加圧成形し、これを電池内に収納する方法
でつくられているが、この方法では二酸化鉛の導電機能
を充分Iこ発揮できないためか、内部抵抗をそれほど低
下できず、満足できる放電特性が得られなかった。
Conventionally, this type of power supply is made by press-molding an anode mixture of silver oxide and lead dioxide and storing it inside the battery, but this method relies on the conductive function of lead dioxide. Perhaps because the internal resistance could not be sufficiently exerted, the internal resistance could not be lowered much, and satisfactory discharge characteristics could not be obtained.

この発明者らは、上記放電特性を改良するための研究過
程において、酸化第二銀と二酸化鉛とを同一反応系で一
体に合成し、これを陽極合剤成形用の原料の一部ないし
全部として利用したときには、内部抵抗の低い放電特性
1こすぐれる酸化第二銀電池が得られることを知り、こ
の発明を完成するに至ったものである。
In the process of research to improve the above-mentioned discharge characteristics, the inventors synthesized silver oxide and lead dioxide together in the same reaction system, and used this as part or all of the raw material for forming the anode mixture. It was discovered that when used as a battery, a silver oxide battery with low internal resistance and excellent discharge characteristics can be obtained, leading to the completion of this invention.

すなわち、この発明は、陽極主活物質としての酸化第二
銀と導電助剤としての二酸化鉛とを含む陽極合剤を加圧
成形し、これを電池内に収納して酸化第二銀電池を製造
する方法番こおいて、アルカ+  、 り性水溶液中でAyイオ/とPb2+イオンとを過硫酸
塩によって同時に酸化して酸化第二銀と二酸化鉛との混
合物をつくり、これを前記陽極合剤の原料の一部ないし
全部として用いることを特徴とする酸化第二銀電池の製
造法に係るものである。
That is, this invention involves pressure-molding an anode mixture containing silver oxide as the main active material of the anode and lead dioxide as a conductive agent, and storing this in a battery to produce a ferric oxide battery. In the manufacturing method, Ay ions and Pb2+ ions are simultaneously oxidized with persulfate in an alkali aqueous solution to create a mixture of ferric oxide and lead dioxide, which is added to the anode composition. The present invention relates to a method for manufacturing a ferric oxide battery, which is characterized in that the present invention is used as part or all of the raw material for the agent.

この発明においては、まず、アルカリ土類金属中でAy
+イオンとpb  イオンとを過硫酸塩によって同時1
こ酸化して酸化第二銀と二酸化鉛との混合物をつくる。
In this invention, first, Ay in an alkaline earth metal is
+ ion and pb ion are simultaneously combined with persulfate.
This oxidation produces a mixture of ferric oxide and lead dioxide.

この方法は、たとえば加熱された硝酸銀水溶液と硝酸鉛
水溶液との混液に過硫酸−カリウム(K2S208) 
 と水酸化カリとを加えて攪拌反応させる方法などで実
施できる。
In this method, for example, potassium persulfate (K2S208) is added to a heated mixture of a silver nitrate aqueous solution and a lead nitrate aqueous solution.
This can be carried out by adding and stirring reaction with potassium hydroxide.

かかる方法で生成される酸化第二銀と二酸化鉛とは、一
般1こ酸化第二銀の粒子表面lこ二酸化鉛微粒子が均一
1こ沈着した如き形態となってなり、これが二酸化鉛の
導電機能に非常(こ良好な結果を与える。また、上記方
法によると、二酸化鉛の結晶化速度が速くなり、しかも
結晶粒子が小さくなりやすく、そのうえ結晶系が電池組
立後の貯蔵中(こ内部抵抗が増大する現象を抑止するに
適したα−型となるため(こ、導電助剤としての機能を
より一層向上させることができる。
The ferric oxide and lead dioxide produced by this method are in the form of fine particles of lead dioxide deposited uniformly on the surface of the ferric oxide particles, and this is due to the conductive function of lead dioxide. In addition, according to the above method, the crystallization rate of lead dioxide becomes faster, and the crystal particles tend to become smaller. Since it becomes an α-type suitable for suppressing the increasing phenomenon (this makes it possible to further improve the function as a conductive aid).

この発明では、上記方法でつくられる酸化第二銀と二酸
化鉛との混合物を陽極合剤の原料として用いるが、この
際上記混合物を飽くまでも改質された導電助剤として利
用するのがもつとも一般的な使用態様である。この場合
、上記混合物に通常の酸化第二銀および要すれば酸化第
−銀を混合し、これを加圧成形して成形陽極合剤とする
In this invention, a mixture of ferric oxide and lead dioxide produced by the above method is used as a raw material for the anode mixture, but in this case, it is also common to use the above mixture as a modified conductive additive. It is a usage mode. In this case, usual silver oxide and, if necessary, silver oxide are mixed with the above mixture, and this is pressure-molded to obtain a molded anode mixture.

他の使用態様として、上記混合物が陽極合剤としてすで
に適切な割合の酸化第二銀と二酸化鉛とからなるときは
、これをそのままあるいは必要に応じて酸化第−銀など
の所定成分を添加して陽極合剤成形用の原料として用い
ても差し支えない。
As another mode of use, when the above mixture already consists of ferric oxide and lead dioxide in an appropriate ratio as an anode mixture, it may be used as it is or, if necessary, a prescribed component such as ferric oxide may be added. There is no problem in using it as a raw material for forming anode mixture.

もちろん、これら以外の使用態様をとってもよく、要は
前記混合物を成形用陽極合剤の一部ないし全部として用
いる方法であれは任意である。
Of course, usage modes other than these may be used, and the point is that any method in which the mixture is used as part or all of the anode mixture for molding is arbitrary.

なお、いずれの使用態様においても、一般には最終的1
こ成形される陽極合剤中の二酸化鉛の含有量か酸化第二
銀(これと酸化第−銀とを併用する場合はその合量)1
00市量部1こ対して3〜10市量部となるように調節
される。
In addition, in any usage mode, the final 1
The content of lead dioxide in the anode mixture to be formed or silver oxide (if this and silver oxide are used together, the total amount) 1
It is adjusted so that 3 to 10 parts of market weight per 1 part of 0.00 parts of market weight.

以上のように、この発明法によれば、同一反応系で酸化
合成した二酸化鉛と酸化第二銀との混合物を陽極合剤の
原料として用いること(こより、内部抵抗の低い良好な
放電特性を示す酸化第二銀電池を得ることができる。
As described above, according to the method of this invention, a mixture of lead dioxide and ferric oxide synthesized in the same reaction system is used as a raw material for the anode mixture (this allows good discharge characteristics with low internal resistance to be obtained. The following silver oxide battery can be obtained.

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例 所定濃度の硝酸鉛水溶液と所定濃度の硝酸銀水溶液との
混合物11を80°Cに加熱したのち、過硫酸カリウム
80yと水酸化カリウム35yとを加えて1時間攪拌し
た。沈殿物を水洗したのち8゜°Cの真空乾燥機中で乾
燥することにより、酸化第二銀と二酸化鉛との混合物を
得た。
Example A mixture 11 of a lead nitrate aqueous solution with a predetermined concentration and a silver nitrate aqueous solution with a predetermined concentration was heated to 80° C., and then 80 y of potassium persulfate and 35 y of potassium hydroxide were added and stirred for 1 hour. The precipitate was washed with water and then dried in a vacuum dryer at 8°C to obtain a mixture of ferric oxide and lead dioxide.

この混合物に酸化第二銀と二酸化鉛との重量比率が95
15となるように酸化第二銀を添加し。
This mixture has a weight ratio of 95% silver oxide and lead dioxide.
Silver oxide was added so that the amount was 15.

その260■を5トン/dで加圧成形して直径9mm、
厚み0.7 mmの成形陽極合剤を得た。この合剤を用
いて常法により図示される如き酸化第二銀電池を作製し
た。
The 260cm was press-formed at 5 tons/d to a diameter of 9mm.
A molded anode mixture having a thickness of 0.7 mm was obtained. Using this mixture, a silver oxide battery as shown in the figure was prepared by a conventional method.

すなわち、アルカリ電解液の一部が注入された陽極缶2
に前記の成形陽極合剤1を挿入し、この合剤1上にセパ
レータ3および電解液吸収体4を順次載置した。
That is, the anode can 2 into which a part of alkaline electrolyte is injected
The above-mentioned molded anode mixture 1 was inserted, and the separator 3 and electrolyte absorber 4 were placed on this mixture 1 in this order.

つぎに、この状態の陽極缶2を、同縁部(こ環状ガスケ
ット7を嵌着させかつ75ffIgのアマルガム化亜鉛
を活物質とする陰極6と残り大半部のアルカリ電解液と
を内填した陰極端子板5に嵌合し、@極缶2の開口部を
内方へ締め付けわん曲させてその内固面を環状ガスケッ
ト7に圧接させて封口することにより1図に示すような
構成のボタン型の酸化第二銀電池を作製した。
Next, the anode can 2 in this state is connected to the same edge portion (the cathode 6 in which the annular gasket 7 is fitted and the cathode 6 containing 75ffIg amalgamated zinc as an active material and the remaining majority of the alkaline electrolyte). A button type having the structure shown in Fig. 1 is formed by fitting into the terminal plate 5, tightening the opening of the electrode can 2 inward and bending it, and pressing the inner solid surface against the annular gasket 7 to seal it. A silver oxide battery was fabricated.

なお、使用した陽極缶2は鉄製で表面をニッケルメッキ
したものであり、陰極端子板5は銅−ステンレス鋼−ニ
ッケルクラッド板製である。セパレータ3としてはセロ
ファンの両側にグラフトフィルム(架橋低密度ポリエチ
レンフィルムにメタクリル酸をグラフト重合させたグラ
フトフィルム)をラミネートした複合膜が使用され、電
解液吸収体4はポリプロピレン不織布からなるものであ
る。
The anode can 2 used was made of iron and had its surface plated with nickel, and the cathode terminal plate 5 was made of a copper-stainless steel-nickel clad plate. As the separator 3, a composite membrane is used in which a graft film (a graft film obtained by graft polymerizing methacrylic acid to a cross-linked low-density polyethylene film) is laminated on both sides of cellophane, and the electrolyte absorber 4 is made of a polypropylene nonwoven fabric.

アルカリ電解液としては酸化亜鉛を溶解させた25獣量
%の苛性ソーダ水溶液を使用した。また、電池(ボタン
型)の直径は9.” 5 mm 、高さは2.7闘であ
る。
As the alkaline electrolyte, a 25% by weight caustic soda aqueous solution in which zinc oxide was dissolved was used. Also, the diameter of the battery (button type) is 9. ” 5 mm, height is 2.7 mm.

この酸化第二銀電池につき、前記混合物中の酸化第二銀
(金嘱銀に換算)と二酸化鉛(金属鉛に換算)との重量
比率と電池の内部抵抗特性との関係を調べた結果は、つ
きの表に示されるとおりてあった。なお、電池の内部抵
抗特性とは、1KH2の交流をかけた時の抵抗成分て表
わしたものである。
Regarding this silver oxide battery, the results of investigating the relationship between the weight ratio of ferric oxide (converted to silver metal) and lead dioxide (converted to metal lead) in the mixture and the internal resistance characteristics of the battery are as follows. , as shown in the accompanying table. Note that the internal resistance characteristic of a battery is expressed as a resistance component when an alternating current of 1KH2 is applied.

上表から明らかなように、同一反応系で酸化第二銀と二
酸化鉛とを同時に酸化合成することにより、これを用い
て得られる酸化第二銀電池の内部抵抗を低くてき、放電
特性の向上を図れるものであることがわかる。
As is clear from the above table, by simultaneously oxidizing and synthesizing ferric oxide and lead dioxide in the same reaction system, the internal resistance of the ferric oxide battery obtained using this can be lowered and the discharge characteristics improved. It can be seen that it is possible to achieve the following.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明法(こよって得た酸化第二銀電池の一例
を示す断面図である。 1・・・陽極合剤。
The drawing is a cross-sectional view showing an example of a silver oxide battery obtained by the method of the present invention. 1. Anode mixture.

Claims (1)

【特許請求の範囲】[Claims] (1)  陽極主活物質としての酸化第二銀と導電助剤
としての二酸化鉛とを含む陽極合剤を加圧成形し、これ
を電池内に収納して酸化第二銀電池を製造する方法にお
いて、アルカリ性水溶液中で+   、 hy イオ/とPb2+イオンとを過硫酸塩によって同
時に酸化して酸化第二銀と二酸化鉛との混合物をつくり
、これを前記Va極会合剤原料の一部ないし全部として
用いることを特徴とする酸化第二銀電池の製造法。
(1) A method of manufacturing a ferric oxide battery by press-molding an anode mixture containing ferric oxide as the main active material of the anode and lead dioxide as a conductive agent, and storing this in a battery. In this step, +, hy io/ and Pb2+ ions are simultaneously oxidized with persulfate in an alkaline aqueous solution to create a mixture of ferric oxide and lead dioxide, and this is added to some or all of the Va electrode associating agent raw material. A method for manufacturing a ferric oxide battery, characterized in that it is used as a battery.
JP57209736A 1982-11-30 1982-11-30 Production method of silver (ii) oxide cell Pending JPS5999663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209736A JPS5999663A (en) 1982-11-30 1982-11-30 Production method of silver (ii) oxide cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209736A JPS5999663A (en) 1982-11-30 1982-11-30 Production method of silver (ii) oxide cell

Publications (1)

Publication Number Publication Date
JPS5999663A true JPS5999663A (en) 1984-06-08

Family

ID=16577782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209736A Pending JPS5999663A (en) 1982-11-30 1982-11-30 Production method of silver (ii) oxide cell

Country Status (1)

Country Link
JP (1) JPS5999663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703409A (en) * 1993-12-21 1997-12-30 Fujitsu Limited Error counting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703409A (en) * 1993-12-21 1997-12-30 Fujitsu Limited Error counting circuit

Similar Documents

Publication Publication Date Title
US4096318A (en) Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
JPS5999663A (en) Production method of silver (ii) oxide cell
CN100511782C (en) Alkaline secondary battery positive electrode material and alkaline secondary battery
JPH0317181B2 (en)
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPS59101773A (en) Manufacture of lead dioxide for divalent silver oxide battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH0576745B2 (en)
KR800001519B1 (en) Polar plate of alkaline storage cell
JPS5999678A (en) Silver (ii) oxide cell
JPS58128658A (en) Silver oxide secondary battery
JPS5999661A (en) Silver (ii) oxide cell
JPS59101777A (en) Manufacture of alkaline zinc battery
JPS5931181B2 (en) Lead electrode for alkaline storage batteries
JPS6113564A (en) Negative plate for alkaline battery
JPS5999666A (en) Production method of silver (ii) oxide cell
JPS5999662A (en) Production method of silver (ii) oxide cell
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPS6226148B2 (en)
JPS5880268A (en) Paste type cadmium anode plate and its manufacture
JPS63124370A (en) Nonsintered nickel electrode for alkaline storage battery
JPS63155556A (en) Alkali storage battery
JPH0817434A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPS5999667A (en) Production method of silver (ii) oxide cell
JPS60189866A (en) Cobalt hydroxide positive electrode plate