JPS599965A - Electrode for semiconductor device and manufacture thereof - Google Patents

Electrode for semiconductor device and manufacture thereof

Info

Publication number
JPS599965A
JPS599965A JP12024282A JP12024282A JPS599965A JP S599965 A JPS599965 A JP S599965A JP 12024282 A JP12024282 A JP 12024282A JP 12024282 A JP12024282 A JP 12024282A JP S599965 A JPS599965 A JP S599965A
Authority
JP
Japan
Prior art keywords
layer
electrode
type
thickness
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12024282A
Other languages
Japanese (ja)
Other versions
JPH0366817B2 (en
Inventor
Kotaro Mitsui
三井 興太郎
Susumu Yoshida
進 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12024282A priority Critical patent/JPS599965A/en
Publication of JPS599965A publication Critical patent/JPS599965A/en
Publication of JPH0366817B2 publication Critical patent/JPH0366817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the ohmic electrode having favorable adhesion and low contact resistance, and is suitable also for shallow junction by a method wherein a Ti layer, a Zn layer, a Ti layer, and an Ag layer are formed in order on a P type III-V group compound semiconductor layer. CONSTITUTION:A P type AlGaAs layer 3 is formed according to liquid phase epitaxial growth on an N type GaAs substrate 1, and at this time, the P type GaAs layer 2 is formed. The P type layer 3 is etched selectively to expose the P type GaAs layer 2, the Ti layer 7a of 0.05-0.1mum thickness, the Zn layer 7b of 0.01-0.05mum thickness, the Ti layer 7c of 0.05-0.1mum thickness, and the Ag layer 7d of 0.2mum thickness or more are stacked according to vacuum evaporation, and photo etching is performed to leave the evaporation layers 7a-7d at the necessary part. Then the heat treatment is performed at 430-470 deg.C in inactive gas to complete the P side electrode 7. According to this construction, junction leakage is not generated completely even when junction is formed shallowly at about 0.3mum, and the ohmic contact electrode having tensile strength of 50kg or more, and having low resistance can be obtained.

Description

【発明の詳細な説明】 この発明はp形m−v族化合物半導体ヘオーム性接触す
る電極構Jhおよびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure Jh that makes ohmic contact with a p-type m-v group compound semiconductor and a method for manufacturing the same.

従来、p形■−v族化合物半導体へのオーム性接触電極
材料として銀−亜鉛(Ag−Zn)合金または金−亜鉛
(Au−Zn )合金などがある。これらの電極材料を
用いてヒ化ガリウム(GaAs )太陽電池を製造した
場合を例にとって説明する。第1図は上記従来の電極材
料を用いて形成された太陽電池の構造を示す模式断面図
で、n形GaAs基板(1)の上Kp形GaAs層(2
)が形成され、光起電力発生に必要なpn接合Jが両者
間に形成されている。更知、p形GaAs層(2)の上
にはその中央部を除いてp形アルミニウム・ガリウム・
ヒ素(AtGaAs ) 層(3)が形成され、その上
には反射防止膜(4)が形成されている。そして、p形
GaAs層(2)の上記中央部の上にはp側電極(5)
が形成されており、これはAg−Zn合金またはAu−
Zn合金を真空蒸着などの方法で上記p形GaAs層(
2)の一部分(中央部)に被着草せ、しかる後K 40
0〜500’C程度の適当な温度で熱処理して、オーム
性接触電極を得ている。なお、(6)はn側電極である
Conventionally, silver-zinc (Ag-Zn) alloys or gold-zinc (Au-Zn) alloys have been used as ohmic contact electrode materials for p-type ■-v group compound semiconductors. An example will be explained in which a gallium arsenide (GaAs) solar cell is manufactured using these electrode materials. FIG. 1 is a schematic cross-sectional view showing the structure of a solar cell formed using the above-mentioned conventional electrode material, in which a Kp-type GaAs layer (2
) is formed, and a pn junction J necessary for photovoltaic power generation is formed between them. On top of the p-type GaAs layer (2), p-type aluminum, gallium, and
An arsenic (AtGaAs) layer (3) is formed, and an antireflection film (4) is formed thereon. A p-side electrode (5) is placed above the central part of the p-type GaAs layer (2).
is formed, which is an Ag-Zn alloy or Au-
The above p-type GaAs layer (
2) Spread grass on a part (center), then apply K 40
An ohmic contact electrode is obtained by heat treatment at a suitable temperature of about 0 to 500'C. Note that (6) is the n-side electrode.

このような構造のGaAs太陽電池では優れた温度特性
および優れた耐放射線性を有し−でおり、最近人工衛星
用電源として利用できるよう期待されている。しかしな
がら、従来の構造のp側電極は[7ばしばUがれが生じ
2、極めて商い信頼性が要求さhる人工衛星用の太陽電
池の電極としては不適当である。をも(で、高い耐放射
線性を維持するためにはplヒGaAs層(2)の埋烙
、すなわち、接合Jの深さは1μm以下というように極
めて浅くする必要がある。ところが、上記従来の電極材
料を用いてp側オーム性接触電極(5)を形成すると接
合リークが生じることがあった。b〔って太陽電池の特
性の1つである曲線因子が小さくなり、出力が低下して
しまうという欠点があった。
GaAs solar cells having such a structure have excellent temperature characteristics and excellent radiation resistance, and are recently expected to be used as power sources for artificial satellites. However, the p-side electrode of the conventional structure often suffers from peeling2, making it unsuitable as an electrode for solar cells for artificial satellites, which require extremely high commercial reliability. (In order to maintain high radiation resistance, the buried depth of the pl-GaAs layer (2), that is, the depth of the junction J, must be extremely shallow, such as 1 μm or less. However, in the conventional method described above, When forming the p-side ohmic contact electrode (5) using an electrode material of There was a drawback that

一方、シリコン太陽電池ではチタン−ffj4(Ti 
−Ag )電極が用いられ、シリコン太陽Ti性も接合
深さは極めて浅いにもかかわらず接合リークは生じてお
らす、また、このTi−Ag電極の接着性は極めてよく
、はかれは生じていない。ところが、このTi−Ag電
極をGaAs太Is電池のp側東極材別として用いた場
合、Ti−Ag電極のp形GaAs層に対する接触抵抗
が高く、良好なオーム性接触が得られない。
On the other hand, in silicon solar cells, titanium-ffj4 (Ti
-Ag) electrode is used, and even though the junction depth is extremely shallow, junction leakage occurs even though the junction depth is extremely shallow.Also, the adhesion of this Ti-Ag electrode is extremely good, and no flaking occurs. do not have. However, when this Ti-Ag electrode is used as a p-side east electrode material of a GaAs thick Is battery, the contact resistance of the Ti-Ag electrode to the p-type GaAs layer is high, and good ohmic contact cannot be obtained.

従って、曲線因子が低下し、太陽電池の出力が低下して
しまうという欠点があった。
Therefore, there is a drawback that the fill factor decreases and the output of the solar cell decreases.

この発明は以上のような点に鑑みてなされたもので、接
着性がよく、しかも低接触抵抗を有し、さらに浅い接合
の場合でも接合特性を損傷きせることのないp形1[−
v族化合物半導体へのオーム性接触電極およびその製造
方法を提供することを目的としている。
This invention has been made in view of the above points, and is a p-type 1[-
It is an object of the present invention to provide an ohmic contact electrode for a V-group compound semiconductor and a method for manufacturing the same.

第2図はこの発明の一実施例の構造を示を模式断面図で
ある。n形GaAs基板(1)の上に、例えばAt、G
a、AsおよびZnを含む成長溶融液を用いてp形At
G aA 8層(3)が液相エピタキシャル成長させら
れている。このとき■族元素であるZnが拡散してp形
GaAs層(2)が形成され、接合Jが出来上る。
FIG. 2 is a schematic sectional view showing the structure of an embodiment of the present invention. On the n-type GaAs substrate (1), for example, At, G
a, p-type At using a growth melt containing As and Zn
A GaA 8 layer (3) is grown liquid phase epitaxially. At this time, Zn, which is a group III element, diffuses to form a p-type GaAs layer (2), and a junction J is completed.

次にp側電極を形成すべき部分のp形AtGaAs層(
3)をホトエツチング技術を用いて選択的に除去しp形
GaAs層(2)表面を露出させる。次に、これを例え
ば真空蒸着装置内に装填し、その装置内を充分排気した
後、まず0.05〜0.1μmの厚さの第1のTi層(
7a)を真空蒸着する。つづいて、その上に0.01〜
0.05 μmの厚さのZn層(7b)を真空蒸着し、
更にその上K O,05〜0.1/jmの厚さの第2の
Tie(’7c)を、最後に、その上に0.2μm以上
の厚さのAg層(7d)を真空蒸着する。その後K、ホ
トエツチング技術を用いて所要個所のみ上記蒸着層(7
a)〜(7d)を残し、その上で、不活性または還元性
写囲気中で4.30〜550°Cの温度で熱処理してp
側電極(7)が完成する。反射防止膜(4)およびn 
g11j電極(6)は従来と同様に形成されている。
Next, the p-type AtGaAs layer (
3) is selectively removed using a photoetching technique to expose the surface of the p-type GaAs layer (2). Next, this is loaded into a vacuum evaporation device, for example, and after the inside of the device is sufficiently evacuated, a first Ti layer (
7a) is vacuum deposited. Next, on top of that, 0.01 ~
Vacuum depositing a Zn layer (7b) with a thickness of 0.05 μm;
Furthermore, a second Tie ('7c) with a thickness of KO,05~0.1/jm is further vacuum-deposited thereon, and finally, an Ag layer (7d) with a thickness of 0.2 μm or more is vacuum-deposited thereon. . After that, using photoetching technology, the vapor deposited layer (7
a) to (7d) are left, and then heat treated at a temperature of 4.30 to 550°C in an inert or reducing atmosphere to form p
The side electrode (7) is completed. Anti-reflection film (4) and n
The g11j electrode (6) is formed in a conventional manner.

このようにして形成された第2図に示すGaAs太陽電
池でCま、接合Jの深さが0.3μI’ll程度の極め
て浅いものであっても、接合リークは全く発生すること
はなかった。寸だ、p側電極(7)の接着性は極めて良
く、電極の引張り強度試験を行Aつたところ、50個の
試料について、いずれも50kg以上という極めて高い
値が葡られた。さらに、このp側電極(7)はp形Ga
As層(2)K対する比接触抵抗値が]Oにン/c m
  程度であり、6i+述の゛J、’i−Ag電極のp
形GaAeに対する比接触抵抗値の10−1Ω/Cm 
”に比して極めて低く、オーム性接触電極として優れて
いる。
In the GaAs solar cell formed in this way, shown in Figure 2, no junction leakage occurred at all, even though the depth of the junction J was extremely shallow, approximately 0.3 μI'll. . Indeed, the adhesion of the p-side electrode (7) is extremely good, and when the electrode was subjected to a tensile strength test, all of the 50 samples showed extremely high values of 50 kg or more. Furthermore, this p-side electrode (7) is a p-type Ga
Specific contact resistance value of As layer (2) with respect to K is ]Omin/cm
6i + ゛J, 'i-Ag electrode p
Specific contact resistance value of 10-1Ω/Cm for type GaAe
It is extremely low compared to ” and is excellent as an ohmic contact electrode.

この発明になるp側電極を有するGaAs太陽定率は1
8%以上という極めて優れた特性を有しており、前述の
優れた電極の接着性と合わせて、人工衛星用太陽電池に
適していることが判る。
The solar constant of GaAs with the p-side electrode according to this invention is 1
It has extremely excellent properties of 8% or more, and together with the excellent electrode adhesion mentioned above, it can be seen that it is suitable for solar cells for artificial satellites.

上記実施例で、第1のT1層(7a)および第2のTi
層(7c)の厚さを0.05+−0,1μmとしたが、
この範囲が接着性の点で最適であったからである。また
、Zn層(7b)の厚さを0.01〜O,’05 μm
としたが、この値を越えると接触抵抗の増大が見られる
からである。災に、Ag層(7d)の厚さを0.2μm
以上としたのは、後の工程で外部への電極リートを取り
出すだめの半田付けまたは溶接などの作業のための必要
性による。
In the above embodiment, the first T1 layer (7a) and the second Ti layer
The thickness of the layer (7c) was set to 0.05+-0.1 μm,
This is because this range was optimal in terms of adhesiveness. In addition, the thickness of the Zn layer (7b) was set to 0.01 to O,'05 μm.
However, if this value is exceeded, an increase in contact resistance is observed. Unfortunately, the thickness of the Ag layer (7d) was set to 0.2 μm.
The reason for this is due to the need for work such as soldering or welding to take out the electrode lead to the outside in a later process.

なお、製造方法として熱処理温度を430〜550’C
としたが、これは上記範囲外では電極の接着性の低下お
よび接触抵抗の増大が見られるからである。
In addition, as a manufacturing method, the heat treatment temperature is 430 to 550'C.
However, this is because outside the above range, the adhesiveness of the electrode decreases and the contact resistance increases.

以上の説明ではGaAs太陽電池の場合について述べた
が、GaAsに限らず他の■−v族化合物半導体につい
て、また太陽電池に限らず他の半導体装置にも一般にこ
の発F3Ar/″!、適用できる。
In the above explanation, we have described the case of GaAs solar cells, but this emission F3Ar/''! can be applied not only to GaAs but also to other ■-v group compound semiconductors, and not only to solar cells but also to other semiconductor devices. .

以上説明したように、この発明ではp形■−v族化合物
半導体層へのオーミック接触電極を第1のTi層、 Z
n層、第2のTi層及びAg層を順次重ねた構造にした
ので、半導体層との接着性にすぐれ低接触抵抗を有し、
かつ、pn接合が浅い場合でもその接合特性を損うこと
々く、すぐれた電極が得られる。
As explained above, in this invention, the ohmic contact electrode to the p-type ■-v group compound semiconductor layer is formed by using the first Ti layer, Z
Since it has a structure in which the n layer, the second Ti layer, and the Ag layer are stacked in sequence, it has excellent adhesion with the semiconductor layer and low contact resistance.
Moreover, even when the pn junction is shallow, an excellent electrode can be obtained without impairing the junction characteristics.

丑だ、上記4層構造を真空蒸着法などで形成したのち、
不活性または還元性雰囲気中で、430〜550°Cの
温度で熱処理すること例よって電極の接着性の一層の向
上、及び接触抵抗の一層の低下が期待できる。
After forming the above four-layer structure using vacuum evaporation method,
By performing heat treatment at a temperature of 430 to 550° C. in an inert or reducing atmosphere, further improvement in electrode adhesion and further reduction in contact resistance can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電極を用いた太陽電池の構造を示す模式
断面図、第2図はこの発り]の一実施例の構造を示す模
式断面図である。 図において、(2)はp形GaAs (II  V族化
合物半導体)層、(7a)は第1のTi層、(7b)は
zn鳳(70) l”l:第2のTi層、(7d)はA
g層、(7)は電極である。 なお、図中同一符号は同一または相当部分を示す。 代理人 葛野信−(外1名) 第1図 第2図 手続補正書(自発) ・許庁長宮殿 事件の表示    特願昭57−120242号2、発
明の名称  半導体装置の電極およびその製造方法補正
をする右 、−++□+1− ′(埋入 住 所     東京都千代111区丸の内−口]21
’35;三菱電機株式会社内 5補正の対振 明細書の発明の詳細な説明の掴 6補正の内容 明細11)をつきのとお)〕泊正する。
FIG. 1 is a schematic sectional view showing the structure of a solar cell using conventional electrodes, and FIG. 2 is a schematic sectional view showing the structure of an embodiment of this invention. In the figure, (2) is a p-type GaAs (group II V compound semiconductor) layer, (7a) is the first Ti layer, (7b) is the second Ti layer, (7d ) is A
In the g layer, (7) is an electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 1 Figure 2 Procedural amendment (voluntary) ・Representation of the Office Commissioner's Palace case Patent Application No. 120242/1987 2, Title of invention Electrode of semiconductor device and method for manufacturing the same Right to correct, -++□+1-' (Address: Marunouchi-guchi, Chiyo 111-ku, Tokyo) 21
'35; Mitsubishi Electric Corporation's detailed description of the invention in the 5th amendment to the anti-vibration specification and the 6th amendment to the details 11) will be corrected.

Claims (3)

【特許請求の範囲】[Claims] (1)p形の1■−V族化合物半導体層の上に第1のチ
クンノη、亜鉛層、第2のチタン層および銀層を順次形
成してなることを特徴とする半導体装置の電極。
(1) An electrode for a semiconductor device, characterized in that a first chikunno η, a zinc layer, a second titanium layer, and a silver layer are sequentially formed on a p-type 1■-V group compound semiconductor layer.
(2)第1および第2のチタン層の厚はが0.05〜0
.1/Jm、亜鉛層の厚をが0.01〜0.05fim
であり、銀層のJlさが0.2μm以上であることを特
徴とする特許請求の範囲第1項記載の半導体装置の電極
(2) The thickness of the first and second titanium layers is 0.05 to 0.
.. 1/Jm, the thickness of the zinc layer is 0.01~0.05fim
An electrode for a semiconductor device according to claim 1, wherein the silver layer has a Jl of 0.2 μm or more.
(3)充分排気された容器内でp形■−v族化合物半導
体層の表面に第1のチタン層、亜鉛層、第2のチタン層
及び銀層を順次真空蒸着法などの方法で被着畑せたのち
、不活性または還元性雰凹気中で430〜5b○℃の温
度で熱処理することを特徴とする半導体装置の′電極の
製造方法、。
(3) In a sufficiently evacuated container, the first titanium layer, zinc layer, second titanium layer, and silver layer are sequentially deposited on the surface of the p-type ■-v group compound semiconductor layer by a method such as a vacuum evaporation method. 1. A method for manufacturing an electrode for a semiconductor device, which comprises heating the electrode in an inert or reducing atmosphere at a temperature of 430 to 50°C.
JP12024282A 1982-07-08 1982-07-08 Electrode for semiconductor device and manufacture thereof Granted JPS599965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12024282A JPS599965A (en) 1982-07-08 1982-07-08 Electrode for semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12024282A JPS599965A (en) 1982-07-08 1982-07-08 Electrode for semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS599965A true JPS599965A (en) 1984-01-19
JPH0366817B2 JPH0366817B2 (en) 1991-10-18

Family

ID=14781354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12024282A Granted JPS599965A (en) 1982-07-08 1982-07-08 Electrode for semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS599965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196937A (en) * 1984-03-07 1985-10-05 Sumitomo Electric Ind Ltd Semiconductor element and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497628A (en) * 1972-05-25 1974-01-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497628A (en) * 1972-05-25 1974-01-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196937A (en) * 1984-03-07 1985-10-05 Sumitomo Electric Ind Ltd Semiconductor element and manufacture thereof
US4673593A (en) * 1984-03-07 1987-06-16 Sumitomo Electric Industries Ltd. Process for forming an ohmic electrode on a p-type III-V compound semiconductor
US4914499A (en) * 1984-03-07 1990-04-03 Sumitomo Electric Industries, Ltd. Semiconductor device having an ohmic electrode on a p-type III-V compound semiconductor

Also Published As

Publication number Publication date
JPH0366817B2 (en) 1991-10-18

Similar Documents

Publication Publication Date Title
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
JP2006013028A (en) Compound solar cell and its manufacturing method
JPH10173222A (en) Manufacture of semiconductor light emitting element
US4342879A (en) Thin film photovoltaic device
JP2011224749A (en) Nanostructure and method of manufacturing the same
JP2001148508A (en) Nitride semiconductor device and manufacturing method therefor
US8410498B2 (en) Semiconductor light emitting device and method for manufacturing the same
JPS599965A (en) Electrode for semiconductor device and manufacture thereof
JPH1041254A (en) Ohmic electrode and forming method thereof
US3909319A (en) Planar structure semiconductor device and method of making the same
JPS6024074A (en) Gallium arsenide semiconductor device and method of producing same
JPH10190056A (en) Semiconductor light emitting element and its manufacture
JP2008140811A (en) Method of manufacturing semiconductor device
US11798807B2 (en) Process for producing an electrical contact on a silicon carbide substrate
JPH09172198A (en) Light emitting diode and its manufacture
JPH06204513A (en) Formation of ohmic electrode of solar cell
JPH11121774A (en) Gallium arsenide solar cell
JPH08116073A (en) Compound semiconductor wafer and semiconductor device
JPH01140663A (en) Electrode of semiconductor device
JPS6255963A (en) Gaas semiconductor device
JPS6133277B2 (en)
JPS61231760A (en) Compound semiconductor element
JP2020161599A (en) Method of manufacturing solar battery
JPS59189669A (en) Ohmic contact electrode for compound semiconductor and manufacture thereof
JPS6251271A (en) Solar battery