JPS5999244A - Detector for gaseous co - Google Patents

Detector for gaseous co

Info

Publication number
JPS5999244A
JPS5999244A JP57208480A JP20848082A JPS5999244A JP S5999244 A JPS5999244 A JP S5999244A JP 57208480 A JP57208480 A JP 57208480A JP 20848082 A JP20848082 A JP 20848082A JP S5999244 A JPS5999244 A JP S5999244A
Authority
JP
Japan
Prior art keywords
gas
sensitive element
sensitive
sensitivity
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57208480A
Other languages
Japanese (ja)
Other versions
JPH0531104B2 (en
Inventor
Masaki Katsura
桂 正樹
Masayuki Shiratori
白鳥 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57208480A priority Critical patent/JPS5999244A/en
Priority to EP83108418A priority patent/EP0102067B1/en
Priority to DE8383108418T priority patent/DE3377738D1/en
Priority to KR1019830005677A priority patent/KR840006853A/en
Publication of JPS5999244A publication Critical patent/JPS5999244A/en
Priority to US06/903,839 priority patent/US4792433A/en
Publication of JPH0531104B2 publication Critical patent/JPH0531104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect selectively gaseous CO with good accuracy while eliminating the malfunction occuring in reducing gas by providing a gas sensitive element having sensitivity to CO and reducing gas and a gas sensitive element which does not react with CO and sensitivity to the reducing gas alone. CONSTITUTION:A gas sensitive body which is an oxide semiconductor consisting essentially of SnO2, ZnO and Fe2O3 and added with Nb<5+>, Sb<3+>, etc. according to need is formed by a vapor deposition method, etc. in the form of a thin film having 1,000Angstrom -1mum thickness on a ceramic substrate of Al2O3, BN, etc. which is a substrate having heat resistance and insulation characteristic. A pair of electrodes are provided thereon and further a catalyst layer consisting of a catalyst of at least one kind among Pt, Pd, Rh and a carrer of at least one kind among Al2O3, ZrO2, SiO2 is formed thereon, whereby a gas sensitive element having sensitivity to CO and reducing gas is obtd. Only the catalyst layer in the same constitution as mentioned above is formed of a carrier of one kind among Al2O3, ZrO2 and SiO2 and a catalyst of Ag, whereby a gas sensitive element for reference having sensitivity to the reducing gas is obtd. CO is selectively measured by two kinds of such elements.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はCOガス検出装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a CO gas detection device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、大気中の還元性ガスを検出するために、N型
半導体特性を示すSnO,、ZnO、Fe2O3などの
酸化物半導体をガス感応体として用いた感ガス素子が知
られている。これは、これら酸化物半導体が還元性ガス
に接触すると、その電気伝導度が増大、すなわち、抵抗
値が減少するというfA象を利用したものである。
BACKGROUND ART Gas sensing elements have been known that use oxide semiconductors such as SnO, ZnO, and Fe2O3, which exhibit N-type semiconductor characteristics, as gas sensing bodies in order to detect reducing gases in the atmosphere. This utilizes the fA phenomenon in which when these oxide semiconductors come into contact with a reducing gas, their electrical conductivity increases, that is, their resistance value decreases.

ガス感応体を焼結体として用いるもの、スパッタリング
法、蒸着法等で設けた薄膜として用いるものがあるが、
焼結体タイプ、薄膜タイプのいずれの感ガス素子にあっ
ても、一般に、金属酸化物半導体のみでは感ガス素子と
してその感度が小さく、選択性も光分とはいえないため
、通′p、白金(pt) 、パラジウム(Pd)等の貴
金属を触媒として用いて素子の感度を高めることが試み
られている。すなわち、Pt、Pdをmll全金塊酸化
物半導体添加したり、あるいは、Pt、Pdを担持する
触媒層を金属酸化物半導体の上に形成するといった方法
がとられている。
There are those that use the gas sensitive material as a sintered body, and those that use it as a thin film formed by sputtering, vapor deposition, etc.
Regardless of whether it is a sintered body type or a thin film type gas-sensitive element, metal oxide semiconductors alone generally have low sensitivity as a gas-sensitive element, and the selectivity cannot be said to be comparable to that of light. Attempts have been made to increase the sensitivity of devices by using noble metals such as platinum (pt) and palladium (Pd) as catalysts. That is, methods have been adopted such as adding Pt or Pd to the entire gold ingot oxide semiconductor, or forming a catalyst layer supporting Pt or Pd on the metal oxide semiconductor.

このような処置を施すと、無触媒の場合に比べて感度は
向上するが、それでも未だ低濃度の還元性ガスに対して
は充分な感度を示さない。しかも各種の還元性ガスが混
在する場合、ある還元性ガスのみを高感度で選択的に検
出することは、他の還元性ガスの影響によって素子の誤
動作が誘発されるため、極めて困難である。とりわけ、
Coのように低濃度でも人体に悪影響を及ぼすガスに関
しては、他の還元性ガスによる誤動作を排除して検出す
ることは極めて困難であった。
Although such treatment improves sensitivity compared to the case without catalyst, it still does not exhibit sufficient sensitivity to reducing gases at low concentrations. Moreover, when various reducing gases are mixed, it is extremely difficult to selectively detect only one reducing gas with high sensitivity because malfunction of the element is induced by the influence of other reducing gases. Above all,
It has been extremely difficult to detect a gas such as Co, which has an adverse effect on the human body even at low concentrations, while excluding malfunctions caused by other reducing gases.

更には、感ガス素子を一般家挺で使用することを想定し
た場合、アルコール蒸気による誤動作を排除することが
重要な問題となる。
Furthermore, when it is assumed that the gas-sensitive element will be used in a general domestic vehicle, it is important to eliminate malfunctions caused by alcohol vapor.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、COOガ
ス選択的に検出することのできるガス検出装置を提供す
ることを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a gas detection device that can selectively detect COO gas.

〔発明の概擬〕[Summary of the invention]

本発明はCOOガス出用感ガス素子と参照用感ガス菓子
とを具備したガス検出装置であり、参照用感ガス菓子力
)らの出力を多照してCOガス伏出出用感ガス素子力1
の出力を一間足しCOガス慣出を行なうものである。
The present invention is a gas detection device equipped with a gas-sensitive element for emitting COO gas and a gas-sensitive confectionery for reference. power 1
The output is added for one hour to get used to the CO gas.

本発明に用層られるCOガス検出用感ガス系子はCOO
ガス含む還元′白ガスに感度を有し、還元性ガスに接触
して抵抗値の変化する酸化切半導体からなるガス感応体
と、このガス感応体に設けしれた一対の電極と、Pt、
Pd、kLh  のうち少なくとも一種の触媒層4及び
Al、08. ZrO2,S i02のうち少なくとも
一種の担体からなりこのガス感応体上に設けられた触媒
j−とを有するものである。
The gas-sensitive element for CO gas detection used in the present invention is COO
A gas sensitive body made of an oxidized semiconductor that is sensitive to reducing white gas containing gas and whose resistance value changes upon contact with the reducing gas, a pair of electrodes provided on this gas sensitive body, Pt,
Catalyst layer 4 of at least one of Pd, kLh and Al, 08. The catalyst is made of at least one type of carrier selected from ZrO2 and Si02, and has a catalyst j- provided on the gas sensitive body.

ガス感応体に用いられる戚化物半纏体としては、SnO
,系、 ZnO系、Fe、03系が用しられる。S n
 O2系。
SnO is used as a semiconglomerate for use in gas sensitive materials.
, ZnO series, Fe, 03 series are used. Sn
O2 system.

ZnO糸、 Fe、0.系ば化物千尋体は、それぞれS
nO,。
ZnO thread, Fe, 0. The system monster Chihirotai are each S
nO,.

ZnO,上”e、08を主成分とし、心安に応じNb”
、 sb3+。
ZnO, upper "e, 08 is the main component, Nb"
, sb3+.

Cr3+、p、t 3+等の副成分を添加したものであ
る。このガス感応体は、厚膜(焼結体)、薄膜いずれで
も良いが、ガスに対する応答性が艮<、義迫上の丹現性
も良好である薄膜の刀が好よしい。ガス感応体薄膜の製
造方法としては、蒸着法、スパッタリング法、金属の有
機化合物の熱分解法等が挙げられる。このガス感応体は
耐熱性かつ絶縁性の基板であるAI!20.、BN、8
i、N4,5i02 等のセラミック基板上に形成され
るが、この膜厚Vi100A−1μmn程度、さらには
100OA−1μm程度が好すしい。これは膜厚が1μ
mを越えると還元性ガスに対する感未満で感度が低下し
同時にそのバラツキが大きくなるからである。
It contains subcomponents such as Cr3+, p, and t3+. This gas sensitive body may be either a thick film (sintered body) or a thin film, but a thin film sword is preferable because it has excellent responsiveness to gas and good immersion properties. Examples of methods for producing the gas sensitive thin film include vapor deposition, sputtering, and thermal decomposition of organic compounds of metals. This gas sensitive material is made of AI! which is a heat-resistant and insulating substrate. 20. ,BN,8
It is formed on a ceramic substrate such as I, N4, 5i02, etc., and the film thickness is preferably about 100A-1 μm, more preferably about 100OA-1 μm. This has a film thickness of 1μ
This is because if the value exceeds m, the sensitivity decreases to less than the sensitivity to reducing gases, and at the same time, its dispersion increases.

このガス感応体には、抵抗値を検出するため一対の電極
が設けられるが、とのW:極はガス感応体に電気的に接
続されていれば良く、ガス感応体表面、基板表面どちら
に設けても良い。この電極はAu、Pt等を印刷法、蒸
着法、スパッタリング法等により形成する。すた感ガス
素子から電気信号を取り出すため通常リード線が接続さ
れるので、リード線接続部分を基板との接着強度の大き
い印刷法により形成し、ガス感応体との接触部分を蒸着
法等より形成した薄膜としても良い。
This gas sensitive body is provided with a pair of electrodes in order to detect the resistance value, and the W: pole only needs to be electrically connected to the gas sensitive body, and can be attached to either the gas sensitive body surface or the substrate surface. It may be provided. This electrode is formed of Au, Pt, etc. by a printing method, a vapor deposition method, a sputtering method, or the like. Normally, lead wires are connected to take out electrical signals from the gas-sensitive element, so the lead wire connection part is formed by a printing method that has a high adhesive strength with the substrate, and the contact part with the gas-sensitive element is formed by a vapor deposition method etc. It is also possible to form a thin film.

また触媒層としては、Pt、Pd山h のうち少なくと
も一種の触媒金属及びAz20. 、 ZrO,、S 
iO□のうち少なくとも一種の担体からなるものを用い
、ガス感応体に測定雰吐気ガスが接触するのをさまたげ
ない8にの多孔質であることが好よしい。このように多
孔質であれば、焼結体でめる厚膜、スパッタリング法・
族N法・金属の有機化合物の熱分解法による薄膜いずれ
でも艮い。このか媒金属は、ガス応答性、ガス選択性等
の感ガス特性を同上するために用いられるものであり、
担体は感ガス菓子便用時における触媒金属の縦来等によ
る感ガス特性の低下を防止するために用いられるもので
ある。厚膜の場合は10〜5Q prnの膜厚が好まし
く、この範囲外では感度・選択性等のpfR媒効果が低
下する。また薄膜の場合は5〜lQOOnm8度が好ま
しく、熱分解法による場合は特に刃〜lQQQnm程度
が好ましい。この範囲外では感友・選択性等の触媒効果
が低下するのに加え、ガス応答速度も低下してしまう。
Further, the catalyst layer includes at least one catalyst metal selected from among Pt and Pd, and Az20. , ZrO,,S
It is preferable to use a carrier made of at least one type of iO□, and to have a porous structure that does not prevent the measurement atmosphere gas from coming into contact with the gas sensitive member. If it is porous like this, it can be used to create thick films using sintered bodies, sputtering methods, etc.
Both the Group N method and the thermal decomposition method of organic compounds of metals are suitable. This mediating metal is used to improve gas-sensitive characteristics such as gas responsiveness and gas selectivity.
The carrier is used to prevent deterioration of the gas-sensitive properties due to the catalytic metal being stuck in the gas-sensitive confectionery during use. In the case of a thick film, a film thickness of 10 to 5 Q prn is preferable; outside this range, pfR medium effects such as sensitivity and selectivity deteriorate. Further, in the case of a thin film, a temperature of 5 to 1QOOnm is preferably 8 degrees, and in the case of a thermal decomposition method, a range of about 1 to 1QQQnm is particularly preferable. Outside this range, not only the catalytic effects such as sensitivity and selectivity will be reduced, but also the gas response speed will be reduced.

このボ諌層中の触媒金属は、厚膜の場合0.05〜2c
1wt%、薄膜の場合1〜9Qwtチ程度が好ましく特
にスパッタリング法による場合は1〜80wt%が好ま
しい。また触媒金属の比4=は、厚子比で、Pt −P
d  の場合Pt /Pd = o、05〜1,0 、
 Pd−几11の場合几h/Pd=u、05〜1.0 
、 Pi −Rbの場合ルh / P を二0.05〜
10の範囲が好ましい。以上の範囲外では感度・選択性
とも十分なものが得られず、さらに触媒金属の量が多く
なると触媒j―が導電性を肩するようになり、ガス感応
体の抵抗値の測定が困難になってしまう。
The catalyst metal in this void layer is 0.05 to 2c in the case of a thick film.
1 wt%, preferably about 1 to 9 Qwt in the case of a thin film, and particularly preferably 1 to 80 wt% in the case of a sputtering method. Further, the ratio 4= of the catalyst metal is the Atsuko ratio, which is Pt −P
For d, Pt/Pd = o, 05~1,0,
In the case of Pd-11, h/Pd=u, 05-1.0
, for Pi-Rb, h/P is 20.05 ~
A range of 10 is preferred. Outside the above range, sufficient sensitivity and selectivity cannot be obtained, and if the amount of catalyst metal increases, the catalyst J- becomes responsible for the conductivity, making it difficult to measure the resistance value of the gas sensitive material. turn into.

このように触媒層は厚膜、薄膜どちらでも良いが、感ガ
ス素子の寿命、ガス応答性の点り)ら、スパッタリング
法、蒸屑法、金属の有機化合物の熱分解法、CVD法等
の焼結工程を経々いで形成された薄膜を用いることが好
ましい。また触媒層とカス感応体との絶縁性を保つため
、触媒金属の拡散と防止するため、Ae2o、)−等を
介し、触媒層を設けても艮い。
In this way, the catalyst layer may be either a thick film or a thin film, but due to the lifespan of the gas-sensitive element and the gas responsiveness, sputtering method, evaporation method, thermal decomposition method of metal organic compounds, CVD method, etc. It is preferable to use a thin film formed through a sintering process. Further, in order to maintain the insulation between the catalyst layer and the sludge sensitive material, and to prevent diffusion of the catalyst metal, the catalyst layer may be provided via Ae2o, )-, etc.

以上のような構成のCOガス慣出出用感ガス素子CO及
び他の還元性ガス(雑ガス)に感度を有する。また一般
に感ガス素子はガス応答性同上等のためガス感応体加熱
用のヒータを具備し、ガス感応体を加熱して測定を行な
うが、このCOガス横出出用感ガス素子は素子温度を例
えは120℃程度以下の低温とすることにより特にCO
O20対する感度が向上する。
The gas sensing element for discharging CO gas having the above configuration is sensitive to CO and other reducing gases (miscellaneous gases). In addition, gas-sensitive elements are generally equipped with a heater to heat the gas-sensitive body to ensure the same gas responsiveness, and measurement is performed by heating the gas-sensitive body. For example, by setting the temperature to a low temperature of about 120℃ or less, CO
Sensitivity to O20 is improved.

次に参照用感ガス素子について説明する。Next, the reference gas-sensitive element will be explained.

参照用感ガス素子はCOOガス外の還元性ガスに感度を
有するものである。構成は前述のCOOガス出用感ガス
素子と同様であり、ガス感応体も10J様のものを用い
るが、触媒層が異なる。
The reference gas-sensitive element is sensitive to reducing gases other than COO gas. The structure is the same as the above-mentioned gas sensitive element for COO gas emission, and the gas sensitive element used is also a 10J type, but the catalyst layer is different.

参照用感ガス素子の触媒ノーは、k1203. ZrO
,、5in2のうち少なくとも一種の担体及びAiカら
なり、ガス感応体に測定雰囲気ガスが接触するのをさま
たげない程度の多孔質であることが好ソしい。
The catalyst number of the reference gas-sensitive element is k1203. ZrO
. , 5 in 2 and Al, and is preferably porous to the extent that it does not prevent the measurement atmosphere gas from coming into contact with the gas sensitive member.

この触媒)@はCOガス横出出用感ガス素子同様に、薄
膜、厚膜いずれでも良いが、感ガス素子の寿命、ガス応
答性等の点から、スパッタリング法。
This catalyst) may be either a thin film or a thick film, similar to the gas-sensitive element for lateral extraction of CO gas, but from the viewpoint of the life of the gas-sensitive element, gas response, etc., a sputtering method is preferred.

蒸着法、金属の有機化合物の熱分解法等の焼結工程を経
ないで形成された薄膜を用いる方が好ましい。As+の
触媒層中の量は、厚膜の場合0.05〜20wt%、薄
膜の場合1〜80wt%程度が好ましく、この範囲外で
は感度・選択性、耐湿性とも十分なものが得られず、さ
らに八2の量が多くなると触媒層が導電性を有するよう
になってしまう。この触媒層は、厚膜の場合10〜50
μm程度、薄膜の場合5〜1100Qn程度が好ましく
この範囲外では触媒効果が低下するのに加え、膜厚が厚
くなるとガス応答速度も遅くなってしまう。
It is preferable to use a thin film formed without going through a sintering process such as a vapor deposition method or a thermal decomposition method of an organic compound of metal. The amount of As+ in the catalyst layer is preferably about 0.05 to 20 wt% in the case of a thick film, and 1 to 80 wt% in the case of a thin film; outside this range, sufficient sensitivity, selectivity, and moisture resistance cannot be obtained. If the amount of 82 is further increased, the catalyst layer will become electrically conductive. This catalyst layer has a thickness of 10 to 50 in the case of a thick film.
In the case of a thin film, it is preferably about 5 to 1100 Qn, and outside this range, the catalytic effect will decrease, and as the film becomes thicker, the gas response speed will also become slower.

以上のような構成の参照用感ガス素子においては、実質
的にCOO20対する感度がなく、アルコールガスCH
4,C,H(1等の還元性ガス(雑ガス)に対する感度
を有する。
The reference gas-sensitive element configured as above has virtually no sensitivity to COO20, and has no sensitivity to alcohol gas CH.
It has sensitivity to reducing gases (miscellaneous gases) such as 4, C, and H (1st grade).

本発明においては、このようにCOガス検出用感ガス禦
子からのCOガス+雑ガスの情報を有する出力と、参照
用感ガス素子から雑ガスのみの情報を有する参照出力と
を別々に得ることができるので、参照用感ガス素子から
の参照出力によりCOOガス出用感ガス素子の出力から
容易に雑ガスの影響を除くことができ、COO20測定
の選択性が向上する。
In the present invention, as described above, an output having information on CO gas + miscellaneous gas from the gas-sensitive element for CO gas detection and a reference output having information on only miscellaneous gas from the reference gas-sensitive element are obtained separately. Therefore, the influence of miscellaneous gases can be easily removed from the output of the COO gas emitting gas sensitive element using the reference output from the reference gas sensitive element, and the selectivity of COO20 measurement is improved.

このような2個の感ガス素子を用いたCOOガス出装置
を駆動する回路構成の一例をブロック図(第1図)を用
いて説明する。
An example of a circuit configuration for driving a COO gas emitting device using such two gas-sensitive elements will be explained using a block diagram (FIG. 1).

COガス検出用感ガス累菓子al及び参照用感ガス素子
(C)からの出力に、几、はそれぞれ抵抗−電圧変換回
路(b) 、 (d)に入力され電圧vl、v2に変換
される。
The outputs from the gas-sensitive device AL for CO gas detection and the gas-sensitive element for reference (C) are input to the resistance-voltage conversion circuits (b) and (d), respectively, and converted into voltages vl and v2. .

抵抗−電圧変換回路(d)より出力される参照用感ガス
素子からの信号であるV、は警報レベル設定回路(e)
に入力され、警報レベルv;が出力される。このVごと
COガス検出用感ガス累菓子らの信号であるvlとが電
圧比較回路(f)に入力され、この電圧比較回jj3 
(f)でCOO20存在すると判定された時、警報信号
Sが出力され、警報回路(g)に入力される。
The signal V from the reference gas-sensitive element output from the resistance-voltage conversion circuit (d) is the alarm level setting circuit (e).
is input, and an alarm level v; is output. This V and vl, which are the signals of the gas-sensitive confectionery for CO gas detection, are input to the voltage comparison circuit (f), and this voltage comparison circuit jj3
When it is determined in (f) that COO20 is present, an alarm signal S is output and input to the alarm circuit (g).

次にこの回路の動作について説明する。Next, the operation of this circuit will be explained.

COガス横出出用感ガス素子a)及び参照用感ガス素子
(C)からの出力である抵抗値亀、鳥は測定雰囲気によ
り変化する。一般に感ガス素子における抵抗値の変化は
、ガス濃度が小さいときは急であるがガス濃度が高くな
るにつれ傾きはゆるやかになる。この傾向は2種類以上
の混合ガスについても同様である。また還元性雑カス中
にCOO20導入した場合、空気中で同一量のCOO2
0導入した場合に比べて感ガス素子の抵抗変化は小さい
The resistance value, which is the output from the gas-sensitive element a) for CO gas side discharge and the reference gas-sensitive element (C), changes depending on the measurement atmosphere. Generally, the change in resistance value in a gas-sensitive element is steep when the gas concentration is low, but as the gas concentration increases, the slope becomes gentler. This tendency also applies to mixed gases of two or more types. Also, when COO20 is introduced into reducing waste, the same amount of COO2 in the air
The change in resistance of the gas-sensitive element is smaller than when zero is introduced.

すなわち雰囲気中の趙元性雑ガスの濃度が尚よるにつれ
、素子の一定量COガスに対する抵抗変化は小さくなる
。よって測定雰囲気中の雑ガス#贋に応じて、警報レベ
ルを変える必要がある。この警報レベルの設定を行なう
のが警報レベル設定回路(e)である。警報レベル設定
回路(e)では参照用感ガス素子(C)からの信号であ
るvt (R2)を利用して、COOガス出用感ガス素
子(a)の雑ガスを含む雰囲気中でのCOO20警報レ
ベルV:を出力する。このような雑ガス濃度により変化
する警報レベルV;とCOOガス出用感ガス素子(a)
からの信号であるvlとを電圧比較回路(f)で比較す
ることによりCOO20存在判定を行なうことができる
That is, as the concentration of CO gas in the atmosphere increases, the resistance change of the element with respect to a certain amount of CO gas becomes smaller. Therefore, it is necessary to change the alarm level depending on the number of miscellaneous gases in the measurement atmosphere. The alarm level setting circuit (e) sets this alarm level. The alarm level setting circuit (e) uses the signal vt (R2) from the reference gas-sensitive element (C) to determine the COO20 of the COO gas output gas-sensitive element (a) in an atmosphere containing miscellaneous gas. Outputs alarm level V:. The alarm level V changes depending on the concentration of such miscellaneous gas; and the gas sensing element for COO gas output (a)
The presence of the COO20 can be determined by comparing the signal vl from the voltage comparison circuit (f).

第2図に本発明に係る肉感ガス特性の雑ガス濃度による
変化を示す。COOガス出用感ガス素子も参照用感ガス
素子も雑ガスのみには同様に応動して抵抗変化するので
抵抗−電圧回路からの出力は第2図の曲線aの如き特1
生となる。このような素子に一定量のCOO20導入す
るとCOOガス出用感ガス素子は曲線すの如き特性を示
す。従って曲線aと曲線すの差の’nt圧が、COO2
0よる信号であるが、同図で見られる如く、COガス献
は一定でも雑ガスの多少により曲線aと曲線すとの差の
電圧は大きく異なる。従って測定時におけ如く変化させ
る事により、雑ガス濃度の変化に起因した誤動作をなく
す事ができる。
FIG. 2 shows changes in the physical gas characteristics according to the present invention depending on the miscellaneous gas concentration. Since both the gas-sensitive element for COO gas output and the reference gas-sensitive element respond to miscellaneous gases in the same way and change their resistance, the output from the resistance-voltage circuit has a characteristic 1 as shown by curve a in Figure 2.
Becomes raw. When a certain amount of COO20 is introduced into such an element, the COO gas-emitting gas-sensitive element exhibits a curve-like characteristic. Therefore, the 'nt pressure difference between curve a and curve A is COO2
As seen in the figure, even if the CO gas concentration is constant, the voltage difference between curve a and curve a varies greatly depending on the amount of miscellaneous gas. Therefore, by changing it as during measurement, it is possible to eliminate malfunctions caused by changes in the miscellaneous gas concentration.

抵抗−電圧変換回路は、例えは感カス素子と固定抵抗を
直列に接続し定電圧を印加し、固定抵抗両端の電圧を測
定するような回路が用いられる。
As the resistance-voltage conversion circuit, for example, a circuit is used in which a passive element and a fixed resistor are connected in series, a constant voltage is applied, and the voltage across the fixed resistor is measured.

警報レベル設定回路は例えば通常の演算増幅器と基準電
圧発生回路とを組み合せ、参照用感ガス素子からの出力
V2(雑ガス娘度−電圧)を予じめ設定された関数によ
り雑ガスとCOO20の混合ガスにおけるCOガス伏出
出用感ガス素子出力V1に変換する。
The alarm level setting circuit combines, for example, a normal operational amplifier and a reference voltage generation circuit, and calculates the difference between miscellaneous gas and COO20 using the output V2 (miscellaneous gas daughterness - voltage) from the reference gas-sensitive element using a preset function. It is converted into a gas-sensitive element output V1 for CO gas release in a mixed gas.

電圧比較回路は通常の電子回路を用い、−1報回路とし
てはブザー、LED等により警報を発生、表示するもの
を用い、必要に応じガス供給を遮断するように構成して
も良い。
The voltage comparison circuit may be an ordinary electronic circuit, and the -1 notification circuit may be configured to generate and display an alarm using a buzzer, LED, etc., and to cut off the gas supply as necessary.

以上のような構成の回路を用いれば、雑ガス濃度に応じ
警報レベルが変動させることができるので、COO20
選択性良くかつ信頼性高く検出することができる。
By using the circuit configured as above, the alarm level can be varied according to the concentration of miscellaneous gas, so COO20
It can be detected with good selectivity and high reliability.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のように、COO20含む
還元性ガスに感度を有するCO検出用感ガス素子と、C
OO20は実質的感度をもたない参照用感ガス素子とを
具備するCOガス慎出出装置用いれば、選択性良くCO
O20検出することができる。
As explained above, as in the present invention, a gas-sensitive element for CO detection that is sensitive to a reducing gas containing COO20,
OO20 can be used to detect CO gas with good selectivity by using a CO gas extraction device equipped with a reference gas-sensitive element that has no substantial sensitivity.
O20 can be detected.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

(実施例−1) g ’y c oガス検出用感ガス素子の製造について
述べる。第3図は感ガス素子の断面図である。
(Example 1) Manufacturing of a gas-sensitive element for detecting g'yco gas will be described. FIG. 3 is a cross-sectional view of the gas-sensitive element.

絶縁性基′O,(])としてアルミナ基板を用い、−力
の面に電極(2)を形成する。この電極(2)はリード
線接続部(2a)と信号取出部(2b)力)らなリ−ド
線接続部(2a)はAuペーストの焼付により形成し、
ガス感応体(5)と接触する信号取出し部(21))は
Auをスパッタリングすることにより、一対のくし形電
極を形成する。また絶縁性基板(【)の裏面にはI(、
uo2 ペースト等からなるガス感応体加熱用のヒータ
(3Jを一対の電極(4)間に用ける。
An alumina substrate is used as the insulating group 'O, (]), and an electrode (2) is formed on the -force side. This electrode (2) has a lead wire connection portion (2a) and a signal extraction portion (2b).The lead wire connection portion (2a) is formed by baking Au paste.
A pair of comb-shaped electrodes are formed by sputtering Au in the signal extraction section (21) that comes into contact with the gas sensitive body (5). In addition, the back side of the insulating substrate ([) is I(,
A heater (3J) for heating the gas sensitive body made of uo2 paste or the like is used between a pair of electrodes (4).

次にガス感応体(5)を形成する。Next, a gas sensitive body (5) is formed.

まず2−エチルへ牛すン酸スズをSnの合有量が]0t
jt%となるようにn−ブタノールに溶解して試料浴液
を調製した。
First, the combined amount of Sn is 0t.
A sample bath solution was prepared by dissolving the sample in n-butanol to give a concentration of JT%.

これを、一対の電極(2)間に塗布して空気中に1時間
放置1.た後、120°0に加熱してII−ブタノール
を気化せしめた。ついで全体を400’O,1時間空気
中で加熱分解した。この塗布−加熱分解の工程を3回反
復して厚み約0.3μmのSnO,薄膜からなるガス感
応体(5)を形成した。
Apply this between a pair of electrodes (2) and leave it in the air for 1 hour.1. After that, the mixture was heated to 120°0 to vaporize II-butanol. The whole was then thermally decomposed in air at 400'O for 1 hour. This process of coating and thermal decomposition was repeated three times to form a gas sensitive member (5) made of a thin film of SnO with a thickness of about 0.3 μm.

続いてガス感応体(5)上に触媒ノ11#(6)を形成
する。
Subsequently, catalyst No. 11# (6) is formed on the gas sensitive member (5).

八eのアルコオキソドに、PdとPtの4a[旨塩(例
えji E S J、社製プラチナレジネート、パシウ
ムレジネ−1・)を加え、ブタノールにて希釈した。こ
のブタノール溶液をガス感応体(5)上に塗布し、室温
で1時間、150°Cで乾燥後、40Q’Oで3Q 1
1ta加熱分解してpa−pt−八ttOsからなる触
媒層(6)を形成した。
4a of Pd and Pt (for example, Platinum Resinate, Pasium Resiné-1, manufactured by JI ES J, Ltd.) was added to the alkoxide of 8e, and diluted with butanol. This butanol solution was applied onto the gas sensitive member (5), and after drying at room temperature for 1 hour and at 150°C, 3Q1 was applied with 40Q'O.
A catalyst layer (6) made of pa-pt-8ttOs was formed by thermal decomposition of 1ta.

このようなガス感応体、触媒層の形成に用いられる金属
の有機化合物としては、Pt、Pd、l(、h、AJ。
Examples of metal organic compounds used for forming such gas sensitive bodies and catalyst layers include Pt, Pd, l(, h, AJ.

Zr、8iの金属アルコール化物、金属石けん、樹脂塩
、錯体その他加熱により分解し金属又は金属酸化物を生
ずる一般に用いられる有機化合物を用いる0 この金属の有機化合物は例えはラインターオイル2石油
エーテル、ヘキサントルエン等の有機溶剤に混合した溶
液をガス感応体表面に塗布し膜を形成する。触媒層の組
成比はこの溶液中の金属の有機化合物の量を変えること
により容易に制御できる。また膜形成後室温1時間程腿
、100〜150°01時間程度の乾燥処理を施し、有
機溶剤を蒸発させ、金属の有機化合物をガス感応体上に
定着させることが好ましい。
Zr, 8i metal alcoholides, metal soaps, resin salts, complexes, and other commonly used organic compounds that decompose on heating to produce metals or metal oxides are used. Examples of organic compounds of these metals include Rinter Oil 2 Petroleum Ether, A solution mixed with an organic solvent such as hexanetoluene is applied to the surface of the gas sensitive member to form a film. The composition ratio of the catalyst layer can be easily controlled by changing the amount of the metal organic compound in this solution. Further, after the film is formed, it is preferable to perform a drying treatment at room temperature for about 1 hour and at 100 to 150°C for about 1 hour to evaporate the organic solvent and fix the metal organic compound on the gas sensitive member.

この金属の有機化合物は加熱することにより、簡単に熱
分解し金属又は金属酸化物となる。このときAZ + 
Z r+ St  のうち少なくとも一種は、有機化合
物を中の酸素原子と反応することにより、又は酸素存在
雰囲気下での加熱により酸化されNZ2O3゜ZrO2
,SiO,となる。このように金属の有機化合物を加熱
し分解すること((より、Pt、Pd、几肋うち少なく
とも一種の触媒金属と、入120. 、 ZrO,、S
 102(Dうち少々くとも一種の担体とからなる触媒
層を形賊することができる。
When heated, this metal organic compound easily thermally decomposes into metal or metal oxide. At this time AZ +
At least one of Zr+ St is oxidized to NZ2O3゜ZrO2 by reacting an organic compound with oxygen atoms in it or by heating in an oxygen-existing atmosphere.
,SiO,. In this way, by heating and decomposing an organic compound of a metal (including at least one catalytic metal among Pt, Pd, Pt, ZrO, S
102 (D), a catalyst layer consisting of at least one type of carrier can be used.

□′ このように金属の有機化合物の熱分解法により形
成された触媒層を用いた本発明に係る感ガス素子におい
ては、測定対象ガスに対する応答性が非常に優れている
。これ(は、このような方法で形成された触媒層でポー
ラスな状態が良好に実現されているためと考えられる。
□′ As described above, the gas-sensitive element according to the present invention using the catalyst layer formed by the thermal decomposition method of a metal organic compound has extremely excellent responsiveness to the gas to be measured. This is considered to be because the catalyst layer formed by this method achieves a good porous state.

すなわち触1#、を頓はガス感応体と測定対象ガスとの
接触をさまたげないようにポーラスな状態が要求される
が、この有機化合物の熱分解法によれば、あらかじめ金
属が分散された状態から有機物が除去されることになり
、この部分に空孔ができるためと考えられる。
In other words, a porous state is required so as not to interfere with the contact between the gas sensitive body and the gas to be measured, but according to this method of thermal decomposition of organic compounds, the state in which the metal is dispersed in advance is required. This is thought to be because organic matter is removed from the surface, creating pores in this area.

またこの有機化合物の熱分解法によれば、有機俗媒中の
金属の有機化合物の量を調整することにより容易に所望
の組成比の触媒層を得ることができる。さらに有機溶媒
中において金属の有機化合物は均一に分散し、形成され
た触媒層中においても均一な組成が再現性良く実現され
るので、感ガス素子を量産する場合等の信頼性に優れ′
ている。
Further, according to this thermal decomposition method of organic compounds, a catalyst layer having a desired composition ratio can be easily obtained by adjusting the amount of the metal organic compound in the organic medium. Furthermore, the metal organic compound is uniformly dispersed in the organic solvent, and a uniform composition can be achieved in the formed catalyst layer with good reproducibility, resulting in excellent reliability when mass-producing gas-sensitive elements.
ing.

さらに絶縁性基板の形状に関係なく、平板状1円筒状等
いずれの場合にも均質な膜を形成することができる。以
上の如きCOガス検出用感ガス素子の各種ガスに対する
感度を第1表に示す。
Furthermore, regardless of the shape of the insulating substrate, a homogeneous film can be formed regardless of the shape of the insulating substrate, such as a flat plate or a cylindrical shape. Table 1 shows the sensitivity of the gas-sensitive element for CO gas detection to various gases as described above.

(以下余白) 第  1  表 次に参照用感ガス素子を製造する。(Margin below) Table 1 Next, a reference gas-sensitive element is manufactured.

構造1dcOガス検出用感ガス素子(第1図に示したも
の)と同様とし、触媒層のみを変えたものである。触媒
層はAg −AI!20.系とし、Alのアルコオキシ
ドとAg樹脂塩(例えばシルバーレジネート(ESL社
製))をブタノールで希釈したものを用い、前述と同様
の方法で形成した。
The structure is similar to that of the gas-sensitive element for detecting 1dcO gas (shown in FIG. 1), except that only the catalyst layer is changed. The catalyst layer is Ag-AI! 20. A system was prepared in the same manner as described above using an Al alkoxide and an Ag resin salt (for example, Silver Resinate (manufactured by ESL)) diluted with butanol.

この参照用感ガス累゛子の感ガス特性を第2表に示す。The gas-sensitive characteristics of this reference gas-sensitive resistor are shown in Table 2.

第 2 表 (実施例−2) また第1図に示す感ガス素子と同様の構成で、ガス感応
体、触媒層をスパッタリング法で形成し7IC場合の特
性を第3表に示す。
Table 2 (Example-2) Table 3 shows the characteristics of a 7IC device having the same configuration as the gas-sensitive element shown in FIG. 1, with the gas-sensitive element and catalyst layer formed by sputtering.

ocOガス検出用感ガス累子 菓子感応体 ターゲット  Nb、 O,/ SnO,= 0.OQ
 5 (モル比)膜厚 1000A 触媒層 ターゲット AJ20.と、このAl!ρ、に対し5Q
wt%のPd 膜厚 100A O参照用感ガス素子 ガス感応体 (COガス検出用感ガス素子と同様) 触媒層 ターゲットAJ20.とコノAt?20. K対シ2c
lWtチのAg 膜厚 100A スパッタリング法により触媒層を形成する場合、ターゲ
ットとして触媒金属と担体を所望の比率で含有した材料
を用いても良いし、ターゲットとして触媒金属とA/、
Si、Zr のうち少なくとも一種とを含んでなる材料
を用い薄膜形成後、酸素存在雰囲気下で加熱酸化を行な
い、触媒層を形成することもできる。またターゲットと
して触媒金属とA/。
Gas-sensitive confectionery receptor target for ocO gas detection Nb, O, / SnO, = 0. OQ
5 (Mole ratio) Film thickness 1000A Catalyst layer target AJ20. And this Al! 5Q for ρ
wt% of Pd Film thickness: 100A Gas sensitive element for O reference (same as gas sensitive element for CO gas detection) Catalyst layer target AJ20. And Kono At? 20. K vs. C2c
When forming a catalyst layer by a sputtering method, a material containing a catalyst metal and a carrier in a desired ratio may be used as a target, or a material containing a catalyst metal and a carrier in a desired ratio may be used as a target.
It is also possible to form a catalyst layer by forming a thin film using a material containing at least one of Si and Zr, and then performing thermal oxidation in an atmosphere containing oxygen. Also, catalytic metal and A/ as targets.

Si、Zrのうち少なくとも一種とを含んでなる材料を
用い、酸素存在雰囲気下でスパッタリングを打力っでも
良い。この場合担体として用いられる酸化物の安定性を
増すため、薄膜形成後、大気中等で加熱処理を行なうこ
とが好ましい。ターゲットとして触媒金属と担体とを含
む材料を用いた場合も同様である。このようにスパッタ
リング法に用いるターゲットは原料粉体の混合体でもよ
いし、合金として用いてもよいし、また単一材料のター
ゲラ)4Jの表面の一部を他の材料でコーティングした
ものをターゲットとして用いてもよい。さらに、二元ス
パッタリング法を用いて行なってもよく、この場合同じ
ターゲットで種々の組成を実現できる。
A material containing at least one of Si and Zr may be used, and sputtering may be performed in an atmosphere containing oxygen. In this case, in order to increase the stability of the oxide used as a carrier, it is preferable to perform a heat treatment in the air after forming the thin film. The same applies when a material containing a catalyst metal and a carrier is used as the target. In this way, the target used in the sputtering method may be a mixture of raw material powders, an alloy, or a target made of a single material (Targera) 4J coated with a part of its surface with another material. It may also be used as Furthermore, it may be carried out using a binary sputtering method, in which case various compositions can be realized with the same target.

また触媒層はガス感応体と測定対象ガスとの接触をさま
たげないようにポーラスな状態であることが要求される
。触媒層が十分薄い場合、例えば膜厚10 nm以下で
は通常のスパッタリング法を用いても薄膜は島状に成長
するので実質的にポーラスな状態が実現される。また、
例えばAr、O□N%’103、Torr程度の高いガ
ス圧下でスパッタリングを行なうことにより、形成され
た触媒層中にガスが閉じこめられ、このガスを加熱によ
り除去することによりポーラスな状態を実現することも
できる。
Further, the catalyst layer is required to be in a porous state so as not to prevent contact between the gas sensitive body and the gas to be measured. When the catalyst layer is sufficiently thin, for example, when the film thickness is 10 nm or less, the thin film grows in the form of islands even if a normal sputtering method is used, so that a substantially porous state is realized. Also,
For example, by performing sputtering under a high gas pressure of Ar, O□N%'103, Torr, gas is trapped in the formed catalyst layer, and by removing this gas by heating, a porous state is achieved. You can also do that.

さらに、ターゲットにPVA等の有機物を混合しスパッ
タリングを行ない、有機物が混入した触媒層を形成した
後、加熱により有機物を除去しポーラスな状態を実現す
ることもできる。
Furthermore, it is also possible to mix an organic substance such as PVA into the target and perform sputtering to form a catalyst layer containing the organic substance, and then remove the organic substance by heating to achieve a porous state.

該だ一般に感ガス素子は、ガス感応体を加熱するための
ヒータを備えているが、触媒層を薄膜化したことにより
熱容量が小さくなるため、ヒータの出力を抑えることが
できるので、ヒータの寿命ものび、ひいては感ガス素子
の寿命ものびることとなる。
Generally, gas-sensitive elements are equipped with a heater to heat the gas-sensitive element, but by making the catalyst layer thinner, the heat capacity becomes smaller, so the output of the heater can be suppressed, which reduces the lifespan of the heater. This will extend the life of the gas-sensitive element.

(実施例−3) またガス感応体を実施例−1と同様とし、触媒層を塗布
・焼結による厚膜とした実施例を説明する0 ocOガス検出用感ガス素子の触媒層の形成(Nu(4
)、 PdC76を水に溶解してPd 1.0 重量%
の水溶准を調製した。ここに、表面積約100rr?/
2のA!!、O,微粉を浸漬し充分攪拌した。AI!、
0.微粉をf別し1.5時間減圧乾燥して水分を除去し
た後、蒸発乾固した。ついで、乳鉢で粉砕し、得られた
粉末を石英ルツボの中に入れて400°Cで焼成した。
(Example 3) Formation of a catalyst layer of a gas sensitive element for detecting 0 ocO gas (Example 3) describes an example in which the gas sensitive body is the same as in Example 1 and the catalyst layer is formed into a thick film by coating and sintering. Nu(4
), PdC76 was dissolved in water to give Pd 1.0% by weight.
An aqueous solution of was prepared. Here, the surface area is about 100rr? /
2 A! ! , O, fine powder was immersed and thoroughly stirred. AI! ,
0. The fine powder was separated, dried under reduced pressure for 1.5 hours to remove moisture, and then evaporated to dryness. Then, it was ground in a mortar, and the resulting powder was placed in a quartz crucible and fired at 400°C.

この触媒の粉末をアルミニウムヒドロキシクロライド水
溶液(A/20. 1%)の中に入れて泥漿とした。こ
の泥漿を、ガス感応体の上に塗布した後、乾燥し、全体
を400″Cで焼成し、厚み20umのPd担持A60
.の触媒層を形成した。
This catalyst powder was put into an aluminum hydroxychloride aqueous solution (A/20.1%) to form a slurry. This slurry was applied onto the gas sensitive material, dried, and fired at 400''C to form a 20um thick Pd-supported A60.
.. A catalyst layer was formed.

0谷照用感ガス素子の触媒層の形成 AgN0.の溶液所定量にAl2O,を浸漬し、Al2
O。
Formation of catalyst layer of gas-sensitive element for 0 valley light AgN0. Al2O, is immersed in a predetermined amount of solution of
O.

に対し 、Agが10wt%となるべく含浸させ乾燥後
石英ルツボの中に入れ400°Cで焼成した。この触媒
の粉末ヲアルミニウムヒドロキシクロライド水溶液を加
え泥漿として、これをガス感応体上に菫布し乾燥後40
0℃で焼成して、厚み加μrnのAg担持iz、o、触
媒層を構成した。
On the other hand, the material was impregnated with as much as 10 wt% of Ag, dried, and then placed in a quartz crucible and fired at 400°C. This catalyst powder was mixed with an aqueous solution of aluminum hydroxychloride to form a slurry, which was spread over a gas sensitive material and dried for 40 minutes.
It was fired at 0° C. to form an Ag-supported catalyst layer having a thickness of μrn.

このようにして形成された厚膜触媒層を有する感ガス素
子について触媒金属をかえ、感ガス特性を測定し、第4
表に示す。
The catalyst metal of the gas-sensitive element having the thick film catalyst layer thus formed was changed, the gas-sensitive characteristics were measured, and the fourth
Shown in the table.

以上説明したように、本発明に係るCOガス検出用感ガ
ス素子はCOガス及びアルコール等の雑ガスに対する感
度を有し、参照用感ガス素子はCOガスには実質的感度
を有さすアルコール等の雑ガスに対する感度を有してい
ることがわかる。従って参照用感ガス素子の出力を用い
COガス検出用感ガス素子の出力からアルコール等の雑
ガスの影響を容易に除くことができ、選択性良くCOガ
ス検出を行なうことができる。またCOガス検出用感ガ
ス素子は、鴇、 C)T4. C,H,等のガスに対す
感度が非常に低いので、さらに選択性が良い。
As explained above, the gas-sensitive element for CO gas detection according to the present invention has sensitivity to CO gas and miscellaneous gases such as alcohol, and the reference gas-sensitive element has substantial sensitivity to CO gas, such as alcohol. It can be seen that it has a sensitivity to miscellaneous gases. Therefore, the influence of miscellaneous gases such as alcohol can be easily removed from the output of the gas-sensitive element for CO gas detection by using the output of the reference gas-sensitive element, and CO gas can be detected with good selectivity. The gas-sensitive element for detecting CO gas is C) T4. Since the sensitivity to gases such as C, H, etc. is very low, the selectivity is even better.

以上のように形成されたCOガス検出用感ガス素子及び
参照用感ガス素子はそれぞれ基体に固定してもよいが、
装置の小型化等を考慮して1個の基体上に固定してもよ
い。第4図に平面図として1個の基体上にCOガス検出
用感ガス素子及び参照用感ガス素子を固定した実施例を
示す。
The gas-sensitive element for CO gas detection and the gas-sensitive element for reference formed as described above may be fixed to the base, respectively.
In consideration of miniaturization of the device, etc., it may be fixed on one base. FIG. 4 shows, as a plan view, an embodiment in which a gas-sensitive element for CO gas detection and a gas-sensitive element for reference are fixed on one substrate.

ガラスエポキシ樹脂からなる絶縁性の基体aυに、感ガ
ス素子ml書架用の切り欠き部叫を設ける。この絶縁性
の基体(1υの両面にはCu箔からなる導体パターンα
東が形成されており、COガス検出用感ガス素子及び参
照用感ガス素子(10はこの切り欠き部(lり内でそれ
ぞれの面に例えば100μm程度のPt1J−ド線(1
4)により固着され懸架される。また特性の異なる感ガ
ス素子を基体αυの両面に設けるため、例えば外部ソケ
ットに挿入する際、方向を誤まらないように、切り込み
部(L最を設ける。さらには耐摩耗性向上のため導体パ
ターン賎表面にはNiメッキを施こすことが好ましい。
A notch for a gas-sensitive element ml bookshelf is provided in an insulating base aυ made of glass epoxy resin. A conductor pattern α made of Cu foil is formed on both sides of this insulating substrate (1υ).
A gas-sensitive element for detecting CO gas and a gas-sensitive element for reference (10 is a cutout part (10 is a Pt1J-coated wire of about 100 μm on each surface)
4) is fixed and suspended. In addition, since gas-sensitive elements with different characteristics are provided on both sides of the base αυ, a notch (L) is provided to prevent the orientation from being incorrect when inserting the element into an external socket. It is preferable to apply Ni plating to the surface of the pattern plate.

この例ではガラスエポキシ樹脂上にCu箔が形成された
ものを用いたが、AI!20.基板上にAuを焼付けた
もの等を用いても良い。
In this example, a glass epoxy resin with a Cu foil formed on it was used, but AI! 20. A substrate on which Au is baked may also be used.

このように切り欠き部に2個の感ガス素子を懸架する構
造をとることにより、測定雰囲気の通風が良好となる。
By adopting a structure in which two gas-sensitive elements are suspended in the notch in this manner, ventilation of the measurement atmosphere is improved.

また、感ガス素子は通常高温(例えば100℃以上)で
動作されるが、基体への熱伝導はほぼリード線からのみ
となり、感ガス素子のヒータによるガス感応体の加熱効
率も向上する。
Further, although gas-sensitive elements are normally operated at high temperatures (for example, 100° C. or higher), heat conduction to the base is almost only through the lead wires, and the heating efficiency of the gas-sensitive body by the heater of the gas-sensitive element is also improved.

次に本発明のCOOガス出装置を動作せしめる回路構成
例を第5図のブロック図を用いて説明する。図中81〜
S6は電気的に応動するスイッチとする。まず空気中に
雑ガスがなく、参照用感ガス素子(B)の抵抗が高いと
きは、1LLoの両端の電圧は低い。このときは第1の
電圧比較回路Ovが作動しS。
Next, an example of a circuit configuration for operating the COO gas emitting device of the present invention will be explained using the block diagram shown in FIG. 81~ in the figure
S6 is an electrically responsive switch. First, when there is no miscellaneous gas in the air and the resistance of the reference gas-sensitive element (B) is high, the voltage across 1LLo is low. At this time, the first voltage comparison circuit Ov is activated.

と84をONする。このためCOOガス出用感ガス素子
は比較的大きな抵抗RL1を用いて電圧出力を出し、警
報レベル設定回路(ハ)の信号と第2の電圧比較回路(
ハ)にて比較される。このような回路構成でCOO20
導入されると検知素子の抵抗は低下するが、参照用感ガ
ス素子(B)は抵抗変化をせず、従って第2の電圧比較
回路(ハ)には町、の両端の電圧と警報レベル設定回路
(2)の出力が入力され判断される。この場合は一一ガ
スのみしか存在しないため、検知素子の出力飽和の程度
も少く十分安定な警報が得られる。
and turn on 84. For this reason, the gas-sensitive element for COO gas output uses a relatively large resistor RL1 to output voltage, and compares the signal of the alarm level setting circuit (c) with the second voltage comparison circuit (c).
Comparison is made in c). With this kind of circuit configuration, COO20
When introduced, the resistance of the sensing element decreases, but the resistance of the reference gas-sensitive element (B) does not change, so the second voltage comparator circuit (c) uses the voltage across the terminal and the alarm level setting. The output of circuit (2) is input and judged. In this case, since only 11 gases are present, the degree of output saturation of the detection element is small and a sufficiently stable alarm can be obtained.

次に空気中に雑ガスが存在する場合、参照用感ガス素子
(均の抵抗は低下し、従って”LOの両端の′電圧が高
まる。このときは町。の両端の電圧が第1の電圧比較回
路011の憤域をこんると第lの電圧比較回路0υは作
動を停止し、従って81.84をOFFにし、同時に第
1の電圧比較回路(2)が作動しS2゜S、がONにな
り、RL2と警報レベル設定回路←■が作動する。この
とき雑ガスによってCOガス検出用感カス素子(Nの抵
抗も減少しているため町、としてi、[I(,1より小
なるものが用いられる。この状態で被検ガスが導入され
るとCOガス樵出出用感ガス素子AJはさらに抵抗変化
し、曳2の両端の電圧は上昇する。これを警報レベル設
定回路(2)の出力と第2の電圧比較回路(27)で比
較して判Hrを行う。
Next, when there is a miscellaneous gas in the air, the resistance of the reference gas-sensitive element decreases, and the voltage across the LO increases.In this case, the voltage across the LO becomes the first voltage. When the range of comparison circuit 011 is exceeded, the lth voltage comparison circuit 0υ stops operating, thus turning 81.84 OFF, and at the same time, the first voltage comparison circuit (2) operates and S2゜S turns ON. , RL2 and the alarm level setting circuit ←■ are activated.At this time, the resistance of the CO gas detection sensitive element (N) is also decreased due to the miscellaneous gas, so i, [I(, smaller than 1) When the gas to be detected is introduced in this state, the resistance of the gas-sensitive element AJ for discharging CO gas further changes, and the voltage across the puller 2 increases.This is controlled by the alarm level setting circuit (2). ) and the second voltage comparator circuit (27) to determine Hr.

この場合雑ガスによりCOOガス出用感ガス索子(A)
の抵抗値は減少しているのでCOO20よる信号は呪、
を用いるよりも1tL2の方が(l(、Ll>几、2)
確度よく絖みとれる。
In this case, gas-sensitive cable (A) for releasing COO gas due to miscellaneous gas.
Since the resistance value of is decreasing, the signal from COO20 is a curse,
It is better to use 1tL2 than to use (l(,Ll>几,2)
It can be threaded with high accuracy.

以下ざらに雑ガス濃度が高いときもこの方法を用いて高
精度、確実に被検ガスを捕え、警報を出す墨ができるこ
とは言うまでもない。なお第5図中(8)、(9)は抵
抗−電圧変換回路をそれぞれ、示し、(2幻、圓、四は
第1の電圧比較器、儲り、(ハ)、シフ)は警報レベル
設定回路をそれぞれ示し、上記と同様に動作する。又(
28)は警報回路を示す。
It goes without saying that even when the concentration of miscellaneous gases is high, this method can be used to accurately and reliably capture the gas to be detected and to issue an alarm. In Fig. 5, (8) and (9) respectively indicate the resistance-voltage conversion circuit, and (2), (4), (4), the first voltage comparator, (2), (C), and (4) indicate the alarm level. Each setting circuit is shown and operates in the same manner as above. or(
28) shows the alarm circuit.

このような構成のCOOガス出装置により雑ガス存在下
でのCOOガス出を行なった。
COO gas was discharged in the presence of miscellaneous gas using the COO gas discharge device having such a configuration.

第5図と同様の回路においてS、、 S6はアナログス
イッチとして■tLoは一定RL□〜RL3  はIM
Ω。
In a circuit similar to that shown in Fig. 5, S,, S6 are analog switches; tLo is constant RL□~RL3 is IM
Ω.

100にΩ、10にΩとし、他は通常の電子回路を用い
た。
100 Ω and 10 Ω, and other ordinary electronic circuits were used.

測定はまず空気中にCOO20みを2ooppm 導入
し、この値で督報出す如く、回路を設定し、次に雑ガス
(アルコール)下での警報時のCa2度を調べた。この
結果を第5表に示す。
For the measurement, 20ppm of COO20 was first introduced into the air, a circuit was set up to issue a warning at this value, and then the Ca2 degree at the time of alarm under miscellaneous gas (alcohol) was checked. The results are shown in Table 5.

第5表 (単位 ppm) 第5表より明らかなように本発明においては、非常に安
定性よくCOO20検出することができる0 なお上記実施例では第、5図に示す如く、回路の切りか
えを3段としたがさらに精度を上げるために多段にする
ことも可能である。また必要に応じて2段にすることも
可能であることはいうまでもない。
Table 5 (unit: ppm) As is clear from Table 5, in the present invention, COO20 can be detected with very good stability.In the above embodiment, as shown in FIG. Although it is set in stages, it is also possible to use multiple stages to further improve accuracy. It goes without saying that it is also possible to have two stages if necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のCOOガス出装置を駆動せしめる一回
路例を示すブロック図、第2図は感ガス素子の感度の雑
ガス濃度に対する特性図、第3図は本発明に係る感ガス
素子の断面図、第4図は本発明装置の一実施例を示す平
面図、第5図は本発明装置を駆動せしめる一回路例を示
すブロック図。 電極   ・・・2 ガス感応体・・・5 触媒層  ・・・6 代]!+’j 、lJr理」、  ↓j’J 、’シ:
’+1.’ 11.l  (はが]名)第1図 第  2  図 難がス濃良 (PPM ) 第  3  図 第  4  図 第  5  図
Fig. 1 is a block diagram showing an example of a circuit for driving the COO gas emitting device of the present invention, Fig. 2 is a characteristic diagram of the sensitivity of the gas-sensitive element with respect to the concentration of miscellaneous gas, and Fig. 3 is the gas-sensitive element according to the present invention. FIG. 4 is a plan view showing an embodiment of the device of the present invention, and FIG. 5 is a block diagram showing an example of a circuit for driving the device of the present invention. Electrode...2 Gas sensitive body...5 Catalyst layer...6]! +'j, lJr ri', ↓j'J,'shi:
'+1. '11. (PPM) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 還元性ガスに接触して抵抗値の変化する酸化物半導体か
らなるガス感応体と、このガス感応体に設けられた一対
の電極と、Pt、Pd、R,hのうち少なくとも−go
触媒金属及びAJ208.ZrO2,5i02ノうち少
なくとも一種の担体からなり前記ガス感応体上に設けら
れた触媒層とを具備したCOガス検出用感ガス素子と; 還元性ガスに接触して抵抗値の変化する酸化物半導体か
らなるガス感応体と、このガス感応体にaけられた一対
oit極、!:、7Ve、Ol、 ZrO,、S 10
2(7) 5ち少なくとも一種の担体及びA2からなり
前記ガス感応体上に設けられた触媒層とを具備したCO
ガスには実質的に感度のない参照用感ガス素子とを有す
ることを特徴としたCOガス検出装置。
[Scope of Claims] A gas sensitive body made of an oxide semiconductor whose resistance value changes when it comes into contact with a reducing gas, a pair of electrodes provided on this gas sensitive body, and one of Pt, Pd, R, and h. at least -go
Catalytic metal and AJ208. A gas-sensitive element for detecting CO gas, comprising a catalyst layer made of at least one type of carrier among ZrO2, 5i02, and provided on the gas-sensitive body; an oxide semiconductor whose resistance value changes upon contact with a reducing gas; A gas sensitive body consisting of a gas sensitive body, and a pair of oit poles cut into this gas sensitive body,! :, 7Ve, Ol, ZrO,, S 10
2(7) 5. A CO comprising at least one type of carrier and a catalyst layer made of A2 and provided on the gas sensitive body.
A CO gas detection device comprising a reference gas-sensitive element having substantially no sensitivity to gas.
JP57208480A 1982-08-27 1982-11-30 Detector for gaseous co Granted JPS5999244A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57208480A JPS5999244A (en) 1982-11-30 1982-11-30 Detector for gaseous co
EP83108418A EP0102067B1 (en) 1982-08-27 1983-08-26 Co gas detecting device and circuit for driving the same
DE8383108418T DE3377738D1 (en) 1982-08-27 1983-08-26 Co gas detecting device and circuit for driving the same
KR1019830005677A KR840006853A (en) 1982-11-30 1983-11-30 Carbon Monoxide Gas Detector
US06/903,839 US4792433A (en) 1982-08-27 1986-09-04 CO gas detecting device and circuit for driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208480A JPS5999244A (en) 1982-11-30 1982-11-30 Detector for gaseous co

Publications (2)

Publication Number Publication Date
JPS5999244A true JPS5999244A (en) 1984-06-07
JPH0531104B2 JPH0531104B2 (en) 1993-05-11

Family

ID=16556858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208480A Granted JPS5999244A (en) 1982-08-27 1982-11-30 Detector for gaseous co

Country Status (2)

Country Link
JP (1) JPS5999244A (en)
KR (1) KR840006853A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103959A (en) * 1986-10-21 1988-05-09 Fuji Electric Co Ltd Gas sensor
JPS63231254A (en) * 1987-03-20 1988-09-27 Toshiba Corp Gas sensor
JPS63279151A (en) * 1987-05-11 1988-11-16 Nibetsukusu Kk Carbon monoxide sensor
KR101113315B1 (en) * 2009-11-06 2012-03-13 광주과학기술원 Gas sensor having catalyst layer and method for operating the same
JP2018048912A (en) * 2016-09-21 2018-03-29 大阪瓦斯株式会社 Gas sensor and gas detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142396A (en) * 1975-06-03 1976-12-07 Fuigaro Giken Kk Gas detection method and device which detects selectively the reductio n gas of specified kinds
JPS5273089A (en) * 1975-12-15 1977-06-18 Nippon Soken Detector for gas composition
JPS52111797A (en) * 1976-03-17 1977-09-19 Yazaki Corp Gas detecting element
JPS5431026U (en) * 1977-08-01 1979-03-01
JPS5446094A (en) * 1977-09-19 1979-04-11 Fuji Electric Co Ltd Oxygen sensor for exhaust gases
JPS54134697A (en) * 1978-04-12 1979-10-19 Toshiba Corp Gas sensitive element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142396A (en) * 1975-06-03 1976-12-07 Fuigaro Giken Kk Gas detection method and device which detects selectively the reductio n gas of specified kinds
JPS5273089A (en) * 1975-12-15 1977-06-18 Nippon Soken Detector for gas composition
JPS52111797A (en) * 1976-03-17 1977-09-19 Yazaki Corp Gas detecting element
JPS5431026U (en) * 1977-08-01 1979-03-01
JPS5446094A (en) * 1977-09-19 1979-04-11 Fuji Electric Co Ltd Oxygen sensor for exhaust gases
JPS54134697A (en) * 1978-04-12 1979-10-19 Toshiba Corp Gas sensitive element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103959A (en) * 1986-10-21 1988-05-09 Fuji Electric Co Ltd Gas sensor
JPS63231254A (en) * 1987-03-20 1988-09-27 Toshiba Corp Gas sensor
JPS63279151A (en) * 1987-05-11 1988-11-16 Nibetsukusu Kk Carbon monoxide sensor
KR101113315B1 (en) * 2009-11-06 2012-03-13 광주과학기술원 Gas sensor having catalyst layer and method for operating the same
JP2018048912A (en) * 2016-09-21 2018-03-29 大阪瓦斯株式会社 Gas sensor and gas detector

Also Published As

Publication number Publication date
KR840006853A (en) 1984-12-03
JPH0531104B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
US4792433A (en) CO gas detecting device and circuit for driving the same
US4507643A (en) Gas sensor with improved perovskite type material
US4387165A (en) H2 S Detector having semiconductor and noncontinuous inert film deposited thereon
US5629474A (en) Production of a sensor for carbon monoxide or water vapor including a semi conductor metallic oxide, catalyst, and rheological agent
EP0114310B1 (en) Carbon monoxide sensing element and process for manufacturing it
JPS5999244A (en) Detector for gaseous co
US5382341A (en) Method of making smoke detector
US6114943A (en) Resistive hydrogen sensing element
WO2009087656A1 (en) Combustible gas sensor
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
EP0180577A1 (en) Humidity sensor comprised of compound metal oxides with perovskite structure
CN1117196A (en) Inorganic thin film humidity-sensitive element with high performance and its producing method
JP3046387B2 (en) Gas sensor
JPH07198651A (en) Thin film type gas sensor
JPH07104309B2 (en) Gas sensor manufacturing method
RU2792330C1 (en) Platinum resistive paste
JPH0480648A (en) Gas sensor
KR100380195B1 (en) Gas sensor and fabricating sensor method thereof
JPS63279150A (en) Semiconductor type gas sensor
JPH0380257B2 (en)
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JPH0221256A (en) Gas sensor
KR940008194B1 (en) Manufacturing method of gas sensor
JPS6152423B2 (en)
JPH06186191A (en) Thick-film gas sensor