JPS5997054A - Gradient elution apparatus - Google Patents

Gradient elution apparatus

Info

Publication number
JPS5997054A
JPS5997054A JP57208240A JP20824082A JPS5997054A JP S5997054 A JPS5997054 A JP S5997054A JP 57208240 A JP57208240 A JP 57208240A JP 20824082 A JP20824082 A JP 20824082A JP S5997054 A JPS5997054 A JP S5997054A
Authority
JP
Japan
Prior art keywords
liquid
pump
pumps
gradient elution
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57208240A
Other languages
Japanese (ja)
Inventor
Akira Nakamoto
中本 晃
Hiroshi Noda
野田 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57208240A priority Critical patent/JPS5997054A/en
Publication of JPS5997054A publication Critical patent/JPS5997054A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To obtain a gradient elution apparatus in which a minute diametered column stable in a mixing ratio is used, by combining a single plunger reciprocal type high pressure pump set to a high speed and a liquid feed flowline provided with a damper and a check valve. CONSTITUTION:Single plunger reciprocal type high pressure pumps each set to a high speed are used in liquid feed pumps PA, PB for respectively feeding two kinds of solvents A, B and the liquid feeds to a minute diameter column 1 from both pumps PA, PB are performed through liquid feed flowlines 16, 16' provided with dampers 23, 23' and check valves 24, 24'. In this case, pump drive motor control circuits 2, 2' control the pumps PA, PB so that either one of said pumps PA, PB is stopped when the other pump is used in a suction process. By this constitution, a gradient elution apparatus in which a minute diameter column stable in a mixing ratio is used can be obtained.

Description

【発明の詳細な説明】 この発明はたとえば液体クロマトグラフなどで微量試料
の分析に用いられる微小口径カラム(Micro Bo
re Columnすなわち内径1n前後のカラム)を
用いて、複数種の溶媒の混合比率を時間的に変化させて
送液し、混合器を介して試料を勾配溶出させるグラジェ
ント溶出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microbore column (MicroBolumn) used for analyzing a trace amount of sample in, for example, a liquid chromatograph.
This invention relates to a gradient elution device that uses a re column (that is, a column with an inner diameter of about 1 nm) to feed a plurality of solvents while changing the mixing ratio over time, and gradient-elutes a sample through a mixer.

上記微小口径カラムはその消費溶媒量が通常のカラムに
比して約vOで戸か二きわめて少なく、シかも分離性が
高いがこれを用いてグラジェント溶出を行うには、その
カラムの内容積が小さいためこれに送液するポンプのプ
ランジャの吐出容量や、その流路に生ずる脈流の影響な
どに問題があシ、混合比率の安定した高性能のグラジェ
ント溶出装置は未だ開発されていない現況である。
The above-mentioned micro-diameter column consumes an extremely small amount of solvent (about 2 to 2 VO) compared to a normal column, and has high separation performance, but in order to perform gradient elution using this column, the internal volume of the column is Since the flow rate is small, there are problems with the discharge capacity of the plunger of the pump that sends the liquid and the influence of the pulsating flow that occurs in the flow path, and a high-performance gradient elution device with a stable mixing ratio has not yet been developed. This is the current situation.

この発明は微小口径カラムのだめのグラジェント溶出装
置を提供するためなされたものであシ、複数個の送液ポ
ンプをたとえば100〜1μl/winの低流量定速吐
出のシングルプランジャ往復動形とし、その吸引工程の
時間を前記吐出時間たとえば60ないし6000sec
に対し、し’500 (0,2sec)ないし1/L0
.000 (0−6sec)に設定した高速吸引ノ送液
ポンプとし、そのそれぞれの送液流路の前配送液ポンプ
側に脈流を吸収し、ポンプ吸引時に送液を続けるダンパ
を、このダンパの下流に送液方向にのみ流れを許容する
逆止弁を設けるとともに、前記複数個の送液ポンプのい
ずれか一つが前記吸引工程に入った際その工程の間、他
のすべての送液ポンプを停止せしめる送液ボーンプ駆動
制御回路を設けたこと′f:特徴とするグラジェント溶
出装置にかかるものであシ、この構成によって通常のカ
ラム(内径約4n位またはそれ以上のもの)に比し溶媒
送液量が約IAOの微小口径カラムを用いてそれぞれの
送液ポンプの吸引時においても溶媒の混合比率をいささ
かも変化を与えることなくグラジェント溶出ができる便
宜な装置の提供を図るものである。
This invention was made in order to provide a gradient elution device for a micro-bore column, in which a plurality of liquid sending pumps are of a single plunger reciprocating type with a low flow rate constant discharge of, for example, 100 to 1 μl/win, The time for the suction step is the ejection time, for example, 60 to 6000 seconds.
For, '500 (0,2sec) or 1/L0
.. A high-speed suction liquid sending pump set at 000 (0-6 sec) is used, and a damper that absorbs the pulsating flow on the front delivery liquid pump side of each liquid sending channel and continues sending liquid during pump suction is installed. A check valve is provided downstream that allows flow only in the liquid feeding direction, and when any one of the plurality of liquid feeding pumps enters the suction process, all other liquid feeding pumps are shut off during that process. A liquid delivery bone pump drive control circuit is provided to stop the liquid supply.This is related to the characteristic gradient elution device. The purpose of the present invention is to provide a convenient device that can perform gradient elution without changing the mixing ratio of solvents even during the suction of each liquid pump, using a micro-diameter column with a liquid feed volume of approximately IAO. .

以下図面を用いてこの発明の詳細な説明する。第1図は
この発明の実施例装置として、2ポンプ高圧ミキシング
方式のグラジェント溶出装置の構成を示すブロック図で
ある。微小口径カラム(1)は内径1羽であシ、約20
〜100μm1/=i=の低流量で使用されるものであ
る。これに対する送液ポンプ(FA)(PB)は第2図
に示すような1ストローク100μV−のシングル小プ
ランジヤ往復動形ポンプで、その吐出・吸引はポンプ駆
動制御回路(2)(2′)によって制御されるたとえば
パルスモータ(3)(3勺、ならびにこのモータ(3)
(31)に連動する変形カム(4)(4つ(第1図には
図示せ−5ず)によって行われ最低1μn/−inから
上記100μA/mn までの定速吐出を行うことので
きるものであシ、すなわち10μ沙4止では吐出時間1
0=、40バ2血では150 secというように 設
定され、その吸引工程は10μV−では0.6sθC1
100μlんnでは0.2sec というように吸引時
間/吐出時間の比がIAooないし1/’LOOOとい
う高速に設定されている。第2図によって上記ポンプ駆
動制御回路(2)(2りの作動とポンプ(PA)(PB
)の吐出圧検出器(6)との関係を説明する。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a two-pump high-pressure mixing type gradient elution device as an embodiment of the present invention. The micro-bore column (1) has an inner diameter of 1 feather, approximately 20 mm.
It is used at a low flow rate of ~100 μm1/=i=. The liquid feed pump (FA) (PB) for this is a single small plunger reciprocating pump with a stroke of 100 μV as shown in Fig. 2, and its discharge and suction are controlled by the pump drive control circuit (2) (2'). For example, a pulse motor (3) (3) is controlled, as well as this motor (3).
(31) is operated by deformable cams (4) (4 (not shown in Figure 1)), and is capable of constant speed discharge from a minimum of 1 μn/-in to the above-mentioned 100 μA/mn. In other words, the discharge time is 1 at 10 μsha and 4 stops.
0=, 40V2 blood is set as 150 sec, and the suction process is 0.6sθC1 at 10μV-
For 100 μl, the suction time/discharge time ratio is set to a high speed of IAoo to 1/'LOOO, such as 0.2 sec. Figure 2 shows the pump drive control circuit (2) (two operations and pumps (PA) (PB)).
) with the discharge pressure detector (6) will be explained.

すなわち点線で示すグラジェントプログラマ(7)から
の指令電圧をV/F変換器(8)によって・くルスにI
Aした信号によってモータ(3に3’)が回転し、カム
(4)(4りを駆動してプランジャ(9)を往復動させ
る。このプランジャ(9)の位置は位置検出器acJに
よって検出され位置モニタぐりに入力される。
In other words, the command voltage from the gradient programmer (7) shown by the dotted line is applied to the voltage by the V/F converter (8).
The motor (3 to 3') is rotated by the signal A, and the cam (4) is driven to reciprocate the plunger (9). The position of this plunger (9) is detected by the position detector acJ. Input to the position monitor hole.

すなわちグランシャ(9)が吐出工程を終了した時点で
上記圧力検出器(6)はその吐出圧力たとえば300穎
を圧力記憶・比較回路(6)K入力し、これを記憶せし
め、同時にモータ速度制御回路α[有]によって上記高
速吸引のだめの信号を上記す今変換器(8) K入力し
てモータ(3)(3勺を急速回転に切換える。つぎに吸
引工程が終ったプランジャ(9)の位置を同じく検知し
て定速吐出工程に入るのであるが、このときポンプ吐出
側逆止弁α→はすぐには開かない。これはポンプ内の圧
力が低下しているためでこれを急速に上記吐出圧まで引
上げ、上記弁αaを開いて定速吐出に入るまでの若干の
距離プランジャ(9)を矢印(−)方向に急速に進める
信号をv/F変換器(8)に送り、上昇する吐出圧力と
さきに上記回路(イ)に記憶した圧力とを比較し、等し
くなるまでモータ(3) (3’ )を高速回転させる
。これがこのような低流量高圧送液ポンプ(FAXFB
)の定速吐出工程直前の圧力記憶によるポンプ内圧縮率
補正の作動である。第1図にもどって上記ポンプ(FA
)(FB)はそれぞれのリザーバαOσ5′)に入れた
2種の溶媒(A)(B)をそれぞれの流路H(16りに
送液するのであるがその流量(FA)(FB)の和(F
A + FB)を一定に保ちながら混合濃度比K = 
FB/(F’A+FB)を時間的にあらかじめ予定され
たプログラムに従って自動的に変えて行くのが前述した
グラジェントプログラマ(7)である。2つの流路α・
(161)の合流点(17)に達した(A)(B)液は
ミ+シングチャンバ−(ト)によって混合され、試料注
入口0呻を経て上記微小口径カラム(1)に送液され勾
配溶出されて成分検出器(ホ)によってその分離された
成分を検出し、排液容器(ロ)に排出されるのである。
That is, at the point when the Gransha (9) finishes the discharge process, the pressure detector (6) inputs its discharge pressure, for example, 300 m, to the pressure storage/comparison circuit (6), stores this, and at the same time outputs the discharge pressure to the motor speed control circuit. α [Yes] inputs the high-speed suction stop signal to the current converter (8) K and switches the motor (3) to rapid rotation. Next, determine the position of the plunger (9) when the suction process is completed. is also detected and enters the constant-speed discharge process, but at this time, the check valve α→ on the pump discharge side does not open immediately.This is because the pressure inside the pump is decreasing, and the above A signal is sent to the V/F converter (8) to rapidly advance the plunger (9) in the direction of the arrow (-) for a short distance until the pressure is raised to the discharge pressure and the valve αa is opened to enter constant speed discharge. The discharge pressure is compared with the pressure previously stored in the circuit (a) above, and the motor (3) (3') is rotated at high speed until they are equal.
) is an operation for correcting the compressibility within the pump by storing the pressure immediately before the constant-speed discharge process. Returning to Figure 1, the above pump (FA
) (FB) is the sum of the flow rates (FA) and (FB) of two solvents (A) and (B) in their respective reservoirs αOσ5'), which are sent to each channel H (16). (F
While keeping A + FB) constant, mix concentration ratio K =
The above-mentioned gradient programmer (7) automatically changes FB/(F'A+FB) temporally according to a predetermined program. Two flow paths α・
The liquids (A) and (B) that have reached the confluence point (17) of (161) are mixed in the mixing chamber (g) and sent to the micro-bore column (1) through the sample injection port (0). The separated components are gradient eluted, detected by a component detector (e), and discharged into a drainage container (b).

今たとえばカラ広流量(FA + FB)を50μl/
winとし、混合濃度比←)が20%のばあいポンプ(
FB)の送液流量■は10μl/minとなる。したが
ってこのばあいポンプ(FB)は約10 minごとに
高速吸引し、一方ポンプ(FA)もまた約2.5 mi
nごとに高速吸引する。
For example, the flow rate of Karahiro (FA + FB) is 50μl/
If the win is set and the mixing concentration ratio ←) is 20%, then the pump (
The liquid feeding flow rate (2) of FB) is 10 μl/min. Therefore, in this case, the pump (FB) draws at high speed every 10 min, while the pump (FA) also pumps at a rate of about 2.5 min.
Suction at high speed every n.

第3図はその状況を示すタイムチャートであり、図■は
ポンプ(PA)による吐出流量(2人)波形のタイムチ
ャートでtA中2.5−の周期で高速吸引が約0.5 
See (ta)づつ行われていることを示す。
Figure 3 is a time chart showing the situation, and Figure ■ is a time chart of the discharge flow rate (2 people) waveform by the pump (PA), where high-speed suction is approximately 0.5 at a period of 2.5- during tA.
This shows that See (ta) is performed one by one.

図■はポンプ(PB)による(Fω波形のタイムチャー
トでtB+10m1nの周期で約0.6sec (ta
)の高速吸引が行われていることを示している。このよ
うに周期が長いためミキシングチャンバー(ト)をたと
えばステンレス製チューフ(18I()の中に粒子径約
0.3〜0.5 Mの海砂(イ)を充てんし、両端の接
続金具(18J)によってこれを固定したものにすれば
単一パイプまたは球状の粒子を充てんしたミキシングチ
ャンバーよりミキシング効果を上げたものを用いても完
全に平滑できず、カラム(1)への混合濃度比(埒は図
■のように各ポンプ吸引時に変化する。この変化はポン
プ(FA)が吸引工程(ta)のはじめの瞬間にごく僅
かポンプ側に液が逆流するため、ポンプ(FB)側の(
B) 液がそれだけ多くミキシングチャンバー(至)に
送られ、混合濃度比に=FB乙FA+FB)は(+ΔK
)たとえば数チ増加する。この際ミキシングチャンバー
(7)への流量(FA 十FB )  はつぎにのべる
流路aQに設けたダンパに)および逆止弁(至)の作動
によって(FA)ポンプ吸引時(1;a)の間も(FA
)の流量はほぼ保たれるので(FA+FB)は僅かに減
るだけである。それは図示しないダンパ働(23勺がた
とえば内径5MM位のステンレスパイプを押しつぶし、
0.27ffW位の偏平流路を形成し、これを内径10
朋位の管内に弾性ゴム質充填物を介して封入した全長2
0cm位のものであシ、吐出圧によって上記偏平流路が
膨張しておシ、ポンプ吸引時これが収縮して送液を続け
るものである。また逆止弁■(24りは一方向だけに流
体を流す通常の逆止弁であシ、スプリング(24S) 
(24S/ )の弾発力によってボール(24B)(2
4B/)を弁座に圧接しているので、(AXB)液はこ
の弁■(24/)で完全に遮1所されており、たとえば
ポンプ(FA)の吸引時の初期に(B)液を流路αQに
逆流することを防止する。これら流路のダンパおよび逆
止弁はこの発明の要部の一つである。つぎに第3図にも
どってポンプ(FB)が高速吸引に入る(t b)時は
前述したと同様(A)液が多く(B)液が減少し、混合
濃度比(りは(−ΔK)だけ減少することとなる。ここ
でこの発明は上記混合濃度比率(イ)の変化(±ΔK)
をなくするためたとえば(FA)ポンプが高速吸引を開
始すると、それを検知し、他方の(FB)ポンプの送液
を停止するポンプ駆動制御回路を設けたことが要部の一
つである。すなわち(FA)ポンプが吸引工程中は(F
B)ポンプを停止し、同じ< (Pea)ポンプが吸引
工程中(PA)ポンプが停止することで、前述のダンパ
ー(イ)(23勺が作動して流量は若干減っても同量の
(A)(B)液をミキシングチャンバーに送液すること
となり、混合濃度比(埒は第3図G図のように変化しな
いこととなる。このポンプ駆動制御回路(2) (2’
 )は第2図において二二の信号線(イ)(第1図の(
25′)(25’) )を設けてプランジャ(9)が吸
引工程に入ったことを検知し、この検知信号をグラジェ
ントプログラマ(7)内に設けたモータ指令回路によっ
て他方のポンプモータに停止信号を発するように構成さ
れている。
Figure ■ is a time chart of the (Fω waveform) caused by the pump (PB), with a period of tB+10m1n, approximately 0.6sec
) indicates that high-speed suction is being performed. Because the cycle is long, the mixing chamber (g) is filled with sea sand (a) with a particle size of approximately 0.3 to 0.5 M in a stainless steel tube (18I ()), and the connecting metal fittings at both ends ( If this is fixed by 18J), even if a single pipe or a mixing chamber filled with spherical particles is used that has a higher mixing effect, it will not be completely smooth, and the mixed concentration ratio (弒 changes during each pump suction as shown in Figure ■.This change is caused by a very small amount of liquid flowing back to the pump side at the beginning of the suction process (ta) of the pump (FA).
B) When that much liquid is sent to the mixing chamber (to), the mixing concentration ratio = FB O FA + FB) is (+ΔK
) For example, it increases by several units. At this time, the flow rate (FA + FB) to the mixing chamber (7) is controlled by the damper installed in the next flow path aQ) and the check valve (to) during pump suction (1; a). Also (FA
Since the flow rate of ) is almost maintained, (FA+FB) only decreases slightly. This is due to the action of a damper (not shown) (23 cylinders crush a stainless steel pipe with an inner diameter of about 5 mm, for example,
A flat flow path of about 0.27 ffW is formed, and this has an inner diameter of 10
Total length 2 sealed inside the tube with an elastic rubber filler
The flat flow path expands due to the discharge pressure, and contracts when the pump suctions to continue pumping liquid. In addition, the check valve ■ (24 is a normal check valve that allows fluid to flow in only one direction, and the spring (24S)
The ball (24B) (2
4B/) is in pressure contact with the valve seat, the (AXB) liquid is completely blocked by this valve (24/). For example, at the beginning of the pump (FA) suction, the (B) liquid This prevents the water from flowing back into the flow path αQ. The dampers and check valves for these flow paths are one of the essential parts of this invention. Next, returning to Fig. 3, when the pump (FB) enters high-speed suction (t b), as described above, (A) liquid increases (B) liquid decreases, and the mixture concentration ratio (R) (−ΔK ).Here, this invention reduces the change (±ΔK) in the mixture concentration ratio (a).
In order to eliminate this problem, for example, when the (FA) pump starts high-speed suction, a pump drive control circuit is provided that detects this and stops the liquid feeding of the other (FB) pump. In other words, when the (FA) pump is in the suction process, (F
B) The pump is stopped and the same < (Pea) pump is in the suction process (PA) By stopping the pump, the damper (A) (23) is activated and the flow rate is slightly reduced, but the same amount of (Pea) The A) and (B) liquids will be sent to the mixing chamber, and the mixed concentration ratio (埒) will not change as shown in Figure 3G.This pump drive control circuit (2) (2'
) is 22 signal line (a) in Figure 2 ((
25') (25')) is installed to detect that the plunger (9) has entered the suction process, and this detection signal is sent to the other pump motor to stop using the motor command circuit installed in the gradient programmer (7). configured to emit a signal.

以上がこの発明の実施例としての2ポンプ方式のグラジ
ェント溶出装置であるが、混合溶媒は上記2種に限定さ
れず、3種・4種のばあいも送液ポンプならびにその流
路を増加し、プログラマの内容を変更することによって
同様の効果が得られる。またダンパーは上述したものに
限らずどのような形式のものでもよい。
The above is a two-pump type gradient elution device as an embodiment of this invention, but the mixed solvent is not limited to the above two types, and in the case of three or four types, the number of liquid sending pumps and their flow paths is increased. However, the same effect can be obtained by changing the contents of the programmer. Further, the damper is not limited to the one described above, and may be of any type.

この発明は以上のように構成されているので、溶媒消費
量のきわめて少ない微小口径カラムを使用してグラジェ
ント溶出において送液ポンプの吸引時の混合比率の変化
を完全になくし、安定した勾配溶出ができ高い分離性能
が得ら孔る便宜な装置を提供しえたものである。
This invention is configured as described above, and it uses a micro-diameter column with extremely low solvent consumption to completely eliminate changes in the mixing ratio during gradient elution during suction of the liquid pump, resulting in stable gradient elution. The present invention provides a convenient device that allows for high separation performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるグラジェント溶出装置の構成
を示すブロック図、第2図は上記装置の送液ポンプ駆動
回路ならびに吐出圧記憶による圧縮率補正回路図、第3
図■はポンプ(FA)の流jt(1’A)の波形を示す
タイムチャート、図■は同じくポンプ(FB)の流量(
FB)の波形のタイムチャート、図■は上記流量(FA
XFB)の混合濃度比(埒の変化を示すタイムチャート
 (一方のポンプ吸引時他方のポンプ吐出のばあい)、
図Qはこの発明にかかる装置における上記混合濃度比(
りのタイムチャートである。 PA−’J’B・・・送液ポンプ(シングルプランジャ
往復動高圧ポンプ) A−B・・・溶媒  l・・・微小口径カラム2・21
・・・ポンプ駆動モータ制御回路FA−FB・・・上記
ポンプ(FA) (PB)の所定流量柵仲柑路 3・3′・・・ ポンプ駆動モータ 7・・・グラジェントプログラマ 9・・・プランジャ 10・・・プランジャ位置検出器 11・・・グランジャ位置モニタ
FIG. 1 is a block diagram showing the configuration of the gradient elution device according to the present invention, FIG. 2 is a diagram of the liquid feeding pump drive circuit of the device and a compressibility correction circuit using discharge pressure storage, and FIG.
Figure ■ is a time chart showing the waveform of the flow rate jt (1'A) of the pump (FA), and figure ■ is a time chart showing the waveform of the flow rate (1'A) of the pump (FB).
FB) waveform time chart, figure ■ shows the above flow rate (FA
Time chart showing changes in mixing concentration ratio (XFB) (when one pump is suctioning and the other pump is discharging),
Figure Q shows the above mixed concentration ratio (
This is a time chart. PA-'J'B... Liquid pump (single plunger reciprocating high-pressure pump) A-B... Solvent l... Micro-bore column 2/21
... Pump drive motor control circuit FA-FB ... Predetermined flow rate fence of the above pumps (FA) (PB) Nakakanji 3, 3' ... Pump drive motor 7 ... Gradient programmer 9 ... Plunger 10... Plunger position detector 11... Granger position monitor

Claims (1)

【特許請求の範囲】[Claims] 複数個の送液ポンプによって複数種の溶媒の混合比を時
間的に変化させ微小・口径カラムに送液し、試料を溶出
させるようにした装置において、前配送液ポンプをその
カラムへの吐出工程を所定流量で決まる速度に、かつそ
の溶媒吸引工程を前記吐出速度に比し高速度に設定した
シングルプランジャ往復動形高圧ポンプとし、そのそれ
ぞれの送液流路の前記送液ボング側に脈流を吸収し、前
記ポンプの吸引工程の際送液を続けるダンパを、とのダ
ンパの下流側に送液方向にのみ流れを許容する逆止弁を
設けるとともに、前記複数個の送液ポンプのいずれか一
つが吸引工程に入った際とれを検知し、その工程の間他
のすべての送液ポンプを停止せしめる送液ポンプ駆動制
御回路を設けたことを特徴とするグラジェント溶出装置
In an apparatus in which the mixing ratio of multiple types of solvents is changed over time using multiple liquid pumps and the liquid is sent to a micro-diameter column to elute the sample, the pre-delivery liquid pump is used in the discharge process to the column. A single plunger reciprocating high-pressure pump is set at a speed determined by a predetermined flow rate, and its solvent suction process is set at a higher speed than the discharge speed, and a pulsating flow is applied to the liquid feeding bong side of each liquid feeding channel. A check valve that allows flow only in the liquid feeding direction is provided downstream of the damper, and a damper that absorbs liquid and continues feeding the liquid during the suction process of the pump. 1. A gradient elution device comprising a liquid pump drive control circuit that detects when one of the liquid pumps enters a suction process and stops all other liquid pumps during that process.
JP57208240A 1982-11-26 1982-11-26 Gradient elution apparatus Pending JPS5997054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208240A JPS5997054A (en) 1982-11-26 1982-11-26 Gradient elution apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208240A JPS5997054A (en) 1982-11-26 1982-11-26 Gradient elution apparatus

Publications (1)

Publication Number Publication Date
JPS5997054A true JPS5997054A (en) 1984-06-04

Family

ID=16552971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208240A Pending JPS5997054A (en) 1982-11-26 1982-11-26 Gradient elution apparatus

Country Status (1)

Country Link
JP (1) JPS5997054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145206A (en) * 1985-12-19 1987-06-29 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPS638554A (en) * 1986-06-28 1988-01-14 Japan Spectroscopic Co Pump with built-in gradient program
JPS63117256A (en) * 1986-11-04 1988-05-21 Jeol Ltd Gradient apparatus
JP2006509214A (en) * 2002-12-09 2006-03-16 ウオーターズ・インベストメンツ・リミテツド Backflow prevention for high pressure gradient systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145206A (en) * 1985-12-19 1987-06-29 Matsushita Electric Ind Co Ltd Optical integrated circuit
JPS638554A (en) * 1986-06-28 1988-01-14 Japan Spectroscopic Co Pump with built-in gradient program
JPS63117256A (en) * 1986-11-04 1988-05-21 Jeol Ltd Gradient apparatus
JP2006509214A (en) * 2002-12-09 2006-03-16 ウオーターズ・インベストメンツ・リミテツド Backflow prevention for high pressure gradient systems

Similar Documents

Publication Publication Date Title
US7921696B2 (en) Liquid chromatograph device
US4155683A (en) System for and a method of providing a liquid chromatography eluent
JP5246805B2 (en) Liquid metering pump
EP0901576B1 (en) Bubble detection and recovery in a liquid pumping system
JPH08284809A (en) Pump system keeping quantity of liquid flowed out approximately constant
JPS6236159B2 (en)
JP2004150402A (en) Pump for liquid chromatography
JP2016507048A (en) Pumps and injectors for liquid chromatography
JPS5997054A (en) Gradient elution apparatus
JP2005147756A (en) Liquid feed pump device
JPS61178582A (en) Liquid feeding pump apparatus
JPS633154B2 (en)
JP3389649B2 (en) Liquid sending device
JPH04110656A (en) Liquid feeding apparatus for liquid chromatograph
JP3903827B2 (en) In-line double syringe feed pump and liquid chromatograph
US6106238A (en) Bubble detection and recovery in a liquid pumping system
JP6078422B2 (en) Liquid chromatograph liquid feeding device and liquid chromatograph device
JPH0459473B2 (en)
JP2504001B2 (en) Liquid transfer device
JPS58200161A (en) Liquid chromatograph
JPH0777521A (en) Liquid chromatograph
JPH06229997A (en) Low pressure gradientor
JP2555318B2 (en) Solvent feeder for liquid chromatograph
US20230258614A1 (en) Liquid chromatograph
JP2006118374A (en) Liquid feeding system