JPS5996448A - Control device for intake and exhaust systems of internal-combustion engine - Google Patents

Control device for intake and exhaust systems of internal-combustion engine

Info

Publication number
JPS5996448A
JPS5996448A JP57205828A JP20582882A JPS5996448A JP S5996448 A JPS5996448 A JP S5996448A JP 57205828 A JP57205828 A JP 57205828A JP 20582882 A JP20582882 A JP 20582882A JP S5996448 A JPS5996448 A JP S5996448A
Authority
JP
Japan
Prior art keywords
valve
exhaust gas
air
fuel
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57205828A
Other languages
Japanese (ja)
Inventor
Hideo Kobayashi
秀男 小林
Yoji Fukutomi
福富 庸二
Akinobu Takagi
高木 昭宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP57205828A priority Critical patent/JPS5996448A/en
Publication of JPS5996448A publication Critical patent/JPS5996448A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To have sufficient performance of power output and exhaust gas purification compatibly by allowing an exhaust gas feedback control device to reduce the amount of feedback while a fuel increasing device is in service, and by furnishing the exhaust system with a three-dimensional catalyzer converting device. CONSTITUTION:In order to give a mixture gas an air-to-fuel ratio according to the theoretical value during operation, the suction manifold Mi is equipped with a fuel increasing device, which is composed of a fuel increasing valve 61, air bleeder passage 70, No.2 air jet 712 and solenoid operated valve 72, and an exhaust gas feedback device, which is composed of an exhaust gas feedback line 5, feedback amount control valve 6, solenoid operated valve 41 and neg. pressure control valve V. While the fuel increasing device is in service, the amount of exhaust gas feedback shall be reduced. Furnishment of the exhaust system Me with a three-dimensional catalyzer converting device T will provide adjustment of the mixture gas toward Rich when high power is requested as well as reduce the amount of exhaust gas feedback, so that good performance of power output can be obtained and, at the same time, effective purification be made by three-dimensional catalyzer device.

Description

【発明の詳細な説明】 本発明は、通常は理論空燃比より希薄な空燃比の混合気
によって運転される形式の内燃機関の吸。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine of the type that is normally operated with an air-fuel mixture leaner than the stoichiometric air-fuel ratio.

排気系制御装置に関する。It relates to an exhaust system control device.

従来、かかる形式の内燃機関における排ガス浄化対策と
して、排気系に酸化触媒変換装置を設けることによって
、排ガスに含まれるEC,Coを排ガス中に充分に残存
させた酸素と酸化反応させて浄化し、一方、排ガス中の
NOxに対しては、吸気系に排ガスを機関の負荷に応じ
て還流させることによってその発生を抑制することが行
われている。
Conventionally, as an exhaust gas purification measure for this type of internal combustion engine, an oxidation catalyst conversion device is provided in the exhaust system to purify EC and Co contained in the exhaust gas by causing an oxidation reaction with sufficient oxygen remaining in the exhaust gas. On the other hand, the generation of NOx in the exhaust gas is suppressed by circulating the exhaust gas back into the intake system according to the load of the engine.

このような排ガス浄化手段の採用によれば、高負荷時に
も、混合気の空燃比は理論空燃比よりも希薄な値に保ち
得るので、もともと排ガス中の有害成分を少なく抑えて
酸化触媒変換装置の負担を軽くすると共に燃費を低減さ
せるのに有効であつたが、この反面特に高負荷時には排
ガス還流量の増加により所望の出力性能が得難く、加速
性等のドライバビリティの点で改良が望まれている。
By adopting such exhaust gas purification means, the air-fuel ratio of the air-fuel mixture can be maintained at a value leaner than the stoichiometric air-fuel ratio even under high load. This was effective in lightening the load on drivers and reducing fuel consumption, but on the other hand, it was difficult to obtain the desired output performance due to an increase in the amount of exhaust gas recirculation, especially at high loads, and improvements were desired in terms of drivability such as acceleration. It is rare.

そこで、本発明は、通常は希薄混合気による機関の運転
を行い、加速時など高出力を要求されるときには吸気系
への燃料供給量を増加させて混合気の空燃比を略理論空
燃比にすると共に吸気系への排ガス還流量を減少させ、
一方、混合スの濃厚化と排ガス還流量の減少とに伴い発
生量が増加する排ガス中のA’ Oxは排気系に三元触
媒変換装置を設けることによって、これを効果的に還元
浄化し、勿論、IfC,Coも同時に浄化し、もって出
力性能と排ガス浄化の両面を満足させ得る、前記内燃機
関の吸、排気系制御装置を提供することを目的とする。
Therefore, the present invention normally operates the engine with a lean air-fuel mixture, and when high output is required such as during acceleration, the amount of fuel supplied to the intake system is increased to bring the air-fuel ratio of the air-fuel mixture to approximately the stoichiometric air-fuel ratio. At the same time, it reduces the amount of exhaust gas returned to the intake system,
On the other hand, A'Ox in the exhaust gas, which increases in amount as the mixture becomes richer and the amount of exhaust gas recirculated decreases, can be effectively reduced and purified by installing a three-way catalytic converter in the exhaust system. Of course, it is an object of the present invention to provide an intake/exhaust system control device for an internal combustion engine that can purify IfC and Co at the same time, thereby satisfying both output performance and exhaust gas purification.

以下、図面により本発明を自動車用内燃機関に適用した
一実施例について説明すると、機関Eは一側に吸気マニ
ホールドM6、他側に排気マニホールドMeが結着され
、吸気マニホールドMiの上流端に可変ベンチュリ型気
化器Cが装着され、この気化器Cは、機関の通常運転に
は理論空燃比よりも希薄な空燃比の混合気を生成するよ
うに調整されている。さらに気化器Cの入口にはエアク
リーナAが取付けられている。
Hereinafter, an embodiment in which the present invention is applied to an automobile internal combustion engine will be described with reference to the drawings. The engine E has an intake manifold M6 connected to one side and an exhaust manifold Me connected to the other side, and the upstream end of the intake manifold Mi has a variable A venturi type carburetor C is installed, and this carburetor C is adjusted to produce an air-fuel mixture having an air-fuel ratio leaner than the stoichiometric air-fuel ratio for normal operation of the engine. Further, an air cleaner A is attached to the inlet of the carburetor C.

一方、排気マニホールドMeの下流端には三元触媒変換
装置Tが装着される。
On the other hand, a three-way catalytic converter T is installed at the downstream end of the exhaust manifold Me.

気化器Cの吸気道1には、中央のベンチュリ1aを挾ん
でその上流側にチョーク弁2、下流側に絞弁3がそれぞ
れ設置され、ベンチュリ1aには、その下流側麓部に補
助燃料ノズル4aが、またその頂部に主燃料ノズル4m
がそれぞれ開口する。
In the intake path 1 of the carburetor C, a choke valve 2 is installed on the upstream side of the central venturi 1a, and a throttle valve 3 is installed on the downstream side of the central venturi 1a.The venturi 1a has an auxiliary fuel nozzle at its downstream foot. 4a, and the main fuel nozzle 4m at the top.
each opens.

さらに吸気道1において、絞弁3の近傍部に第1負圧検
出孔D1が、またベンチュリ1αに第2負圧検出孔D2
が開口し、第1負圧検出孔D1は、 5− 絞弁3のアイドル開度位置でその上流に位置し、絞弁3
が開き始めるとその下流側に移るようになっている。
Furthermore, in the intake passage 1, a first negative pressure detection hole D1 is provided near the throttle valve 3, and a second negative pressure detection hole D2 is provided in the venturi 1α.
is opened, and the first negative pressure detection hole D1 is located upstream of the throttle valve 3 at the idle opening position, and
When it starts to open, it moves to the downstream side.

れており、その途中に還流量制御弁6が設けられる。こ
の弁6は、排気還流路5の開度調節を行う二Tドル形弁
体7にダイヤフラム8を連結し、そのダイヤフラム8の
上側に形成した負圧室9に上記弁体7を閉じ側に付勢す
る弁はね10を縮設して負圧応動型に構成される。
A reflux control valve 6 is provided in the middle. This valve 6 has a diaphragm 8 connected to a two-T dollar-shaped valve body 7 that adjusts the opening degree of the exhaust gas recirculation path 5, and a negative pressure chamber 9 formed above the diaphragm 8, with the valve body 7 being placed on the closing side. The energizing valve spring 10 is compressed to form a negative pressure responsive type.

この還流量制御弁6の負圧室9には第1および第2負圧
検出孔り、、D2から延出する第1および第2負圧通路
り、、L2が接続され、第1負圧通路LL には電磁弁
11とその下流側に位置するオリフィス12とが直列に
設けられる。電磁弁11はソレノイドへの通電時に第1
負圧通路り、の上 6 − 流側を不通にすると共に下流側をフィルタ付大気開放口
13に連通ずるようになっている。
The negative pressure chamber 9 of the reflux control valve 6 is connected to first and second negative pressure detection holes, first and second negative pressure passages L2 extending from D2, and the first negative pressure A solenoid valve 11 and an orifice 12 located downstream thereof are provided in series in the passage LL. The solenoid valve 11 is the first solenoid valve when the solenoid is energized.
The upper 6-flow side of the negative pressure passage is closed, and the downstream side is communicated with the air opening 13 with a filter.

第2負圧通路L2には負圧制御弁rが設けられ、それは
第2負圧通路L2を開閉制御する負圧応動型調整弁V1
 と、還流M二制御弁6の作動負圧をフィードバックさ
れて調整弁V1を制御する同じく負圧応動型の空気弁V
2とよりなっており、合弁の構成を順次説明する。
The second negative pressure passage L2 is provided with a negative pressure control valve r, which is a negative pressure responsive regulating valve V1 that controls opening and closing of the second negative pressure passage L2.
and an air valve V which is also a negative pressure responsive type and controls the regulating valve V1 by receiving feedback of the operating negative pressure of the recirculation M2 control valve 6.
The structure of the joint venture will be explained in sequence.

先ず調整弁V、は、第2負圧通路L2の途中に形成され
る弁室20と、その上側にダイヤフラム21を介して隣
接する負圧室22と、」−記ダイヤフラム21に付設さ
れて第1負圧通路L1 の下流側弁口25を開閉し得る
フラット形弁体23と、その弁体23を閉じ側に付勢す
る弁ばね24とより構成されている。
First, the regulating valve V has a valve chamber 20 formed in the middle of the second negative pressure passage L2, a negative pressure chamber 22 adjacent to the upper side of the valve chamber 20 via a diaphragm 21, and a valve chamber 20 attached to the diaphragm 21. The flat valve body 23 is configured to open and close the downstream valve port 25 of the negative pressure passage L1, and a valve spring 24 biases the valve body 23 toward the closing side.

次に空気弁V2は、吸気マニホールドM iより延出し
てフィルタ付大気開放口14に至る制御吸気路り、の途
中に形成される弁室30ど、その上側にダイヤフラム3
1を介して隣接する負圧室32と、上記ダイヤフラム3
1に付設さJlて制御吸気路L3の下流側の弁口35を
開閉し得るフラット形弁体33と、その弁体33を閉じ
側に付勢する弁ばね34とより構成さ才する。
Next, the air valve V2 includes a valve chamber 30 formed in the middle of a control intake path extending from the intake manifold M i and reaching the filtered atmosphere opening 14, and a diaphragm 3 above the valve chamber 30.
Negative pressure chamber 32 adjacent through 1 and the diaphragm 3
The flat valve body 33 attached to the control intake passage L3 is attached to the control intake passage L3 and can open and close the valve port 35 on the downstream side of the control intake passage L3, and a valve spring 34 biases the valve body 33 toward the closing side.

而して、負圧室32は連通路36及び、調整弁f、r、
の弁口25よりも下流側の第2負圧通路L2を介して還
流量制御弁6の負圧室9と連通する。
Thus, the negative pressure chamber 32 has a communication passage 36 and regulating valves f, r,
It communicates with the negative pressure chamber 9 of the recirculation amount control valve 6 via the second negative pressure passage L2 downstream of the valve port 25 of.

前記調整弁V1 の負圧室22は、空気弁V2の弁室3
0の上流で制御吸気路L3に介入するようにしで形成さ
れ、この負圧室22を間に挾む一対のオリフィスJ1 
、J2が制御吸気路L3に設けられ、それらの絞り開度
は同等、若しくは上流側のものJ、を下流側のものJ2
より小さく設定される。
The negative pressure chamber 22 of the regulating valve V1 is connected to the valve chamber 3 of the air valve V2.
A pair of orifices J1 are formed so as to intervene in the control intake passage L3 upstream of 0, and sandwich this negative pressure chamber 22 between them.
, J2 are provided in the control intake passage L3, and their throttle openings are the same, or the upstream one J and the downstream one J2
is set smaller.

また第2負圧通路L2には調整弁V、の上流側において
オリフィス40と電磁弁41とが直列に介装される。こ
の電磁弁41はソレノイドへの通電時に第2負圧通路L
2の上流側を不通にすると共に下流側をフィルタ付大気
開放口14に連通ずるようになっている。
Further, an orifice 40 and a solenoid valve 41 are arranged in series in the second negative pressure passage L2 on the upstream side of the regulating valve V. This solenoid valve 41 is connected to the second negative pressure passage L when the solenoid is energized.
The upstream side of 2 is closed, and the downstream side is communicated with the air opening 14 with a filter.

排気マニホールドMeには、エアクリーナAより延出す
る2次空気通路L4が三元触媒変換装置7°の直前で接
続され、この2次空気通路L4には上流側(エアクリー
ナA側)から消音器50、負圧応動弁51及びリード弁
52が順次直列に介装される。負圧応動弁51は、リー
ド弁52の入口を開閉する弁体53と、この弁体53を
支持するダイヤフラム54と、このダイヤフラム54の
一側に形成された負圧室55と、この負圧室55に縮設
されてダイヤフラム54を弁体53の閉じ方向に弾発す
る弁はね56とより構成され、負圧室55に所定値以上
の負圧が導入されると、ダイヤ 9− フラム54が作動して弁体53を開くようになっている
。その負圧室55には、前記制御吸気路L3より分岐し
た第3負圧通路り、が接続される。
A secondary air passage L4 extending from the air cleaner A is connected to the exhaust manifold Me just before the three-way catalytic converter 7°, and a silencer 50 is connected to the secondary air passage L4 from the upstream side (air cleaner A side). , a negative pressure responsive valve 51 and a reed valve 52 are successively installed in series. The negative pressure responsive valve 51 includes a valve body 53 that opens and closes the inlet of the reed valve 52, a diaphragm 54 that supports the valve body 53, a negative pressure chamber 55 formed on one side of the diaphragm 54, and a negative pressure chamber 55 formed on one side of the diaphragm 54. It is composed of a valve spring 56 that is contracted in the chamber 55 and springs the diaphragm 54 in the closing direction of the valve body 53, and when a negative pressure of a predetermined value or more is introduced into the negative pressure chamber 55, the diaphragm 54 is operated to open the valve body 53. A third negative pressure passage branched from the control intake passage L3 is connected to the negative pressure chamber 55.

この負圧通路り、には電磁弁5.7が介装される。A solenoid valve 5.7 is interposed in this negative pressure passage.

電磁弁57はソレノイドへの通電時に第3負圧通路り、
の上流側を不通にすると下流側をフィルタ付大気開放口
58に連通ずるようになっている。
The solenoid valve 57 passes through the third negative pressure passage when the solenoid is energized,
When the upstream side of the filter is closed, the downstream side is communicated with the filtered atmosphere opening port 58.

本発明において、負圧通路の上流側とは負圧源側をいう
In the present invention, the upstream side of the negative pressure passage refers to the negative pressure source side.

前記気化器Cの補助燃料ノズル4aは、第2図に示すよ
うに、並列する第1及び第2燃料ジエツ)60..60
2と、第2燃料ジエツト602の直下に設けられる燃料
増量弁61とを介してフロート室62の燃料油面下に連
通する。
As shown in FIG. 2, the auxiliary fuel nozzle 4a of the carburetor C includes first and second fuel jets (first and second fuel jets) 60. .. 60
2 and a fuel increase valve 61 provided directly below the second fuel jet 602 to communicate with the surface of the fuel oil in the float chamber 62 .

燃料増量弁61は、第2燃料ジエツト602の下部に連
設された弁筒63と、この弁筒63内に昇降自在に収納
されて弁筒63下端の弁座63d10− と協働する針弁64と、この針弁64を弁座63dに向
って弾発する弁ばね65と、弁座63αを貫通する針弁
64の突出部に当接し得る作動子66と、フロ・立ド室
62の底壁に張設されて作動子66を支゛持するダイヤ
フラム67と、このダイヤフラム67の外側に形成され
た負圧室68と、この負王室68に縮設されて前記弁ば
ね65より強いばね力で作動子66を針弁64の開き方
向に弾発する戻しばね69とより構成され、負圧室68
は吸気マニホールドMi内に第4負圧通路L6を介して
連通される。
The fuel increase valve 61 includes a valve cylinder 63 connected to the lower part of the second fuel jet 602, and a needle valve that is housed in the valve cylinder 63 so as to be able to rise and fall and cooperates with a valve seat 63d10- at the lower end of the valve cylinder 63. 64, a valve spring 65 that springs the needle valve 64 toward the valve seat 63d, an actuator 66 that can come into contact with the protrusion of the needle valve 64 that passes through the valve seat 63α, and the bottom of the flow/stand chamber 62. A diaphragm 67 that is stretched on a wall and supports the actuator 66, a negative pressure chamber 68 formed outside the diaphragm 67, and a spring force that is compressed in the negative pressure chamber 68 and is stronger than the valve spring 65. and a return spring 69 that springs the actuator 66 in the opening direction of the needle valve 64.
is communicated with the intake manifold Mi via a fourth negative pressure passage L6.

而して、絞弁3が低開度域におかれる機関の低負荷運転
時には、絞弁3の下流側に発生する比較的高い負圧が第
4負圧通路L6を通して負圧室68に伝達し、戻しばね
690力に抗してダイヤフラム6γと共に作動子66を
引き下げるので、針弁64は弁ばね65の力で下降して
弁座63αに着座し、燃料増量弁61を閉弁状態にする
。したがって、低負荷運転時には、フロート室62から
補助燃料ノズル4aへの燃料の供給量は第1燃料ジエツ
ト601のみにより少な目に計量されるため、補助燃料
ノズル4aからの燃料噴出量は比較的少ない。これに対
して、絞弁3が高開度域におかれる機関の高負荷運転時
には、絞弁3の下流側の負圧の低下に伴い負圧室68の
負圧も低下し、戻しばね69が作動子66をダイヤフラ
ム67と共に押し上げるので、作動子66が針弁64を
弁座63αから離間させ、燃料増量弁61を開弁状態に
する。
Therefore, during low load operation of the engine in which the throttle valve 3 is placed in a low opening range, relatively high negative pressure generated downstream of the throttle valve 3 is transmitted to the negative pressure chamber 68 through the fourth negative pressure passage L6. Then, the actuator 66 is pulled down together with the diaphragm 6γ against the force of the return spring 690, so the needle valve 64 is lowered by the force of the valve spring 65 and seats on the valve seat 63α, thereby closing the fuel increase valve 61. . Therefore, during low-load operation, the amount of fuel supplied from the float chamber 62 to the auxiliary fuel nozzle 4a is measured to a small extent only by the first fuel jet 601, so that the amount of fuel ejected from the auxiliary fuel nozzle 4a is relatively small. On the other hand, during high load operation of the engine in which the throttle valve 3 is placed in a high opening range, the negative pressure in the negative pressure chamber 68 also decreases as the negative pressure downstream of the throttle valve 3 decreases, and the return spring 69 Since the actuator 66 is pushed up together with the diaphragm 67, the actuator 66 separates the needle valve 64 from the valve seat 63α and opens the fuel increase valve 61.

したがって、高負荷運転時には、フロート室62から補
助燃料ノズル4aへの燃料供給量が並列関係の第1及び
第2燃料ジエツト6o+  、602により条目に計量
されるため、補助燃料ノズル4aからの燃料噴出量は増
量される。
Therefore, during high-load operation, the amount of fuel supplied from the float chamber 62 to the auxiliary fuel nozzle 4a is metered in parallel by the first and second fuel jets 6o+ and 602, so that the fuel is injected from the auxiliary fuel nozzle 4a. The amount will be increased.

再び第1図に戻り、補助燃料ノズル4aには空気ブリー
ド通路70が接続され、この空気ブIJ −ド通路70
は並列する第1及び第2空気ジエツトγ1゜、112を
介してエアクリーナAと連通し、第2空気ジエツト71
□とエアクリーナAとの連通路には電磁弁72が設けら
れる。
Returning to FIG. 1 again, an air bleed passage 70 is connected to the auxiliary fuel nozzle 4a, and this air bleed passage 70
communicates with the air cleaner A via the parallel first and second air jets γ1 and 112, and the second air jet 71
A solenoid valve 72 is provided in the communication path between □ and the air cleaner A.

而して、電磁弁72が通電されず開弁状態にあれば、エ
アクリーナAから補助燃料ノズル4aへのブリード空気
の供給量は並列する第1及び第2空気ジエツ)71+ 
 、712 により条目に計量されるため、補助燃料ノ
ズル4a内の燃料に混入される空気量が多くなり、結局
、補助燃料ノズル4aからの噴油は少な目に制御される
Therefore, if the electromagnetic valve 72 is not energized and is in the open state, the amount of bleed air supplied from the air cleaner A to the auxiliary fuel nozzle 4a is equal to the amount of air supplied from the first and second air jets 71+ in parallel.
, 712, the amount of air mixed into the fuel in the auxiliary fuel nozzle 4a increases, and as a result, the amount of oil injected from the auxiliary fuel nozzle 4a is controlled to be small.

これに対して、電磁弁72が通電されて閉弁状態になる
と、第2空気ジエツト712が閉鎖され、エアクリーナ
Aから補助燃料ノズル4aへのブリード空気の供給量は
第1空気ジエツト711のみにより少な目に計量される
ため、補助燃料ノズル13− 4α内の燃料に混合される空気量が少なくなり、結局、
補助燃料ノズル4aからの肯油量はこれによっても増量
される。
On the other hand, when the solenoid valve 72 is energized and becomes closed, the second air jet 712 is closed, and the amount of bleed air supplied from the air cleaner A to the auxiliary fuel nozzle 4a is reduced by only the first air jet 711. Therefore, the amount of air mixed with the fuel in the auxiliary fuel nozzle 13-4α decreases, and as a result,
This also increases the amount of oil supplied from the auxiliary fuel nozzle 4a.

前記4個の電磁弁11,41.57,72の制御系とし
て次のものが用意される。
The following control system for the four electromagnetic valves 11, 41, 57, and 72 is prepared.

第1負荷検知器S1・・・機関Eの高負荷時、例えばブ
ーストwJJ” 80mmE’ y以下のとき高7ベル
信号を出力する。
First load detector S1...outputs a high 7 bell signal when the engine E is under high load, for example when the boost wJJ''80mmE'y or less.

車速検知器さ□・・・所定の低車速域、例えば車速が1
5または30 M/h以下のとき高レベル信号を出力す
る。
Vehicle speed detector □...Predetermined low vehicle speed range, for example, when the vehicle speed is 1
Outputs a high level signal when the speed is below 5 or 30 M/h.

第1機関温度検知器S3・・・機関Eの所定の低温域、
例えば機関Eの冷却水温度が65または70℃以下のと
き高レベル信号を出力する。
First engine temperature sensor S3...predetermined low temperature range of engine E,
For example, when the cooling water temperature of engine E is below 65 or 70°C, a high level signal is output.

機関速度検出器S4・・・機関Eの所定の回転数以下、
例えば3150γpm以下のとき高し〜14− ベル信号を出力する。
Engine speed detector S4... below the predetermined rotation speed of the engine E,
For example, when the frequency is 3150 γpm or less, a high to 14-bell signal is output.

第2負荷検知器S、  ・一機関Eのアイドリング時や
減速時、例えばブースト負圧が5307H7J g  
以J−のとき高レベル信号を出力する。
2nd load detector S, ・When engine E is idling or decelerating, for example, boost negative pressure is 5307H7J g
When J-, a high level signal is output.

第2機関部度検知器S6・・機関Eの所定の低温域、例
えば機関L“の冷却水温度が50’C以下のとき高17
ベル信号を出力する。
2nd engine temperature detector S6...High 17 when the predetermined low temperature range of the engine E, for example, the cooling water temperature of the engine L" is 50'C or less
Outputs a bell signal.

接合検知器、57・・・車速、機関回転数、ブースト負
圧等の情報を検知して所定の条件下で高レベル信号を出
力する。
Joint detector, 57...Detects information such as vehicle speed, engine speed, boost negative pressure, etc., and outputs a high level signal under predetermined conditions.

第1負荷検出器S、及び車速検知器S2の出力は第1O
R回路731C入力され、第]機関温度検知器5°、及
び機関速度検知器454の出力はA N f)回路74
に入力される。第2負荷検知器S、及び第2機関部度検
知器、56の出力は第2OR回路75に入力され、また
複合検知器57の出力は第3AIV/)回路76に入力
されろ。
The outputs of the first load detector S and the vehicle speed detector S2 are the first O
R circuit 731C is input, and the outputs of engine temperature sensor 5° and engine speed sensor 454 are A N f) circuit 74
is input. The outputs of the second load detector S and the second engine speed detector 56 are input to the second OR circuit 75, and the output of the composite detector 57 is input to the third AIV/) circuit 76.

第1OR回路73の出力は電磁弁41及び電磁弁72に
入力され、AND回路74の出力は第3OR回路76、
及び必要に応じて第1−OR回路73に入力され、第2
0 R回路75の出力は電磁弁11に入力さ才L、また
第3(JR回路76の出力は電磁弁57に入力される。
The output of the first OR circuit 73 is input to the solenoid valve 41 and the solenoid valve 72, and the output of the AND circuit 74 is input to the third OR circuit 76,
and is input to the first-OR circuit 73 as necessary, and the second
The output of the 0R circuit 75 is input to the solenoid valve 11, and the output of the third (JR) circuit 76 is input to the solenoid valve 57.

次にこの実施例の作用を説明すると、いま電磁弁11.
41は図示のように非通電状態にあると′1−る。そこ
で、エンジンEの運転により絞弁3の近傍に生起する負
圧が第1負圧検出孔り、に検出さ゛れると、その負圧p
cは電磁弁11、オリフィス12を経て空気弁V2の負
圧室32に伝達し、それが弁ばね34のセット荷重に打
勝ったときダイヤフラム31を介して弁体33を引き上
げ、制御吸気路L3を導通させる。
Next, to explain the operation of this embodiment, the solenoid valve 11.
41 is in a de-energized state as shown in the figure. Therefore, when the negative pressure generated near the throttle valve 3 due to the operation of the engine E is detected by the first negative pressure detection hole, the negative pressure p
c is transmitted to the negative pressure chamber 32 of the air valve V2 via the solenoid valve 11 and the orifice 12, and when it overcomes the set load of the valve spring 34, the valve body 33 is pulled up via the diaphragm 31, and the control intake path L3 conduction.

制御吸気路り、が導通すると、大気開放口14に外気が
吸込まれ、そして調整弁V、の負王室22前後のオリフ
ィスJ、、J2により流量を規制された後、空気弁V2
の弁室3o、弁口35を経てエンジンEの吸気路に吸込
まれていく。これに伴い調整弁V、の負圧室22および
空気弁V2の弁室30に負圧P1およびP2がそれぞれ
生じ、それらの負圧比はオリフィスJ、、J2の絞り比
に17− より決定される。
When the control intake path becomes conductive, outside air is sucked into the atmosphere opening port 14, and the flow rate is regulated by the orifices J, , J2 before and after the negative crown 22 of the regulating valve V, and then the air valve V2
The air is sucked into the intake passage of the engine E through the valve chamber 3o and the valve port 35. Accordingly, negative pressures P1 and P2 are generated in the negative pressure chamber 22 of the regulating valve V and the valve chamber 30 of the air valve V2, respectively, and the negative pressure ratio is determined by the throttle ratio of the orifice J, J2. .

而して、調整弁V1 において、負圧室22の負圧P、
と第2負圧検出孔D2の検出負圧P IJとの差圧によ
るダイヤフラム21の上動力が弁ばね24のセット荷重
に打勝てば、ダイヤフラム21を介して弁体23を引き
上げ、弁口25を開くので、負圧Pυの一部が弁口25
を通過して、先にオリフィス12を通過した負圧を希釈
して負圧peとなし、それが還流量制御弁6の作動負圧
としてその負圧室9に作用する。
Thus, in the regulating valve V1, the negative pressure P in the negative pressure chamber 22,
If the upward force of the diaphragm 21 due to the differential pressure between the negative pressure P IJ and the detected negative pressure P IJ of the second negative pressure detection hole D2 overcomes the set load of the valve spring 24, the valve body 23 is pulled up via the diaphragm 21, Since it is opened, a part of the negative pressure Pυ flows into the valve port 25.
The negative pressure that previously passed through the orifice 12 is diluted into negative pressure pe, which acts on the negative pressure chamber 9 as the operating negative pressure of the reflux control valve 6.

上記負圧の希釈によれば、作動負圧peの低下が連通路
36を通して空気弁V2の負圧室32にフィードバック
され、該室32の負圧が低下する。
According to the above-mentioned dilution of the negative pressure, a decrease in the operating negative pressure pe is fed back to the negative pressure chamber 32 of the air valve V2 through the communication passage 36, and the negative pressure in the chamber 32 is decreased.

それに応じて空気弁V2の弁口35が弁体33によって
急速に遮断されるので、負圧室22の負圧P1および弁
室30の負圧P2が低下し、これに伴い弁体23が弁口
25を閉じる。すると、作動18− 負圧peが上昇し、とれが空気弁V2にフィードバック
されて、上記と反対の作用により弁体23が弁口25を
開き、以下同様の作用が繰返され、この繰返しが非常に
早く行われるので、負圧PυとP′Cに、負圧P1 と
P2の圧力比に等しい一定の圧力比を与えることができ
る。
Accordingly, the valve port 35 of the air valve V2 is rapidly shut off by the valve body 33, so the negative pressure P1 in the negative pressure chamber 22 and the negative pressure P2 in the valve chamber 30 decrease, and accordingly, the valve body 23 closes to the valve body 33. Close mouth 25. Then, the negative pressure pe rises in operation 18, and the pressure is fed back to the air valve V2, causing the valve element 23 to open the valve port 25 by the opposite action to the above, and the same action is repeated, and this repetition is extremely Since this is done quickly, a constant pressure ratio equal to the pressure ratio of negative pressures P1 and P2 can be given to negative pressures Pυ and P'C.

そこで、エンジンEの吸気量が少なければ、負圧P、は
負圧pvよりも高いため、調整弁V、の弁体23は開き
側に位置し、還流量制御弁6の作動負圧peは低く、こ
れとは反対に吸気量が多くなれば負圧pvが上昇するの
で上記弁体23は閉じ側に移行し、作動負圧peは上昇
する。がくして空気弁V2は負圧peに応じて開放状態
の時間と閉鎖状態の時間とを制御され、還流量制御弁6
はその同一負圧peで開口面積を制御されるので、制御
吸気路L3を流れる空気量と排気還流量とは実質的に比
例し、またエンジンEの吸気量と排気還流量は比例し、
エンジンEに常に一定の還流率を以て排気を吸入させる
ことができ、その排気還流率はPυとpeの圧力比、し
たがってオリフィスJ、、J2の絞り比により予め決定
される。
Therefore, if the intake air amount of the engine E is small, the negative pressure P is higher than the negative pressure pv, so the valve body 23 of the regulating valve V is located on the open side, and the operating negative pressure pe of the recirculation amount control valve 6 is On the other hand, when the amount of intake air increases, the negative pressure pv increases, the valve body 23 moves to the closing side, and the operating negative pressure pe increases. As a result, the air valve V2 has its open state time and closed state time controlled according to the negative pressure pe, and the recirculation amount control valve 6
Since the opening area of is controlled by the same negative pressure pe, the amount of air flowing through the controlled intake passage L3 and the amount of exhaust gas recirculation are substantially proportional, and the amount of intake air and the amount of exhaust gas recirculation of the engine E are proportional,
The exhaust gas can be sucked into the engine E at a constant recirculation rate, and the exhaust gas recirculation rate is determined in advance by the pressure ratio between Pυ and pe, and therefore by the throttling ratio of the orifices J, J2.

ここで、機関Eが高負荷運転状態に入って第1負荷検知
器S1が高レベル信号を発したり、車速が比較的低く車
速検知器S2が高レベル信号を発したり、あるいは機関
温度が比較的低く月つ機関回転数が所定回転数以下であ
って、第1機関部度検知器S3及び機関速度検知器S4
が共に高レベル信号を発したりすると、第1OR回路7
3がら電磁弁72及び電磁弁41に高レベル信号が同時
に入力され、これらを通電状態にする。
Here, the engine E enters a high load operating state and the first load detector S1 issues a high level signal, the vehicle speed is relatively low and the vehicle speed detector S2 issues a high level signal, or the engine temperature is relatively low. The engine rotation speed is lower than the predetermined rotation speed, and the first engine speed detector S3 and the engine speed detector S4
If both of them emit high level signals, the first OR circuit 7
3, a high level signal is simultaneously input to the solenoid valve 72 and the solenoid valve 41, making them energized.

この電磁弁72020通電れば、前述のように補助燃料
ノズル4aの空気ブリード通路70における第2空気ジ
エツト712が閉鎖されるため、該燃料ノズル4aから
の燃料噴出量が増量され、吸気道1で生成される混合気
の空燃比を略理論空燃比に補正し、機関Eはこの混合気
の供給を受けて出力を増強させる。さらに負荷が増大す
ると、続いて燃料増量弁61が前述のように作動して補
助燃料ノズル4αからの燃料噴出量を増量させ、機関の
出力増強を推し進める。
When this electromagnetic valve 72020 is energized, the second air jet 712 in the air bleed passage 70 of the auxiliary fuel nozzle 4a is closed as described above, so that the amount of fuel jetted from the fuel nozzle 4a is increased and the intake passage 1 is The air-fuel ratio of the generated air-fuel mixture is corrected to approximately the stoichiometric air-fuel ratio, and the engine E receives this air-fuel mixture and increases its output. When the load further increases, the fuel increase valve 61 operates as described above to increase the amount of fuel jetted from the auxiliary fuel nozzle 4α, thereby increasing the output of the engine.

一方、電磁弁410通電によれば、前述のように第2負
圧通路L2の下流側が大気開放口14と連通するので、
調整弁V、の弁室20が大気圧に保たれ、弁体23を開
き側に位置させるため、作動負圧peが低下して還流量
制御弁6の開度が減少する結果、排気還流率が減少し、
機関の出力増強に寄与する。
On the other hand, when the solenoid valve 410 is energized, the downstream side of the second negative pressure passage L2 communicates with the atmosphere opening port 14 as described above.
Since the valve chamber 20 of the regulating valve V is maintained at atmospheric pressure and the valve body 23 is positioned on the open side, the operating negative pressure pe decreases and the opening degree of the recirculation amount control valve 6 decreases, resulting in an increase in the exhaust recirculation rate. decreases,
Contributes to increasing engine output.

機関Eがアイドリンク状態または減速状態に入って第2
負荷検知器S、が高レベル信号を発したり、機関温度が
比較的低く第2機関部度検知器S6が高レベル信号を発
したり、′fると、第2OR回路21− 75から電磁弁11に高レベル信号が入力され、これを
通電状態にする。
Engine E enters the idle link state or deceleration state and
When the load sensor S issues a high level signal, or when the engine temperature is relatively low and the second engine temperature sensor S6 issues a high level signal, the second OR circuit 21-75 outputs a high level signal to the solenoid valve 11. A high level signal is input to the circuit, turning it on.

この電磁弁11の通電によれば、前述のように第1負圧
通路L1の下流側を大気開放口13に連通させるので、
作動負圧peは大気圧となり、還流量制御弁6は閉鎖状
態となって排気の還流を止めることができる。
By energizing the solenoid valve 11, the downstream side of the first negative pressure passage L1 is communicated with the atmosphere opening port 13 as described above.
The operating negative pressure pe becomes atmospheric pressure, the recirculation amount control valve 6 is closed, and the recirculation of exhaust gas can be stopped.

機関Eの運転中、排気マニホールド)feへ排出される
排ガスは三元触媒変換装置を通過し、その際排ガス中に
含まれるHC,Co及びNOxが浄化処理される。
During operation of the engine E, the exhaust gas discharged to the exhaust manifold ()fe passes through a three-way catalytic converter, and at this time, HC, Co, and NOx contained in the exhaust gas are purified.

ところで、三元触媒変換装置Tはガスの空燃比が略理論
空燃比のときに、EC,Co及びN Oxのいずれに対
しても良好な浄化機能を発揮するが、空燃比が理論空燃
比よりも希薄になると、NOxに対する浄化機能を著し
く低下させ、また理論空燃比よりも濃厚になると、HC
,Coに対する浄22− 化機能を著しく低下させる特性を有する。
By the way, the three-way catalytic converter T exhibits a good purification function for all EC, Co, and NOx when the air-fuel ratio of the gas is approximately the stoichiometric air-fuel ratio, but when the air-fuel ratio is less than the stoichiometric air-fuel ratio, If the air-fuel ratio becomes too lean, the NOx purification function will be significantly reduced, and if it becomes richer than the stoichiometric air-fuel ratio, the HC
, Co has the property of significantly reducing its purifying function for Co.

したがって、機関EIJ″−特別高出力を要求されない
通常運転時には、希薄混合気の燃焼によりN(J)xの
発生が抑制され、そして排ガス中のHC,C0が三元触
媒変換装置Tにより浄化されるので、結局排ガス中のI
IC、CO、NOxのいずれの濃度も低く抑えろことが
できる。
Therefore, during normal operation in which engine EIJ''-specially high output is not required, the generation of N(J)x is suppressed by combustion of a lean mixture, and HC and C0 in the exhaust gas are purified by the three-way catalytic converter T. As a result, I in the exhaust gas
It is possible to keep the concentrations of IC, CO, and NOx low.

また、機関Eが高出力を要求される運転時には、略理論
空燃比の濃厚混合気の燃焼によりNO4γの発生量が増
加するが、上記空燃比の条件から触媒変換装置が上記三
成分に対して有効に働くので、この場合も排気中の上記
三成分の濃度を低く抑えることができる。
Furthermore, when the engine E is operated to require high output, the amount of NO4γ generated increases due to the combustion of a rich air-fuel mixture with a nearly stoichiometric air-fuel ratio. Since it works effectively, the concentration of the above three components in the exhaust gas can be kept low in this case as well.

また機関Eの低温時に加速のために混合気を濃厚にする
ときや減速初期、変速時などには排気中の特にJfC,
CO濃度が増加するが、このような場合、図示例では、
第1機関部度検知器S3及び機関速度検知器S4が共に
高レベル信号を発して、これをA N I)回路74及
び第3OR回路76を介して電磁弁57に入力したり、
複合検知器S7が高レベル信号を発して、これを同じく
第3OR回路76を介して電磁弁57に入力したりして
、この電磁弁57を通電状態にする。この電磁弁5γの
通電によれば、機関のブースト負圧が制御吸気路L3及
び第3負圧通路L5を経て負圧応動弁51の負圧室55
に導入され、その吸引力によりダイヤフラム54を介し
て弁体53を開放する。すると、排気系の排気脈動の作
用と、それに伴つリード弁52の開閉作用とによりエア
クリーナA内の空気が2次空気通路L4 を通して排気
マニホールドAf e内に供給され、これによって排ガ
スの空燃比が略理論空燃比に補正されるから、このよう
な場合も三元触媒変換装置Tの浄化機能は充分に発揮さ
れる。
In addition, when the air-fuel mixture is enriched for acceleration when engine E is at a low temperature, at the beginning of deceleration, and when changing gears, especially JfC,
The CO concentration increases, but in such a case, in the illustrated example:
Both the first engine speed detector S3 and the engine speed sensor S4 generate high level signals, which are input to the solenoid valve 57 via the A N I) circuit 74 and the third OR circuit 76,
The composite detector S7 generates a high level signal, which is also input to the solenoid valve 57 via the third OR circuit 76, thereby energizing the solenoid valve 57. According to the energization of this electromagnetic valve 5γ, the boost negative pressure of the engine passes through the control intake passage L3 and the third negative pressure passage L5 to the negative pressure chamber 55 of the negative pressure responsive valve 51.
The suction force opens the valve body 53 via the diaphragm 54. Then, due to the exhaust pulsation in the exhaust system and the accompanying opening/closing action of the reed valve 52, air in the air cleaner A is supplied into the exhaust manifold Afe through the secondary air passage L4, thereby increasing the air-fuel ratio of the exhaust gas. Since the air-fuel ratio is corrected to approximately the stoichiometric air-fuel ratio, the purification function of the three-way catalytic converter T is fully exhibited even in such a case.

第3図は本発明の第2実施例を示すもので、排気還流率
の調節手段において前実施例と相違しており、その相違
点のみについて説明する。
FIG. 3 shows a second embodiment of the present invention, which differs from the previous embodiment in the means for adjusting the exhaust gas recirculation rate, and only the differences will be described.

制御吸気路L3の、オリフィスJ1 と大気開放口14
との間を結ぶ区間には常開型電磁弁90が介装されると
共に、この電磁弁90を実質上迂回するバイパス路91
が接続され、このバイパス路91にはオリフィスJ3が
投げられる。そして電磁弁90には第1OR回路γ3の
出力が入力されろようになっている。このような電磁弁
90を設けたことから、第2負圧通路L2には前実施例
のような電磁弁41を設ける必要はない。
Orifice J1 and atmosphere opening port 14 of control intake path L3
A normally open solenoid valve 90 is interposed in the section connecting the two, and a bypass path 91 that substantially bypasses this solenoid valve 90 is provided.
is connected, and an orifice J3 is thrown into this bypass path 91. The output of the first OR circuit γ3 is input to the solenoid valve 90. Since such a solenoid valve 90 is provided, there is no need to provide the solenoid valve 41 in the second negative pressure passage L2 as in the previous embodiment.

その他の構成レマ前実施例と同様であり、第3図中、第
1図と対応する部分には同一符号を付す。
Other configurations are the same as those in the previous embodiment, and parts in FIG. 3 that correspond to those in FIG. 1 are given the same reference numerals.

而して、大気開放口14から調整弁V、に至る制御吸気
路L3の流路抵抗は、電磁弁90の開弁時(非通電時)
にオリフィスJ3が無効にされる25− からオリフィスJ1 によって小さく、また電磁弁90
の閉弁時(即ち第1OR回路73かも高レベル信号を受
けて通電されたとき)に直列するオリフィス’I+J3
によって大きくそれぞれ調節される。そして前記流路抵
抗が大きく調節されれば負圧P1 とP2の比、したが
って負圧Pυとpeの比が排気還流率を減少させるよう
に変化する。
Therefore, the flow resistance of the control intake passage L3 from the atmosphere opening port 14 to the regulating valve V is the same when the solenoid valve 90 is open (when not energized).
Orifice J3 is disabled from 25- to orifice J1, and solenoid valve 90
When the valve is closed (that is, when the first OR circuit 73 also receives a high level signal and is energized), the orifice 'I+J3 connected in series
Each is greatly adjusted by If the flow path resistance is adjusted to a large value, the ratio between the negative pressures P1 and P2, and therefore the ratio between the negative pressures Pυ and pe, changes so as to reduce the exhaust gas recirculation rate.

以上において、気化器C及び吸気マニホールドMiは機
関Eの吸気系を構成し、排気マニホールドAf eはそ
の排気系を構成し、燃料増量弁61、空気ブリード通路
70、第2空気ジエツト71.2及び電磁弁72は燃料
増量装置を構成し、排気還流路5、還流量制御弁6、負
圧制御弁V及び電磁弁41は排ガス還流装置を構成する
In the above, the carburetor C and the intake manifold Mi constitute the intake system of the engine E, the exhaust manifold Afe constitutes the exhaust system, and the fuel increase valve 61, the air bleed passage 70, the second air jet 71.2, and the exhaust manifold Afe constitute the exhaust system. The solenoid valve 72 constitutes a fuel increase device, and the exhaust gas recirculation path 5, the recirculation amount control valve 6, the negative pressure control valve V, and the solenoid valve 41 constitute an exhaust gas recirculation device.

以」−のように本発明によれば、吸気系には作動時混合
気の空燃比を略理論空燃比にすべく該吸気系への供給燃
料を増量させ得る燃料増量装置と、26一 該吸気系への排ガスの還流量を制御し得る排ガス還流装
置とを設けると共に、前記燃料増量装置の作動時には前
記排ガス還流制御装置が排ガスの還流量を減少させるよ
うに作動するようにし、また排気系には三元触媒変換装
置を設けたので、高出力性能を要求されるときには燃料
増量装置及び排ガス還流装置を共に作動して混合気を濃
厚に調節すると共に排ガス還流量を減少することによっ
て良好な出力性能を得ることができる。そして、これに
伴い増加する排ガス中のNOxのみならずHC、Coは
、このときの空燃比が略理論空燃比となっていることか
ら三元触媒変換装置により効果的に浄化され、これらの
排出濃度を低く抑えることができ、したがって出力性能
と排ガス浄化の両面を満足させることができるものであ
る。
As described above, according to the present invention, the intake system includes a fuel increasing device capable of increasing the amount of fuel supplied to the intake system so that the air-fuel ratio of the air-fuel mixture during operation becomes approximately the stoichiometric air-fuel ratio; An exhaust gas recirculation device capable of controlling the amount of exhaust gas recirculated to the intake system is provided, and when the fuel increase device is activated, the exhaust gas recirculation control device operates to reduce the amount of exhaust gas recirculated. is equipped with a three-way catalytic conversion device, so when high output performance is required, the fuel increaser and exhaust gas recirculation device operate together to enrich the air-fuel mixture and reduce the amount of exhaust gas recirculation. Output performance can be obtained. As the air-fuel ratio at this time is approximately the stoichiometric air-fuel ratio, not only NOx but also HC and Co in the exhaust gas, which increases due to this, are effectively purified by the three-way catalytic converter, and these emissions are reduced. The concentration can be kept low, and therefore both output performance and exhaust gas purification can be satisfied.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例ゼ示すもので、第1図は第1実施
例の略図的全体図、第2図は第1図の■−TI線拡大線
面大断面図図は本発明の第2実施例の略図的全体図であ
る。 E・・・内燃機関、 C、Mi・・・吸気系、 C・・気化器、Mi・・・吸気マニホールド、Me・・
・排気系を構成する排気マニホールド、61.70,7
12 .72・・・燃料増量装置、61・・・燃料増量
弁、70・・・空気ブリード通路、71□・・・第2空
気ジエツト、72・・・電磁弁、 5.6,41.V・・・排ガス還流装置、5・・・排気
還流路、 6・・・還流量制御弁、 41・・・電磁弁、 V・・・負圧制御弁
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic overall view of the first embodiment, and FIG. FIG. 2 is a schematic overall view of the second embodiment. E... Internal combustion engine, C, Mi... Intake system, C... Carburetor, Mi... Intake manifold, Me...
・Exhaust manifold that constitutes the exhaust system, 61.70,7
12. 72... Fuel increase device, 61... Fuel increase valve, 70... Air bleed passage, 71□... Second air jet, 72... Solenoid valve, 5.6, 41. V...Exhaust gas recirculation device, 5...Exhaust gas recirculation path, 6...Recirculation amount control valve, 41...Solenoid valve, V...Negative pressure control valve

Claims (1)

【特許請求の範囲】 (1)通常は理論空燃比より希薄な空燃比の混合気によ
り運転される内燃機関において、その吸気系には作動時
混合気の空燃比を略理論空燃比にすべく該吸気系への供
給燃料を増量させ得る燃料増量装置と、該吸気系への排
ガスの還流量を制御し得る排ガス還流装置とを設けると
共に、前記燃料増量装置の作動時には前記排ガス還流制
御装置が排ガスの還流量を減少させるように作動するよ
うにし、また排気系には三元触媒変換装置を設けてなる
、内燃機関の吸、排気系制御装置。 (2、特許請求の範囲第(1)項記載のものにおいて。 前記燃料増量装置及び排ガス還流装置は機関の所定の高
負荷状態を検知して作動するように構成さ 1 − れた、内燃機関の吸、排気系制御装置。 (3)特許請求の範囲第(1)項記載のもの(Cおいて
、前記燃料増量装置及び排ガス還流装置は、車両の所定
の低速領域を検知して作動するように構成された、内燃
機関の吸、 J、Iト気系制御装置。 (4)特許請求の範囲第(1)項記載のものに36いて
、前記燃料増量装置及び排ガス還流装置は、機関の所定
の低温領域を検知して作動するように構成された、内燃
機関の吸、排気系制御装置。 (5)特許請求の範囲第(1)項記載のものにおいて、
前記燃料増量装置及び排ガス還流装置は、機関が所定の
低温領域にあり且つ所定の回転数以下で運転されること
を検知して作動するように構成された、内燃機関の吸、
排気系制御装置。
[Claims] (1) In an internal combustion engine that is normally operated with an air-fuel mixture having an air-fuel ratio leaner than the stoichiometric air-fuel ratio, the intake system is designed to maintain the air-fuel ratio of the air-fuel mixture at approximately the stoichiometric air-fuel ratio during operation. A fuel increasing device that can increase the amount of fuel supplied to the intake system and an exhaust gas recirculation device that can control the amount of exhaust gas recirculated to the intake system are provided, and when the fuel increasing device is activated, the exhaust gas recirculation control device is provided. An intake/exhaust system control device for an internal combustion engine, which operates to reduce the amount of recirculation of exhaust gas and includes a three-way catalytic conversion device in the exhaust system. (2) The internal combustion engine according to claim (1), wherein the fuel increase device and the exhaust gas recirculation device are configured to operate upon detecting a predetermined high load state of the engine. (3) The device described in claim (1) (in C, the fuel increase device and the exhaust gas recirculation device operate by detecting a predetermined low speed region of the vehicle). An intake, J, and I gas system control device for an internal combustion engine configured as follows. An intake/exhaust system control device for an internal combustion engine, which is configured to operate by detecting a predetermined low temperature region. (5) In the device described in claim (1),
The fuel increase device and the exhaust gas recirculation device are configured to operate when detecting that the engine is in a predetermined low temperature range and is operated at a predetermined rotation speed or less.
Exhaust system control device.
JP57205828A 1982-11-24 1982-11-24 Control device for intake and exhaust systems of internal-combustion engine Pending JPS5996448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205828A JPS5996448A (en) 1982-11-24 1982-11-24 Control device for intake and exhaust systems of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205828A JPS5996448A (en) 1982-11-24 1982-11-24 Control device for intake and exhaust systems of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5996448A true JPS5996448A (en) 1984-06-02

Family

ID=16513379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205828A Pending JPS5996448A (en) 1982-11-24 1982-11-24 Control device for intake and exhaust systems of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5996448A (en)

Similar Documents

Publication Publication Date Title
JPS5821097B2 (en) Ninen Kikanno Idol Antei Souchi
US4111170A (en) Air-fuel ratio control system
US4103657A (en) Twin-barrel carburetor with an air-fuel ratio control device
US4665883A (en) Air fuel ratio control system for an internal combustion engine with improved operations for maintaining the engine output power
US4464896A (en) System for supplying secondary air for an internal combustion engine
JPS5851143B2 (en) Automotive engine exhaust purification device using altitude compensation device
JPS5996448A (en) Control device for intake and exhaust systems of internal-combustion engine
JPS6128033Y2 (en)
JPH0228699B2 (en)
US4407247A (en) Closed loop type air-fuel ratio control system of an internal combustion engine
JPS6018807B2 (en) Secondary air injection amount control device for internal combustion engine
JPS6146198Y2 (en)
JPS59165852A (en) Fuel supply device for gas engine
US4617891A (en) Secondary air supply for internal combustion engine
JPS6011667A (en) Oxygen rich air feeder
JPH0341069Y2 (en)
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JP2614766B2 (en) Air-fuel ratio control device for gas engine
JPS6030457Y2 (en) Engine high altitude correction device
JPS6158659B2 (en)
JPS6342095B2 (en)
JPS597570Y2 (en) Exhaust recirculation device for engine with cylinder number control
JPH04330320A (en) Air suction system
JPS6111481Y2 (en)
JPS628331Y2 (en)