JPS5994720A - Focusing detector - Google Patents

Focusing detector

Info

Publication number
JPS5994720A
JPS5994720A JP20503382A JP20503382A JPS5994720A JP S5994720 A JPS5994720 A JP S5994720A JP 20503382 A JP20503382 A JP 20503382A JP 20503382 A JP20503382 A JP 20503382A JP S5994720 A JPS5994720 A JP S5994720A
Authority
JP
Japan
Prior art keywords
light
receiving element
focus detection
pair
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20503382A
Other languages
Japanese (ja)
Other versions
JPH0352608B2 (en
Inventor
Kenichi Oikami
大井上 建一
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP20503382A priority Critical patent/JPS5994720A/en
Publication of JPS5994720A publication Critical patent/JPS5994720A/en
Publication of JPH0352608B2 publication Critical patent/JPH0352608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain superior focusing detection precision by causing the principal light beam of luminous flux which has asymmetry of rotation to strike mutually corresponding parts of a couple of photodetecting element arrays. CONSTITUTION:A couple of photodetecting element arrays 4' and 5' are formed so that the length perpendicular to the array direction of photodetection surfaces of individual photodetecting elements which constitute the arrays respectively is l, where no influence upon the output distribution of respective photodetecting element arrays is exerted substantially even when images 14 and 15 projected on the photodetecting element arrays 4' and 5' shift in positions by distance (x) in the opposite directions. Therefore, the pitch interval of the photodetecting element arrays 4' and 5' may be equal to reference distance L, so that a focusing position is detected precisely not only when pieces of luminous flux incident to the photodetecting element arrays 4' and 5' are rotationally asymmetrical, but also when they are rotationally symmetrical.

Description

【発明の詳細な説明】 本発明は、スチールカメラ、シネカメラ、ビデオカメラ
、顕微鏡等の光学装置に用いるぼけ像検出方式による合
焦検出装置、特にその合焦検出用受光装置に関するもの
である〇 第1図は、ぼけ像検出方式による合焦検出装置の光学系
の基本傳成図である。結像レンズlによる投影像は、ハ
ーフミラ−2により2分されて予定態平面N8.3′に
結像する。その予定焦平面3の前方および他方の予定焦
平面8′の後方には、それぞれ距NIdを隔てて一対の
受光素子列4.5が配置しである。従って、結像レンズ
1による投影像が予定焦平面3.8′に結像すれば、各
受光素子列4.5上の投影像は、同根一度の埋は像とな
るので、それら各受光素子列4.5の各出力から、ぼけ
量を表わす適当な評価関数を各別に演算し、比較するこ
とによって合焦およびデフォーカス方向を判定すること
ができることとなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus detection device using a blur image detection method used in optical devices such as still cameras, cine cameras, video cameras, microscopes, etc., and particularly to a light receiving device for focus detection thereof. FIG. 1 is a diagram showing the basic structure of an optical system of a focus detection device using a blurred image detection method. The image projected by the imaging lens 1 is divided into two parts by the half mirror 2 and formed on the predetermined state plane N8.3'. A pair of light receiving element rows 4.5 are arranged in front of the predetermined focal plane 3 and behind the other predetermined focal plane 8', separated by a distance NId. Therefore, if the projected image by the imaging lens 1 is formed on the predetermined focal plane 3.8', the projected image on each light-receiving element row 4.5 becomes an image of the same root once, so each of those light-receiving elements From each output in column 4.5, an appropriate evaluation function representing the amount of blur is calculated separately, and by comparing the results, it is possible to determine the in-focus and defocus directions.

しかしながら、たとえば第2図に一眼レフレックスカメ
ラに適用した構成例の概略を示したように、何らかの理
由、たとえば図に示したよう結1家レンズ1の光束の一
部を一対の受光素子列4.5に専くために、クイックリ
ターンばラー6の後方にそのクイックリターンばラー6
に固定して介挿したサブミラー7にニジ、光束の一部8
がけらnた場合には、受光素子列4.5に入射する光束
は、非回転対称性となる。なお、同図において、1゜は
結像レンズ1の予定焦平面に配置したフィルム面であり
、11は、サブぐラー7からの光束を各受光素子列4.
5に分割して導くための光束分割光学系であって、それ
ら各受光素子列4.5間の光路中の中間位置が前記フィ
ルム面1oと光学的に共役な而の位置に相幽する。また
、12はクイックリターンミラー6によって導かnた結
像レンズ1の投影像を観察し得るように設けたファイン
ダー光学系である。
However, for some reason, for example, as shown in FIG. 2, which schematically shows an example of a configuration applied to a single-lens reflex camera, a part of the luminous flux of the single lens 1 is transferred to a pair of light receiving element arrays 4. .5, the quick return baller 6 is placed behind the quick return baller 6.
A part of the light beam 8 is reflected on the sub-mirror 7 fixedly inserted in the
In the case of a fragment, the light beam incident on the light-receiving element array 4.5 has non-rotation symmetry. In the same figure, 1° is a film surface placed on the predetermined focal plane of the imaging lens 1, and 11 is a film surface that directs the light beam from the sub-glare 7 to each light receiving element array 4.
This is a beam splitting optical system for dividing and guiding the light beam into 5 light beams, and an intermediate position in the optical path between each of the light receiving element arrays 4.5 coincides with a position that is optically conjugate with the film surface 1o. Further, 12 is a finder optical system provided so that the projected image of the imaging lens 1 guided by the quick return mirror 6 can be observed.

すなわち、第8図にその原理図を示したように。In other words, the principle diagram is shown in FIG.

前記”j フミラー7のような遮蔽物7′によって、結
像レンズ1による物体13からの光束の一部が郎党され
る結果、結像レンズ1からの光束が非回転対称となり、
その光束の主光線9は、光束が同転対称時の主光線Oに
対して角贋θだけ傾くこととなる。しかして、前記結像
レンズlの合焦位置となる予定焦平面8の前後に距Md
を隔てた面における各ぼけ像14.15け、互に反対方
向に距離Xだけずれることとな力、そのずれ景は、2X
 = 2dtanθ       −(1)である。
A part of the light beam from the object 13 is blocked by the imaging lens 1 by the shielding object 7' such as the mirror 7, so that the light beam from the imaging lens 1 becomes non-rotationally symmetrical.
The principal ray 9 of the luminous flux is inclined by an angle θ with respect to the principal ray O when the luminous flux is rotationally symmetric. Therefore, there is a distance Md before and after the expected focal plane 8, which is the focusing position of the imaging lens l.
Each blurred image on the plane separated by 14.15 is shifted by a distance
= 2dtanθ - (1).

従って、このような非回転対称性の光束を、第2図に示
したように光束分割手段11i介して各受光素子列4.
5に入射させた場合、第4図にその光束分割手段11の
部分を拡大して示したように、基#!16に形成した受
光素子列4.5に対し、光束分割光学系11のハーフは
ラー17およびミラー18を正確に対設させただけでは
、受光素子列4.5に入射する光束の主光線9が、さき
に説明したように傾くので各受光素子列4.5上におけ
る光像にず7″1.を生じる0 第5図は、そのずれ状態を示したもので、各受光素子列
4.5に入射する光束が遮蔽物7′などによってけら九
ることなく入射したとき、その光束の主光線が入射する
各受光素子列4.5の対応する同一部分を図示したよう
にAおよびBとすると、遮蔽物7′(第8図参照)によ
りそnら受光素子列4.5に入射する光束がけらnた場
合には、その、主光線の入射する位置は、AおよびBの
位置から、互に逆方向に距離XだけずれたA′およびB
lの位置に移ることとなる。そのために各受光素子列4
お工び5の出力分布は、同一形状とならず、たとえば、
第6図に、受光素子列4.5の列方向に直角な方向に残
置分布をもつ被写体と仮定して、各受光素子列4.5の
各出力から求めたそnぞれの像の鮮明度を表わす各評価
関数Fl、F2を示したように、評価値FがΔだけ異な
ることとなる。
Therefore, as shown in FIG. 2, such a rotationally non-symmetrical light beam is transmitted to each light receiving element array 4.
5, as shown in an enlarged view of the beam splitting means 11 in FIG. For the light-receiving element row 4.5 formed in the light-receiving element row 4.5, the principal ray 9 of the light beam incident on the light-receiving element row 4.5 would be is tilted as explained earlier, resulting in a shift of 7"1. in the optical image on each light-receiving element row 4.5. FIG. 5 shows the state of the shift. When the light flux incident on the light receiving element array 4.5 is incident on the shield 7' without being interrupted, the corresponding and identical parts of each light receiving element row 4.5 on which the principal ray of the light flux enters are designated as A and B as shown in the figure. Then, when the light beam incident on the light receiving element array 4.5 is eclipsed by the shield 7' (see Fig. 8), the incident position of the chief ray is shifted from the positions A and B. , A' and B shifted by distance X in opposite directions
It will move to position l. For this purpose, each light receiving element row 4
The output distribution of the workpiece 5 does not have the same shape, for example,
Figure 6 shows the sharpness of each n image obtained from each output of each light-receiving element row 4.5, assuming that the subject has a residual distribution in the direction perpendicular to the row direction of the light-receiving element row 4.5. As shown in the evaluation functions Fl and F2 representing degrees, the evaluation values F differ by Δ.

埋は像検出方式による合焦検出装置においては、その各
評価関数F0、F2の値を比較し、両者が等しい値とな
ったとき、結像レンズ1は、各受光素子列4.5の光学
的中間位置に合焦したものとして検出しているので、前
記のように各評価関数F□、  □F2がΔだけ異なっ
た場合には、付熱検出精度が低下することは明らかであ
る。
In the focus detection device using the image detection method, the values of the respective evaluation functions F0 and F2 are compared, and when the values are equal, the imaging lens 1 detects the optical Since the detection is performed assuming that the object is in focus at the intermediate position, it is clear that if the evaluation functions F□ and □F2 differ by Δ as described above, the heating detection accuracy will decrease.

特に、−眼しフレックスカメラ停においては、第2図に
示したようにクイックリターン6の背部に、焦点検出用
光束を受光素子列4.5に導くためのサブミラー7を設
けるのが普通であシ、そのクイックリターンミラー6が
矢印方向に回動じてはね上ったさき、フィルム面10へ
の入射光束がけら′nないように、サブミラー7を十分
小形にする必要がある。その反面、十分な合焦検出感度
を得るためには、サブミラー7の反射面を広面積にする
必要がある。前者の要求を満たし、しかも後者の要求を
ある程度満足させるためには、ある程度の大きな反射面
を有するサブミラー7を用い、クイックリターンミラー
6がはね上ったとき、そのサブミラー7の端部が、フィ
ルム面IOへの入射光束を連光しないように、光軸に対
してずらせてクイックリターンミラー6に取シ付けざる
を得す、この場合は、まさに第8図により説明した現象
が発生し、合焦検出精度の低下の原因となる。
In particular, in the case of a -eye flex camera station, a sub-mirror 7 is usually provided at the back of the quick return 6 to guide the focus detection light beam to the light receiving element array 4.5, as shown in FIG. It is necessary to make the sub-mirror 7 sufficiently small so that when the quick-return mirror 6 rotates in the direction of the arrow and flips up, the light beam incident on the film surface 10 is not interrupted. On the other hand, in order to obtain sufficient focus detection sensitivity, the reflective surface of the sub-mirror 7 needs to have a wide area. In order to satisfy the former requirement and also satisfy the latter requirement to some extent, a sub-mirror 7 having a fairly large reflective surface is used, so that when the quick return mirror 6 flips up, the end of the sub-mirror 7 In order to prevent the light flux incident on the film surface IO from being continuous, the quick return mirror 6 must be mounted offset from the optical axis.In this case, the phenomenon explained in FIG. 8 will occur, This causes a decrease in focus detection accuracy.

本発明の目的は、上述の如き焦点検出用受光素子列に入
射する光束の非回転対称性に基づく像づれの影響を受け
ることなく、合焦検出感度の高い横ずれ検出方式による
合焦検出装置を提供しようとするものである。
An object of the present invention is to provide a focus detection device using a lateral shift detection method with high focus detection sensitivity without being affected by image shift due to the non-rotational symmetry of the light beam incident on the focus detection light receiving element array as described above. This is what I am trying to do.

本発明の合焦検出装置は、結像レンズの合焦面もしくは
その合焦点と光学的に共役な面を挾んで、その面から等
距離の位置に配置した一対の受光素子列上に投影される
像の鮮明度全比較することによって前記結像レンズの前
記合焦面における結像状態を検出する合焦検出装置にお
いて、結像状態の検出に用いる光束の非1転対称性く伴
なう前記受光素子対の個々への投影像のずj、を、その
非回転対称性をもつ光束の主光線が、前記一対の受光素
子列の互に実質上対応する部分にそn、それ入射するよ
うに構成することによって補償するようにしたことを特
徴とするものである。
The focus detection device of the present invention is arranged to sandwich a focusing surface of an imaging lens or a surface that is optically conjugate to the focusing point, and project images onto a pair of light receiving element arrays arranged at positions equidistant from the focusing surface. In a focus detection device that detects an imaging state at the focusing plane of the imaging lens by comparing the sharpness of images, the focus detection device detects the imaging state at the focusing plane of the imaging lens, which is caused by the non-unifold symmetry of the light beam used for detecting the imaging state. The principal rays of the beams having non-rotation symmetry are incident on substantially corresponding portions of the pair of light-receiving element arrays, so that the projected images of the respective pairs of light-receiving elements j, This feature is characterized in that compensation is achieved by configuring as follows.

以下、本発明を実施例に基づいて詳記する。Hereinafter, the present invention will be described in detail based on examples.

本発明装置の基本構成は、第1図、第2図および第8図
によって説明したとおりである。しかして本発明装置は
、そ几ら基本構成における受光装置に特徴がある。
The basic configuration of the apparatus of the present invention is as described with reference to FIGS. 1, 2, and 8. The device of the present invention is characterized by its light receiving device in its basic configuration.

第7図は、本発明における受光装置の一対の受光素子列
の一方を、矢印方向に2Xだけずらせて構成した実施例
を示したものである。すなわち、受光素子列4.5に導
かnる光束の主光線が回転対称性を有する場合に一方の
受光素子列4に入射する位置AJニジ、前記光束が非1
転対称性となつたとき、ずれる各受光菓子4、b上の投
影像間のずれ景2Xだけ矢印方向にずれた位置A“に、
その受光素子列4を配置し、他方の受光素子列5はその
ままの位置に配置した一対の受光素子列4.5を用いる
FIG. 7 shows an embodiment in which one of a pair of light-receiving element arrays of the light-receiving device according to the present invention is shifted by 2X in the direction of the arrow. That is, when the chief ray of the light beam guided to the light receiving element array 4.5 has rotational symmetry, if the position AJ is incident on one of the light receiving element arrays 4, the light flux is non-1.
When rotational symmetry is achieved, at a position A" shifted in the direction of the arrow by the shifted view 2X between the projected images on each light-receiving confectionery 4,b that shifts,
A pair of light-receiving element rows 4.5 is used in which the light-receiving element row 4 is arranged, and the other light-receiving element row 5 is arranged in the same position.

このように形成した受光素子列4.5を、第4図に示し
たように光束分割光学系11に対向させ、その光束分割
光学系11の各反射面16.17の一方からの非回転対
称性光束の主光M9’k、第7図の一方のたとえば4で
示した受光素子列の所定部分A“に入射させれば、他方
の反射面164たは17からの主光線9は、基準距離L
(入射主光線が回転対称の場合に、その主光線が入射す
る受光素子列4.5の対応関係にある位置A、B間の距
離。)よシさらに2Xfnfc位置にある前記所定部分
A#に対応する他方の受光素子列5の所定部分Bに入射
することとなる。従って、そnら各受光素子列4.5上
の投影さnる結像レンズlからの像の、同一部分が、そ
れぞ九の受光素子列4.5によって光電変換さ九るので
、これら光電変換出力よう求めた像の鮮明度に関する各
評価関数F□、F2は、第8図に示したように、各受光
素子列4.5上の像がともに同一鮮明度の場合には、同
一の評価値Fを示すようになる0 従って、受光素子列4.5に入射する光束が非回転対称
をもっていても、合焦検出精度は低下することがない。
The light-receiving element array 4.5 formed in this manner is arranged to face the beam splitting optical system 11 as shown in FIG. If the principal ray M9'k of the optical flux is incident on a predetermined portion A'' of one of the light-receiving element arrays shown, for example, 4 in FIG. distance L
(When the incident principal ray is rotationally symmetric, the distance between the corresponding positions A and B of the light receiving element array 4.5 where the principal ray is incident.) Furthermore, the predetermined portion A# at the 2Xfnfc position The light will be incident on a predetermined portion B of the other corresponding light receiving element array 5. Therefore, the same portion of the image from the imaging lens l projected onto each of the nine light-receiving element rows 4.5 is photoelectrically converted by each of the nine light-receiving element rows 4.5. As shown in Fig. 8, the evaluation functions F□ and F2 regarding the sharpness of the image determined as the photoelectric conversion output are the same when the images on each light-receiving element array 4.5 have the same sharpness. Therefore, even if the light beam incident on the light-receiving element array 4.5 has non-rotation symmetry, the focus detection accuracy does not deteriorate.

上記の実施例は、一対の受光素子列4.5の配置を相対
的に2Xだけ拡げるように、その一方をずらせるように
したが、各受光素子列4.5の間隔を、基準間隔りよジ
さらに2Xだけ拡げるために、各受光素子列をXづつ外
側にずらせるようにしてもよいことは勿論である。
In the above embodiment, one of the pair of light-receiving element rows 4.5 is shifted so that the arrangement is relatively expanded by 2X, but the interval between each light-receiving element row 4.5 is changed from the reference interval. Of course, each light-receiving element array may be shifted outward by X in order to further expand the distance by 2X.

また、一対の受光素子列4.5の間隔を従来のものと同
様に、前記基準間隔りのものを用い、各受光素子列4.
5に光束を分割するための、たとえば第4図に11で示
した光束分割手段のハーフばう、−16またはミラー1
7の反射面、あるいはそnら両ばラー16.17の反射
面の反射角を適尚に設定することによって、各受光素子
列4.5に入射する光束の主光線を、それら各受光素子
列4.5の互に対応する部分に、それぞれ入射させるよ
うにしてもよく、このような実施例もまた本発明装置に
含まれるものである0 笛9図は、本発明の他の実施例の受光素子列4.5の構
成を示す。
Further, the spacing between the pair of light receiving element rows 4.5 is the same as the conventional one, using the standard spacing as described above, and each light receiving element row 4.
-16 or mirror 1 of the beam splitting means, for example indicated by 11 in FIG.
By appropriately setting the reflection angle of the reflecting surface 7 or the reflecting surfaces 16.17, the chief ray of the light beam incident on each light receiving element row 4.5 can be The light may be applied to mutually corresponding parts of the rows 4 and 5, and such an embodiment is also included in the apparatus of the present invention.0 Figure 9 shows another embodiment of the present invention. The configuration of the light receiving element array 4.5 is shown.

この実施例においては、対をなす各受光素子列4′、5
′をそれぞれ構成する個々の受光素子の受光面の列方向
に直角な方向の長さを、それら各受光素子列4′、5′
に投影される像14.15が、互に反対方向にXの距離
だけずれても、各受光素子列の出力分布に実質上影響し
ない程度の長さtに形成したものである。従って、この
実施例のものでは、さきの実施例のように各受光素子列
4′、5′のピッチ間隔は、基準距離りでよいこととな
り、各受光素子列4./ 、5/に入射する光束が非回
転対称の場合のみならず回転対称性を有する場合でもあ
っても8匿高く合焦位置を検出できる利点を有するもの
である。
In this embodiment, each pair of light receiving element rows 4', 5
The length in the direction perpendicular to the column direction of the light-receiving surfaces of the individual light-receiving elements constituting each of the light-receiving element rows 4' and 5'
The length t is such that even if the images 14 and 15 projected on the images 14 and 15 are shifted by a distance X in opposite directions, the output distribution of each light-receiving element array is not substantially affected. Therefore, in this embodiment, the pitch interval of each light receiving element row 4', 5' may be equal to the reference distance as in the previous embodiment, and each light receiving element row 4. This has the advantage that the in-focus position can be detected with high accuracy not only when the light beam incident on the rays 1 and 5/ is rotationally symmetrical, but also when it has rotational symmetry.

すなわち、各受光素子列、i、/ 、 5/の列方向に
直置な方向の幅tが十分に広いので、入射光束の主光線
が回転対称の場合に入射する各受光素子列Φ′。
That is, since the width t in the direction perpendicular to the column direction of each light-receiving element row i, /, 5/ is sufficiently wide, each light-receiving element row Φ' is incident when the chief ray of the incident light beam is rotationally symmetrical.

5′上の対応位置AおよびBから、なんらかの理由、た
とえば第10図のように遮蔽物7・°に工勺、入射光束
の主光線の入射位置が、A′、B′にそれぞれずれた場
合であっても、第10図に第8図と同様の手法により示
した説明図から明らかなように、各はけ像14.15が
投影される各受光素子列4/、5/の幅tが十分広いの
で、それら受光素子列4′、5′の出力分布の変化は、
実質上無視し得ることになる。従って各受光素子列4′
、5′の出力から求めfc像の鮮8A度に関する評価関
数F□、Fgは、結像レンズlによる物体像が予定合焦
面2に合焦したとき、第8図と同様にその評価値Fが#
丘は等しくなるので、受光素子列+、/ 、5/に入射
する光束の性質にかかわシなく、精度高く付熱状態を検
出し得ることとなる。
If for some reason, for example, as shown in Fig. 10, the incident position of the principal ray of the incident light beam shifts to A' and B', respectively, from the corresponding positions A and B on 5'. However, as is clear from the explanatory diagram shown in FIG. 10 using the same method as in FIG. is sufficiently wide, the change in the output distribution of the photodetector arrays 4' and 5' is as follows.
This can be virtually ignored. Therefore, each light receiving element row 4'
The evaluation functions F□, Fg regarding the sharpness of the fc image obtained from the outputs of F is #
Since the hills are equal, the heating state can be detected with high accuracy regardless of the nature of the light beam incident on the light receiving element arrays +, /, and 5/.

以上の説明から明らかなように本発明装置によれば、比
較的簡易な構成によって、合焦検出用光束の非回転対称
性にもとづく像の鮮明度を表れす評価値への影響を、補
償することができるので、合焦検出用光束が非回転対称
性を有する種類の光学装置の合焦検出装置として合焦検
出精度の優れたものを提供しうる効果がある。
As is clear from the above description, according to the apparatus of the present invention, the influence on the evaluation value representing the sharpness of an image due to the non-rotational symmetry of the focus detection light beam can be compensated for with a relatively simple configuration. Therefore, it is possible to provide a focus detection device with excellent focus detection accuracy for an optical device in which the focus detection light beam has non-rotation symmetry.

また、第9図に示した実施例のものによれば、合焦検出
用光束の性質にかかわ少なく、常に合焦8度の高いぼけ
像方式による合焦検出装置の提供が可能である等の効果
がある。
Further, according to the embodiment shown in FIG. 9, it is possible to provide a focus detection device using a blurred image method that always achieves a high focus of 8 degrees regardless of the nature of the light beam for focus detection. effective.

【図面の簡単な説明】[Brief explanation of drawings]

m1図は、ぼけ像検出方式による合焦検出装置の光学系
の基本構成図、 第2図は、その合焦検出装置を一眼レフレックスカメラ
に適用し7を場合の略図的構成図、第3図は、非同転対
称光束の発生現象説明図、第4図は、第2図における光
束分割手段と受光素子列とからなる受光装置部分の構成
拡大図、第5図ば、従来装置における受光素子列の配置
と、入射光像の関係の説明図、 第6図は、従来装置による欠点の説明図、第7図は、本
発明の一実施例における受光素子列の配置とその作用の
説明図、 第8図は、本発明装置による効呆金説明するための評価
関数曲醒図、 第9図は、本発明の他の実施例における受光素子列の構
成図、 第1θ図は、第9図の実施例における作用の説明図であ
る。 l・・・結像レンズ、2・・・ハーフεシー、3.8′
・・・予足焦平面、4.5・・・受光素子列、6・・・
クイックリターンミラー、7・・・サブばラー、7′・
・・遮蔽物、8・・・けられる光束、9・・非回転対称
の生九朦、10・・・フィルム面、11・・・光束分割
光学系、12・・・ファインダー光学系、18.2.物
体、  :14.15・・・ぼけ像、16・・・受光素
子列形成基板、17・・・ハーフばラー、18・・・ミ
ラー。 第1図 第2図 第8図 第4図 第5図 第6図
Figure m1 is a basic configuration diagram of the optical system of a focus detection device using a blurred image detection method, Figure 2 is a schematic configuration diagram of case 7 in which the focus detection device is applied to a single-lens reflex camera, and Figure 3 The figure is an explanatory diagram of the phenomenon of generation of non-rotationally symmetrical light beams, FIG. 4 is an enlarged view of the configuration of the light receiving device portion consisting of the light beam splitting means and the light receiving element array in FIG. 2, and FIG. 5 is the light receiving device in the conventional device. FIG. 6 is an explanatory diagram of the relationship between the arrangement of the element rows and the incident light image. FIG. 6 is an explanatory diagram of the drawbacks of the conventional device. FIG. 8 is an evaluation function curve diagram for explaining the effectiveness of the device of the present invention. FIG. 9 is a configuration diagram of a light-receiving element array in another embodiment of the present invention. FIG. 9 is an explanatory diagram of the operation in the embodiment of FIG. 9; l...Imaging lens, 2...Half ε sea, 3.8'
... Pre-focus plane, 4.5... Light receiving element array, 6...
Quick return mirror, 7... Sub-baler, 7'.
. . . Shielding object, 8 . 2. Object: 14.15...Blurred image, 16...Light receiving element array forming substrate, 17...Half baller, 18...Mirror. Figure 1 Figure 2 Figure 8 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 L 結像レンズの合焦面もしくはその合焦面と光学的に
共役な面を挾んで、その面から等距離の位置に配置した
一対の受光素子列上に投影される像の鮮鋭度を比較する
こと釦よって前記結像レンズの前記合焦面における結像
状態を検出する合焦検出装置において、結像状態の検出
に用いる光束の非回転対称性に伴なう前記受光菓子対の
個々への投影像のす7−′Lを、その非回転対称性をも
つ光束の主光線が、前記一対の受光素子列の互に実質上
対応する部分に、それぞれ入射するように構成すること
によって補償するようにしたことを特徴をする合焦検出
装置。 区 前記の非回転対称性をもつ光束の主光線を、対をな
す受光素子列の配置、またはその主光服を各受光素子列
に分割入射させるための光束分割手段における反射面の
反射角を適当に設定することによって、前記受光素子列
の対応するtlぼ同一部分に入射させるようにしたこと
を特徴とする特許請求の範g!A第1項に記載の合焦検
出装置0 & 前記一対の受光素子列に、その列方向に対して直交
する方間に十分長い寸法?有する受光菓子をもって構成
することによや、それら対の各受光素子列の対応する部
分に前記非回転対称性の光束の主光線が入射したのと等
価な出力を各受光素子列から得るようにしたことを特徴
とする特許請求の範囲第1項に記載の合焦検出装置。
[Claims] L Projected onto a pair of light-receiving element arrays placed equidistantly from the focusing surface of the imaging lens or a surface optically conjugate to the focusing surface. In a focus detection device that detects the imaging state at the focusing plane of the imaging lens by comparing the sharpness of images, the sharpness of the image is The projected images 7-'L of the light-receiving confectionery pairs are arranged so that the chief rays of the light beams having non-rotation symmetry are incident on substantially corresponding portions of the pair of light-receiving element arrays. A focus detection device characterized in that it compensates by configuring. The reflection angle of the reflecting surface in the beam splitting means for making the principal ray of the light beam having non-rotationally non-rotation symmetry enter the pair of light receiving element rows or dividing the principal ray into each light receiving element row. Claim g! characterized in that by appropriately setting the light, the light is incident on the same portion of the corresponding light receiving element array. The focus detection device 0 according to item A1 & the pair of light receiving element rows have a sufficiently long dimension in the direction orthogonal to the row direction? By configuring the light-receiving confectionery with a light-receiving confectionery having a plurality of light-receiving elements, an output equivalent to the principal ray of the non-rotationally symmetric light beam incident on a corresponding portion of each light-receiving element row of the pair can be obtained from each light-receiving element row. A focus detection device according to claim 1, characterized in that:
JP20503382A 1982-11-22 1982-11-22 Focusing detector Granted JPS5994720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20503382A JPS5994720A (en) 1982-11-22 1982-11-22 Focusing detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20503382A JPS5994720A (en) 1982-11-22 1982-11-22 Focusing detector

Publications (2)

Publication Number Publication Date
JPS5994720A true JPS5994720A (en) 1984-05-31
JPH0352608B2 JPH0352608B2 (en) 1991-08-12

Family

ID=16500324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20503382A Granted JPS5994720A (en) 1982-11-22 1982-11-22 Focusing detector

Country Status (1)

Country Link
JP (1) JPS5994720A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576310A (en) * 1978-12-05 1980-06-09 Nippon Kogaku Kk <Nikon> Automatic focusing device
JPS55105204A (en) * 1979-02-07 1980-08-12 Canon Inc Optical path branching filter
JPS55108629A (en) * 1979-02-13 1980-08-21 Asahi Optical Co Ltd Focus detector of camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576310A (en) * 1978-12-05 1980-06-09 Nippon Kogaku Kk <Nikon> Automatic focusing device
JPS55105204A (en) * 1979-02-07 1980-08-12 Canon Inc Optical path branching filter
JPS55108629A (en) * 1979-02-13 1980-08-21 Asahi Optical Co Ltd Focus detector of camera

Also Published As

Publication number Publication date
JPH0352608B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
US4634255A (en) Focus detection apparatus
JPS58156908A (en) Optical system for detecting focusing state
JP2900390B2 (en) Focus detection device
JPS5994720A (en) Focusing detector
JPS6255769B2 (en)
US6229602B1 (en) Photometering apparatus
JP2632178B2 (en) Automatic focus detection device for camera
JPS58156909A (en) Detector for focusing state
JPS59146009A (en) Focusing detecting method
JPS6032013A (en) Optical system for detecting focus
JPS595213A (en) Detector of focusing state
JPH0522883B2 (en)
JPS62183416A (en) Focus detecting device
JPS60125814A (en) Focusing detector
JPS59185305A (en) Focus detector
JPH03604B2 (en)
JPH0711622B2 (en) Projection system for automatic focus detection
JPS5910911A (en) Detector of focal position
JP2000081564A (en) Focus detecting system and optical apparatus having the same
JPS59105606A (en) Focusing detector
JPH0580648B2 (en)
JPS6278518A (en) Focus detecting device
JP2001021797A (en) Focus detector
JP2000081565A (en) Focus detector and optical apparatus using the same
JPH0380284B2 (en)