JPS5994018A - Trouble diagnosing apparatus for rotary machine - Google Patents

Trouble diagnosing apparatus for rotary machine

Info

Publication number
JPS5994018A
JPS5994018A JP20377182A JP20377182A JPS5994018A JP S5994018 A JPS5994018 A JP S5994018A JP 20377182 A JP20377182 A JP 20377182A JP 20377182 A JP20377182 A JP 20377182A JP S5994018 A JPS5994018 A JP S5994018A
Authority
JP
Japan
Prior art keywords
cause
failure
value
vibration
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20377182A
Other languages
Japanese (ja)
Other versions
JPH0252971B2 (en
Inventor
Toshio Toyoda
豊田 利夫
Kenji Maekawa
健二 前川
Satoshi Nakajima
智 中嶋
Tadayuki Yamada
山田 忠之
Kiyohiko Tatebayashi
立林 清彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nippon Steel Corp
Nihon Musen KK
Original Assignee
Japan Radio Co Ltd
Nippon Steel Corp
Nihon Musen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nippon Steel Corp, Nihon Musen KK filed Critical Japan Radio Co Ltd
Priority to JP20377182A priority Critical patent/JPS5994018A/en
Publication of JPS5994018A publication Critical patent/JPS5994018A/en
Publication of JPH0252971B2 publication Critical patent/JPH0252971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/12Testing internal-combustion engines by monitoring vibrations

Abstract

PURPOSE:To obtain a trouble diagnosing apparatus of a rotary machine which enables automatic decision on the cause of a trouble by extracting a feature value from a vibration detection signal to read out a data base which determines a cause-effect relation between the memorized feature value. CONSTITUTION:A vibration signal of a rotary machine from a signal input section 3 undergoes a degree ratio analysis, an amplitude probability density analysis, a phase analysis or the like with a cause-effect estimate section 4 to extract a feature value such as linear spectrum value, vibration effective value ratio, ratio between a harmonic spectrum value and the linear spectrum value. Based on the feature value, a conversion parameter and a weight coefficient are read out for a data base which determines a cause-effect relation between the feature value and the cause of a trouble from a cause-effect list memory section 5. Based on the read value, an estimate section 4 calculates a deterioration index classified by the cause of troubles and the cause of a trouble is automatically decided on and indicated on a display 6.

Description

【発明の詳細な説明】 この発明は回転機械から発生する振動信号を用いて該回
転機械の故障原因を自動的に判定する機能を備えた回転
機械の故障診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a failure diagnosis device for a rotating machine that has a function of automatically determining the cause of a failure of the rotating machine using vibration signals generated from the rotating machine.

一般に回転機械から得られる振動信号の解析を行なうた
めには、変化する回転に同期した間隔でA/D変換した
ディジタル信号に対して周波数分析を行ない、該回転機
械の動作状態を表わす特徴的な周波数成分が次数比分析
を行なった結果、シグナル/ノイズ(S/N)比におい
て擾れたものであることが必要である。さらに次数比分
析から得られた特徴量をもとに診断の対象である回転機
械の型式、大小1回転数、負荷状態の影響を受けずに自
動的に故障の原因が推定できることが望ましい。
In general, in order to analyze vibration signals obtained from rotating machines, frequency analysis is performed on digital signals that are A/D converted at intervals synchronized with changing rotation, and characteristic vibration signals that represent the operating state of the rotating machine are analyzed. It is necessary that the frequency components are disturbed in signal/noise (S/N) ratio as a result of order ratio analysis. Furthermore, it is desirable that the cause of the failure can be automatically estimated based on the feature values obtained from the order ratio analysis, without being affected by the type of rotating machine to be diagnosed, the number of rotations, or the load condition.

従来回転機械の診断は汎用の信号解析装置により行なわ
れており、次数比分析が可能な形でデータを収J1ミす
ることが困難であった。また通常の周波数分析や振動振
幅の確率密度解析で得られた結果より機械の劣化状態を
評価するには、長年の経験により蓄積された設備診断に
関する多くの知識が要求されること、さらに設備の型式
、大小の差異あるいは個人差によって判定がばらついて
しまうという欠点があった。
Conventionally, diagnosis of rotating machines has been performed using general-purpose signal analysis equipment, and it has been difficult to collect data in a form that allows order ratio analysis. Furthermore, in order to evaluate the state of machine deterioration based on the results obtained from normal frequency analysis and probability density analysis of vibration amplitude, a great deal of knowledge regarding equipment diagnosis accumulated over many years of experience is required. The drawback was that the judgments varied depending on the model, size, or individual differences.

本発明の目的は回転機械の振動信号を次数比分析できる
形で収集可能な信号入力部を持ち、種々の分析結果に基
づいて故障原因を自動判定できる回転機械の診断装置を
提供する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a diagnostic device for a rotating machine that has a signal input section that can collect vibration signals of the rotating machine in a form that allows order ratio analysis, and that can automatically determine the cause of failure based on various analysis results.

以下本発明を図面に基いて説明する。The present invention will be explained below based on the drawings.

第1図は本発明の一実施例を示すブロック図である。第
1図において、1は振動信号入力端子、2は回転パルス
信号入力端子、3は信号入力部、4は故障原因推定部、
5は故障因果表記境部、6は結果表示部をそれぞれ示す
。この故障診断装置においては図示しない診断の対象と
なる回転機械例えばモーター、ブロアー、歯車などから
振動のアナログ信号を振動信号入力端子1より、また回
転パルス信号を回転パルス入力端子2より信号入力部3
へ取り込む。第2図に振動信号入力端子1より取り込ま
れる振動のアナログ信号70例および回転パルス入力端
子2より取り込まれる回転パルス信号8の例を示す。信
号入力部3では後述するごとく回転パルス信号8と同期
し周波数の逓倍されたサンプリングパルスで振動信号7
をA/D変換し、故障原因推定部4へ振動データSLを
出力する。故障原因推定部4は入力し記憶した振動デー
タS1に対して、周波数分析すなわち次数比分析。
FIG. 1 is a block diagram showing one embodiment of the present invention. In FIG. 1, 1 is a vibration signal input terminal, 2 is a rotation pulse signal input terminal, 3 is a signal input section, 4 is a failure cause estimation section,
Reference numeral 5 indicates a failure cause and effect notation boundary section, and 6 indicates a result display section. In this fault diagnosis device, an analog signal of vibration from a rotating machine (not shown) to be diagnosed, such as a motor, a blower, a gear, etc. is input from a vibration signal input terminal 1, and a rotation pulse signal is input from a rotation pulse input terminal 2 to a signal input section 3.
Import into. FIG. 2 shows an example of 70 vibration analog signals taken in from the vibration signal input terminal 1 and an example of a rotation pulse signal 8 taken in from the rotation pulse input terminal 2. As will be described later, the signal input section 3 generates a vibration signal 7 using a sampling pulse whose frequency is multiplied in synchronization with the rotation pulse signal 8.
is A/D converted, and the vibration data SL is output to the failure cause estimating section 4. The failure cause estimating unit 4 performs frequency analysis, that is, order ratio analysis, on the input and stored vibration data S1.

振幅確率密度解析等の信号処理を行ない、複数個の振動
特徴量を算出する。第3図に信号処理された1例として
次数化分析結果の表示例を示す。次に想定される複数の
故障原因がそれぞれどの程度の可能性をもつかを算出す
る。この計算には故障因果表記境部5に格納されたデー
タベースが利用され、引算された故障原因に関する結果
はCRTまだはプリンタ等で構成された結果表示部6に
表示される。
Performs signal processing such as amplitude probability density analysis and calculates multiple vibration features. FIG. 3 shows a display example of the order analysis result as an example of signal processing. Next, calculate the probability of each of the multiple possible failure causes. A database stored in the failure cause and effect notation section 5 is used for this calculation, and the result regarding the subtracted failure cause is displayed on a result display section 6 which is constituted by a CRT, printer or the like.

次に前記各構成要素の詳細とその動作につき説明する。Next, details of each component and its operation will be explained.

第4図は信号入力部3の詳細を示すブロック図である。FIG. 4 is a block diagram showing details of the signal input section 3.

回転パルス信号入力端子2より入力された回転パルス信
号8は同期逓倍回#!I12で周波数逓倍されたパルス
信号となる。このときの逓倍比は次数比分析を行なうと
きの分析最高次数の選択により決められる。次数とは1
回転の周波数に当たる周波数の場合1次と呼ばれ、n次
の周波数成分まで分析しようとすると回転周波数の2n
倍で振動信号をサンプリングしなければならない。回転
パルス信号8の周波数は時間的に変動する可能性がある
ので同期逓倍回路12は回転・くパルス信号8と同期を
とりながら、設定された逓倍比をもつノシルスを発生す
る。このパルス周波数の情報は遮断周波数制御回路1:
3に入力され低域通過フィルり14の遮断周波数の制御
を行なう。低域通過フィルり14は例えば遮断周波数が
パルス周波数で制御されるスイッチトキャパシタフイル
タや遮断周波数が電圧で制御されるアクティブフィルタ
で構成され、遮断周波数を連続的に変化できるものであ
る。振動信号入力端子1から入力された振動信号は、サ
ンプリングの除虫ずるエイリアジング効果を低減するた
めに低域通過フィルタI4を通り、A/D変換器15で
A/D変換され、故障原因推定部4へ出力される。A/
D変換器15のサンプリングパルスとしては同期逓倍回
路12で発生されたパルスが用いられる。
The rotation pulse signal 8 input from the rotation pulse signal input terminal 2 is synchronous multiplication #! It becomes a frequency-multiplied pulse signal at I12. The multiplication ratio at this time is determined by selecting the highest analysis order when performing order ratio analysis. What is degree 1?
If the frequency corresponds to the frequency of rotation, it is called first-order, and if you try to analyze it up to the nth-order frequency component, it is called 2n of the rotation frequency.
The vibration signal must be sampled at a factor of 2. Since the frequency of the rotational pulse signal 8 may vary over time, the synchronous multiplier circuit 12 generates a signal having a set multiplication ratio while being synchronized with the rotational pulse signal 8. This pulse frequency information is transmitted to the cut-off frequency control circuit 1:
3 and controls the cut-off frequency of the low-pass filter 14. The low-pass filter 14 is composed of, for example, a switched capacitor filter whose cut-off frequency is controlled by a pulse frequency or an active filter whose cut-off frequency is controlled by a voltage, and is capable of continuously changing the cut-off frequency. The vibration signal input from the vibration signal input terminal 1 passes through a low-pass filter I4 to reduce the aliasing effect caused by sampling, is A/D converted by an A/D converter 15, and is used to estimate the cause of failure. It is output to section 4. A/
As the sampling pulse of the D converter 15, a pulse generated by the synchronous multiplier circuit 12 is used.

次に故障原因推定の方法について説明する。Next, a method for estimating the cause of failure will be explained.

故障原因推定部4では信号入力部3より入力された振動
データS1に対して次数化分析、振幅確率密度解析2位
相分析等の信号処理を行なう。これらの分析結果から例
えば1次スペクトル値と振動実効値との比とか第3図に
示す高調波スペクトル9.10の値と1次スペクトル1
1の1直との比((vo+Vto ) / Vn ) 
、あるいは振幅最大値と平均値との比といった複数個の
特徴量を算出する−故障因果表記憶部5は振動特徴量と
故障原因との因果関係を示したデータベースすなわち故
障因果衣を格納している。そのようなデータベース構造
の例を次の表に示す。
The failure cause estimation section 4 performs signal processing such as order analysis, amplitude probability density analysis, two-phase analysis, etc. on the vibration data S1 inputted from the signal input section 3. From these analysis results, for example, the ratio between the primary spectrum value and the vibration effective value, and the value of the harmonic spectrum 9.10 and the primary spectrum 1 shown in Figure 3.
Ratio of 1 to 1 shift ((vo+Vto)/Vn)
, or calculate a plurality of feature quantities such as the ratio between the maximum amplitude value and the average value - The fault causal table storage unit 5 stores a database indicating the causal relationship between the vibration feature quantity and the cause of failure, that is, a fault causal cloth. There is. An example of such a database structure is shown in the table below.

このデータベースは回転機械のアンバランス、ミスアラ
イメント等の想定される故障原因毎に振動特徴量をO〜
1に正規した劣化指数に変換するためのパラメータa、
j+ bij (’は故障原因に対応した添字、)は振
動特徴量に対応した添字)と、複数個の劣化指数がある
1つの故障原因との間にどのような相関関係をもつかを
示す重み係数W17とを有する行列構造をとる。これら
のパラメータa2.。
This database contains vibration features for each assumed cause of failure, such as unbalance or misalignment of rotating machinery.
Parameter a for converting to a deterioration index normalized to 1,
Weight that indicates what kind of correlation there is between j+ bij (' is the subscript corresponding to the failure cause, ) is the subscript corresponding to the vibration feature) and one failure cause for which there are multiple deterioration indices. It takes a matrix structure having a coefficient W17. These parameters a2. .

b、および重み係数Wi、は機械振動の物理的性質およ
び長年の経験により決定された簡易な人工知能であシ、
故障因果表記憶部5においてはデータベースが必要に応
じて変更可能な構成になっている。
b, and the weighting coefficient Wi, are simple artificial intelligence determined based on the physical properties of mechanical vibration and many years of experience.
The database in the failure cause table storage unit 5 is configured to be changeable as necessary.

故障原因推定部4は前記した故障因果衣のパラメータを
用いて算出した振動信号の特徴量を劣化指数に変換する
。例えば変換関数P、、、 (x )は次式(1)のよ
うに定義する。
The failure cause estimating unit 4 converts the feature quantity of the vibration signal calculated using the above-mentioned failure cause parameter into a deterioration index. For example, the conversion function P, , (x) is defined as shown in the following equation (1).

但し X−振動信号の特徴量 第5図はこの関数を示す。すなわち算出した振動信号の
特徴量Xが基準値ai、とb7.の間にあるときには劣
化指数は0〜1の値をとる変数となる。このようにして
算出された劣化指数は機械の型式。
However, the feature quantity of the X-vibration signal in FIG. 5 shows this function. That is, the calculated feature amount X of the vibration signal is the reference value ai, and b7. When the value is between 0 and 1, the deterioration index becomes a variable that takes a value between 0 and 1. The deterioration index calculated in this way is the model of the machine.

大小による影響を大きく受けない数値である。ある1つ
の故障原因の可能性を示す値はこれらの劣化指数の合成
により算出する。例えば線形結合による合成とすれば次
式(2)の形で故障程度PF’、 。
This is a value that is not significantly affected by size. A value indicating the possibility of a particular failure cause is calculated by combining these deterioration indices. For example, if it is synthesized by linear combination, the failure degree PF' is expressed as the following equation (2).

PF7 = W71 P7. + Wi2piz + 
・・−・−(2)は算出される。前記式(2)の演算を
すべての想定される故障原因について行なえば、可能性
の高い故障原因がどれであるかが簡明にわかる。
PF7 = W71 P7. + Wi2piz +
...--(2) is calculated. By performing the calculation of equation (2) above for all possible causes of failure, it is easy to determine which cause of failure is most likely.

以上の説明から明らかな通り、本発明によれば回転機械
の故障診断に有益な次数比分析が容易に実行でき、さら
に故障原因の自動的々判定が可能な故障診断装置が得ら
れる。
As is clear from the above description, according to the present invention, it is possible to easily perform order ratio analysis useful for fault diagnosis of rotating machines, and to obtain a fault diagnosis device that can automatically determine the cause of the fault.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック回路図、第2
図は回転機械から取りこまれる振動のアナログ信号およ
び回転パルス信号の例、第3図は第1図に示す故障原因
推定部で行なわれる次数比分析の結果表示例、第4図は
第1図に示す信号入力部の詳細を示すブロック図、第5
図は第1図に示す故障原因推定部で用いられる振動信号
の特徴量から劣化指数への変換関数の例を示すグラフで
ある。 1・・振動信号入力端子、 2・・・回転パルス信号入力端子、 3・・・信号入力部、  4・・・故障原因推定部、5
・・故障因果表記憶部、  6・・結果表示部、7・・
・振動のアナログ信号、8・・回転パルス信号、9.1
0・・高調波スペクトル、 11・・・1次スペクトル、12・・同期逓倍回路、1
3・遮断周波数制御回路、 14・・・低域通過フィルタ、 15・A/D変’lA
器特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名) 三鷹市下達雀5丁目1番1号日 本無線株式会社内 0発 明 者 立林清彦 三鷹市下連雀5丁目1番1号日 本無線株式会社内 ■出 願 人 日本無線株式会社 三鷹市下達雀5丁目1番1号
FIG. 1 is a block circuit diagram showing one embodiment of the present invention, and FIG.
The figure shows an example of a vibration analog signal and rotational pulse signal taken in from a rotating machine, Figure 3 shows an example of displaying the results of the order ratio analysis performed in the failure cause estimation section shown in Figure 1, and Figure 4 shows the result of Figure 1. A block diagram showing details of the signal input section shown in FIG.
The figure is a graph showing an example of a conversion function from the feature quantity of a vibration signal to a deterioration index used in the failure cause estimating section shown in FIG. 1... Vibration signal input terminal, 2... Rotation pulse signal input terminal, 3... Signal input section, 4... Failure cause estimation section, 5
...Fault cause and effect table storage section, 6..Result display section, 7..
・Vibration analog signal, 8...Rotation pulse signal, 9.1
0...Harmonic spectrum, 11...1st order spectrum, 12...Synchronous multiplier circuit, 1
3. Cutoff frequency control circuit, 14...Low pass filter, 15. A/D variable 'lA
Device Patent Applicant Representative Patent Attorney Tomoyuki Yafuki (and 1 other person) Japan Radio Co., Ltd. 5-1-1 Shimotatsujaku, Mitaka City 0 Inventor Kiyohiko Tatebayashi Japan Radio Co., Ltd. 5-1-1 Shimotatsujaku, Mitaka City Within Co., Ltd.Applicant: Japan Radio Co., Ltd. 5-1-1 Shimotatsujaku, Mitaka City

Claims (2)

【特許請求の範囲】[Claims] (1)故障診断の対象となる回転機械から得られる振動
のアナログ信号をディジタル信号に変換する信号入力部
、前記回転機械の故障を示す振動信号の特徴量と故障原
因との因果関係を定めたデータベースを記憶した故障因
果表記憶部、前記信号入力部より収集された前記振動信
号の時系列データから複数の特徴量を算出し、前記故障
因果表記憶部に記憶されている前記データベースに基づ
いてffft々の故障原因を推定する故障原因推定部お
よび推定結果を表示する結果表示部を具備し、故障原因
の自動診断を可能としたことを特徴とする回転機械の故
障診断装置。
(1) A signal input unit that converts an analog vibration signal obtained from a rotating machine that is the subject of failure diagnosis into a digital signal, and a causal relationship between the characteristic amount of the vibration signal indicating a failure of the rotating machine and the cause of the failure. Calculates a plurality of feature quantities from the time-series data of the vibration signal collected from the failure cause-and-effect table storage unit that stores the database, and the signal input unit, and calculates a plurality of feature quantities from the time-series data of the vibration signal collected from the failure-cause-effect table storage unit that stores the database, and based on the database stored in the failure cause-and-effect table storage unit. 1. A failure diagnosis device for a rotating machine, comprising a failure cause estimating section for estimating the causes of various failures, and a result display section for displaying the estimation results, and capable of automatically diagnosing the causes of failures.
(2)前記信号入力部が前記回転機械から得た回転パル
ス信号に同期し、かつ回転周波数に対して逓倍された周
波数のサンプリングパルスを発生する装置、核装置の制
御のもとにアナログ/ディジタル(A/D )変換の除
土ずるエイリアジング効果を低減するだめに遮断周波数
が前記回転周波数の変化に対応して変化する低域通過フ
ィルタおよび前記A/D変換を行なうA/D変換器とで
構成されることを特徴とする特許請求の範囲第】項記載
の回転機械の故障診断装置。
(2) The signal input unit is synchronized with the rotational pulse signal obtained from the rotating machine and generates a sampling pulse with a frequency multiplied by the rotational frequency, and is an analog/digital device under the control of a nuclear device. (A/D) conversion; a low-pass filter whose cutoff frequency changes in response to changes in the rotational frequency in order to reduce aliasing effects; and an A/D converter that performs the A/D conversion. A fault diagnosing device for a rotating machine according to claim 1, characterized in that it is comprised of:
JP20377182A 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine Granted JPS5994018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20377182A JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20377182A JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Publications (2)

Publication Number Publication Date
JPS5994018A true JPS5994018A (en) 1984-05-30
JPH0252971B2 JPH0252971B2 (en) 1990-11-15

Family

ID=16479531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20377182A Granted JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Country Status (1)

Country Link
JP (1) JPS5994018A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433697A (en) * 1987-07-30 1989-02-03 Anritsu Corp Abnormality diagnosis method for system
JPH0216420A (en) * 1988-07-04 1990-01-19 Hitachi Ltd Method and device for diagnosing abnormality of machine slide part by ae
JPH02241333A (en) * 1989-03-14 1990-09-26 Togami Electric Mfg Co Ltd Diagnosis of distribution line accident and device therefor
JPH03885A (en) * 1989-05-30 1991-01-07 Ishikawajima Harima Heavy Ind Co Ltd Failure diagnosis of dryer in papermaking machine
JPH0352517A (en) * 1989-07-19 1991-03-06 Togami Electric Mfg Co Ltd Distribution line fault diagnosis
JPH0755868A (en) * 1994-06-03 1995-03-03 Hitachi Ltd Diagnostic system for apparatus/installation
JP2007064852A (en) * 2005-08-31 2007-03-15 Omron Corp Inspection apparatus and inspection method
JP2007101244A (en) * 2005-09-30 2007-04-19 Omron Corp Inspection device
JP2009270843A (en) * 2008-04-30 2009-11-19 Toshiba Corp Time-series data monitoring system
WO2012041928A1 (en) * 2010-10-01 2012-04-05 Continental Automotive Gmbh Diagnostic method for a torsional vibration damper in a drive train of a vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433697A (en) * 1987-07-30 1989-02-03 Anritsu Corp Abnormality diagnosis method for system
JPH0572638B2 (en) * 1987-07-30 1993-10-12 Anritsu Corp
JPH0216420A (en) * 1988-07-04 1990-01-19 Hitachi Ltd Method and device for diagnosing abnormality of machine slide part by ae
JPH02241333A (en) * 1989-03-14 1990-09-26 Togami Electric Mfg Co Ltd Diagnosis of distribution line accident and device therefor
JPH03885A (en) * 1989-05-30 1991-01-07 Ishikawajima Harima Heavy Ind Co Ltd Failure diagnosis of dryer in papermaking machine
JPH0352517A (en) * 1989-07-19 1991-03-06 Togami Electric Mfg Co Ltd Distribution line fault diagnosis
JPH0755868A (en) * 1994-06-03 1995-03-03 Hitachi Ltd Diagnostic system for apparatus/installation
JP2007064852A (en) * 2005-08-31 2007-03-15 Omron Corp Inspection apparatus and inspection method
JP4613755B2 (en) * 2005-08-31 2011-01-19 オムロン株式会社 Inspection apparatus and inspection method
JP2007101244A (en) * 2005-09-30 2007-04-19 Omron Corp Inspection device
JP2009270843A (en) * 2008-04-30 2009-11-19 Toshiba Corp Time-series data monitoring system
WO2012041928A1 (en) * 2010-10-01 2012-04-05 Continental Automotive Gmbh Diagnostic method for a torsional vibration damper in a drive train of a vehicle
CN103354879A (en) * 2010-10-01 2013-10-16 大陆汽车有限公司 Diagnostic method for a torsional vibration damper in a drive train of a vehicle
US8935041B2 (en) 2010-10-01 2015-01-13 Continental Automotive Gmbh Diagnostic method for a torsional damper in a drive train of a vehicle
CN103354879B (en) * 2010-10-01 2015-09-30 大陆汽车有限公司 For the diagnostic method of the torshional vibration damper in vehicle drive train

Also Published As

Publication number Publication date
JPH0252971B2 (en) 1990-11-15

Similar Documents

Publication Publication Date Title
US20220341815A1 (en) Apparatus and method for analysing the condition of a machine having a rotating part
US4979122A (en) Apparatus and method for monitoring power
JP3537452B2 (en) Apparatus and method for compressing measurement data correlated with machine state
US4419897A (en) Apparatus for harmonic oscillation analysis
JPH10170573A (en) Monitoring apparatus for ac power system
JPS5994018A (en) Trouble diagnosing apparatus for rotary machine
CN113486868B (en) Motor fault diagnosis method and system
JP6976080B2 (en) State analyzer, state analysis method, and program
EP2149980A2 (en) Stray flux processing method and system
Shreve Signal processing for effective vibration analysis
JP3214233B2 (en) Rotating machine vibration diagnostic device
US5528134A (en) AC power analyzer
US20070250558A1 (en) Method and Device for Performing Spectrum Analysis of a Wanted Signal or Noise Signal
EP0181775A1 (en) Motor monitor signal analysis system
JP6793565B2 (en) State analyzer, display method, and program
Kia et al. Zoom-MUSIC frequency estimation method for three-phase induction machine fault detection
US4506551A (en) Transducer selecting system
JPS63169536A (en) Abnormality diagnosing method for rotary machine
CN113029553B (en) Method, system and device for extracting rotating speed information of gearbox shaft and storage medium
EP4022275B1 (en) Smart motor data analytics with real-time algorithm
JP3032592B2 (en) Signal feature component analyzer
WO2000026809A1 (en) Automatic wavelet generation system and method
JP2924242B2 (en) Diagnosis method for fluctuating rotating machinery
JPH0883265A (en) Vibration signal analyzer
JPH076832B2 (en) Method and apparatus for vibration analysis of rotating equipment