JPH0252971B2 - - Google Patents

Info

Publication number
JPH0252971B2
JPH0252971B2 JP20377182A JP20377182A JPH0252971B2 JP H0252971 B2 JPH0252971 B2 JP H0252971B2 JP 20377182 A JP20377182 A JP 20377182A JP 20377182 A JP20377182 A JP 20377182A JP H0252971 B2 JPH0252971 B2 JP H0252971B2
Authority
JP
Japan
Prior art keywords
failure
cause
vibration
signal
failure cause
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20377182A
Other languages
Japanese (ja)
Other versions
JPS5994018A (en
Inventor
Toshio Toyoda
Kenji Maekawa
Satoshi Nakajima
Tadayuki Yamada
Kyohiko Tatebayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nippon Steel Corp
Original Assignee
Japan Radio Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nippon Steel Corp filed Critical Japan Radio Co Ltd
Priority to JP20377182A priority Critical patent/JPS5994018A/en
Publication of JPS5994018A publication Critical patent/JPS5994018A/en
Publication of JPH0252971B2 publication Critical patent/JPH0252971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/12Testing internal-combustion engines by monitoring vibrations

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は回転機械から発生する振動信号を用
いて該回転機械の故障原因を自動的に判定する機
能を備えた回転機械の故障診断装置に関するもの
である。 一般に回転機械から得られる振動信号の解析を
行なうためには、変化する回転に同期した間隔で
A/D変換したデイジタル信号に対して周波数分
析を行ない、該回転機械の動作状態を表わす特徴
的な周波数成分が次数比分析を行なつた結果、シ
グナル/ノイズ(S/N)比において優れたもの
であることが必要である。さらに次数比分析から
得られた特徴量をもとに診断の対象である回転機
械の型式、大小、回転数、負荷状態の影響を受け
ずに自動的に故障の原因が推定できることが望ま
しい。 従来回転機械の診断は汎用の信号解析装置によ
り行なわれており、次数比分析が可能な形でデー
タを収集することが困難であつた。また通常の周
波数分析や振動振幅の確率密度解析で得られた結
果より機械の劣化状態を評価するには、長年の経
験により蓄積された設備診断に関する多くの知識
が要求されること、さらに設備の型式、大小の差
異あるいは個人差によつて判定がばらついてしま
うという欠点があつた。 本発明の目的は回転機械の振動信号を次数比分
析できる形で収集可能な信号入力部を持ち、種々
の分析結果に基づいて故障原因を自動判定できる
回転機械の診断装置を提供する。 以下本発明を図面に基いて説明する。 第1図は本発明の一実施例を示すブロツク図で
ある。第1図において、1は振動信号入力端子、
2は回転パルス信号入力端子、3は信号入力部、
4は故障原因推定部、5は故障因果表記憶部、6
は結果表示部をそれぞれ示す。この故障診断装置
においては図示しない診断の対象となる回転機械
例えばモーター、ブロアー、歯車などから振動の
アナログ信号を振動信号入力端子1より、回転パ
ルス信号を回転パルス入力端子2より信号入力部
3へ取り込む。第2図に振動信号入力端子1より
取り込まれる振動のアナログ信号7の例および回
転パルス入力端子2より取り込まれる回転パルス
信号8の例を示す。信号入力部3では後述するご
とく回転パルス信号8と同期し、該回転パルス信
号間を回転周波数で逓倍してサンプリングパルス
とし、該サンプリングパルスをタイミング信号と
して振動信号7をA/D変換し、故障原因推定部
4へ振動データS1を出力する。故障原因推定部
4は入力し記憶した振動データS1に対して、周
波数分析すなわち次数比分析、振幅確率密度解析
等の信号処理を行ない、複数個の振動特徴量を算
出する。第3図に信号処理された1例として次数
比分析結果の表示例を示す。次に想定される複数
の故障原因がそれぞれどの程度の可能性をもつか
を算出する。この計算には故障因果表記憶部5に
格納されたデータベースが利用され、計算された
故障原因に関する結果はCRTまたはプリンタ等
で構成された結果表示部6に表示される。 次に前記各構成要素の詳細とその動作につき説
明する。 第4図は信号入力部3の詳細を示すブロツク図
である。回転パルス信号入力端子2より入力され
た回転パルス信号8は同期逓倍回路12で回転周
波数の逓倍されたサンプリングパルス信号とな
る。このときの逓倍比は次数比分析を行なうとき
の分析最高次数の選択により決められる。次数と
は1回転の周波数に当たる周波数の場合1次と呼
ばれ、n次の周波数成分まで分析しようとすると
回転周波数の2n倍で振動信号をサンプリングし
なければならない。回転パルス信号8の周波数は
時間的に変動する可能性があるので同期逓倍回路
12は回転パルス信号8と同期をとりながら、設
定された逓倍比をもつサンプリングパルスを発生
する。このサンプリングパルス周波数の情報は遮
断周波数制御回路13に入力され低域通過フイル
タ14の遮断周波数の制御を行なう。低域通過フ
イルタ14は例えば遮断周波数がサンプリングパ
ルス周波数で制御されるスイツチキヤパシタフイ
ルタや遮断周波数が電圧で制御されるアクテイブ
フイルタで構成され、遮断周波数を連続的に変化
できるものである。振動信号入力端子1から入力
された振動信号は、サンプリングパルスの際生ず
るエイリアジング効果を低減するために低域通過
フイルタ14を通り、A/D変換器15でA/D
変換され、故障原因推定部4へ出力される。A/
D変換器15のサンプリングタイミングパルスと
しては同期逓倍回路12で発生されたサンプリン
グパルスが用いられる。 次に故障原因推定の方法について説明する。 故障原因推定部4では信号入力部3より入力さ
れた振動データS1に対して次数比分析、振幅確
率密度解析、位相分析等の信号処理を行なう。こ
れらの分析結果から例えば1次スペクトル値と振
動実効値との比とか第3図に示す高調波スペクト
ル9,10の値と1次スペクトル11との比
((V9+V10)/V11)、あるいは振幅最大値と平均
値との比といつた複数個の特徴量を算出する。故
障因果表記憶部5は振動特徴量と故障原因との因
果関係を示したデータベースすなわち故障因果表
を格納している。そのようなデータベース構造の
例を次の表に示す。
The present invention relates to a failure diagnosis device for a rotating machine that has a function of automatically determining the cause of a failure of the rotating machine using vibration signals generated from the rotating machine. In general, in order to analyze vibration signals obtained from rotating machines, frequency analysis is performed on digital signals that are A/D converted at intervals synchronized with changing rotation, and characteristic characteristics representing the operating state of the rotating machine are analyzed. As a result of frequency component order ratio analysis, it is necessary that the signal/noise (S/N) ratio is excellent. Furthermore, it is desirable to be able to automatically estimate the cause of a failure based on the feature values obtained from the order ratio analysis, without being affected by the type, size, rotation speed, or load condition of the rotating machine being diagnosed. Conventionally, diagnosis of rotating machinery has been performed using general-purpose signal analysis equipment, and it has been difficult to collect data in a form that allows order ratio analysis. Furthermore, in order to evaluate the state of machine deterioration based on the results obtained from normal frequency analysis and probability density analysis of vibration amplitude, a great deal of knowledge regarding equipment diagnosis accumulated over many years of experience is required. The drawback was that judgments varied due to differences in model, size, or individual differences. SUMMARY OF THE INVENTION An object of the present invention is to provide a diagnostic device for a rotating machine that has a signal input section that can collect vibration signals of the rotating machine in a form that allows order ratio analysis, and that can automatically determine the cause of failure based on various analysis results. The present invention will be explained below based on the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention. In FIG. 1, 1 is a vibration signal input terminal;
2 is a rotation pulse signal input terminal, 3 is a signal input section,
4 is a failure cause estimation unit, 5 is a failure cause table storage unit, 6
indicate the result display section, respectively. In this failure diagnosis device, an analog signal of vibration from a rotating machine (not shown) to be diagnosed, such as a motor, a blower, a gear, etc. is sent from a vibration signal input terminal 1, and a rotation pulse signal is sent from a rotation pulse input terminal 2 to a signal input section 3. take in. FIG. 2 shows an example of a vibration analog signal 7 taken in from the vibration signal input terminal 1 and an example of a rotation pulse signal 8 taken in from the rotation pulse input terminal 2. The signal input unit 3 synchronizes with the rotational pulse signal 8 as described later, multiplies the rotational pulse signal by the rotational frequency to obtain a sampling pulse, uses the sampling pulse as a timing signal to A/D convert the vibration signal 7, and detects a failure. The vibration data S1 is output to the cause estimation unit 4. The failure cause estimation unit 4 performs signal processing such as frequency analysis, order ratio analysis, and amplitude probability density analysis on the input and stored vibration data S1, and calculates a plurality of vibration feature quantities. FIG. 3 shows a display example of the order ratio analysis result as an example of signal processing. Next, calculate the probability of each of the multiple possible failure causes. A database stored in the failure cause table storage unit 5 is used for this calculation, and the results regarding the calculated failure causes are displayed on a result display unit 6 comprised of a CRT, printer, or the like. Next, details of each component and its operation will be explained. FIG. 4 is a block diagram showing details of the signal input section 3. The rotational pulse signal 8 inputted from the rotational pulse signal input terminal 2 is turned into a sampling pulse signal whose rotational frequency is multiplied by the synchronous multiplier circuit 12. The multiplication ratio at this time is determined by selecting the highest analysis order when performing order ratio analysis. The order is called 1st order when the frequency corresponds to the frequency of one rotation, and in order to analyze up to the nth order frequency component, the vibration signal must be sampled at 2n times the rotation frequency. Since the frequency of the rotating pulse signal 8 may vary over time, the synchronous multiplier circuit 12 generates sampling pulses having a set multiplication ratio while being synchronized with the rotating pulse signal 8. Information on this sampling pulse frequency is input to a cutoff frequency control circuit 13 to control the cutoff frequency of the low pass filter 14. The low-pass filter 14 is composed of, for example, a switch capacitor filter whose cut-off frequency is controlled by the sampling pulse frequency or an active filter whose cut-off frequency is controlled by a voltage, and is capable of continuously changing the cut-off frequency. The vibration signal input from the vibration signal input terminal 1 passes through a low-pass filter 14 in order to reduce the aliasing effect that occurs during sampling pulses, and is converted into an A/D converter 15 by an A/D converter 15.
It is converted and output to the failure cause estimation section 4. A/
As the sampling timing pulse of the D converter 15, a sampling pulse generated by the synchronous multiplier circuit 12 is used. Next, a method for estimating the cause of failure will be explained. The failure cause estimation unit 4 performs signal processing such as order ratio analysis, amplitude probability density analysis, and phase analysis on the vibration data S1 input from the signal input unit 3. From these analysis results, for example, the ratio between the primary spectrum value and the vibration effective value, or the ratio between the values of harmonic spectra 9 and 10 and the primary spectrum 11 shown in FIG. 3 ((V 9 + V 10 )/V 11 ) , or calculate a plurality of feature quantities such as the ratio between the maximum amplitude value and the average value. The failure cause-and-effect table storage unit 5 stores a database showing the causal relationship between vibration feature quantities and failure causes, that is, a failure cause-and-effect table. An example of such a database structure is shown in the table below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 故障診断の対象となる回転機械から得られる
振動信号と回転パルス信号を入力し、回転パルス
信号と同期して該回転パルス信号間を回転周波数
の逓倍されたサンプリングパルスとし、該サンプ
リングパルスをタイミング信号として振動信号を
A/D変換して出力する信号入力部と、回転機械
の故障を表す振動特徴量と故障因果関係との因果
関係を予め定めた故障因果表を備え、該故障因果
表が各故障原因別に劣化程度を示す0〜1の劣化
指数に変換するための変数群と、前記劣化指数と
各故障原因との因果の程度を示す重み係数群とで
構成されている故障因果表記憶部と、前記信号入
力部から入力された振動信号を信号処理し複数の
振動特徴量を算出し、該振動特徴量を前記故障因
果表記憶部に記憶されている振動特徴量と故障因
果関係のデータベースに基いて種々の故障原因を
推定する故障原因推定部と、前記故障原因推定部
からの推定結果を表示する結果表示部からなるこ
とを特徴とする回転機械の故障診断装置。
1 Input the vibration signal and rotation pulse signal obtained from the rotating machine that is the target of failure diagnosis, synchronize with the rotation pulse signal, make the interval between the rotation pulse signals a sampling pulse whose rotation frequency is multiplied, and set the sampling pulse as a timing. A signal input unit that A/D converts and outputs a vibration signal as a signal, and a failure cause-and-effect table that predetermines the cause-and-effect relationship between the vibration feature amount representing a failure of the rotating machine and the failure cause-and-effect relationship, and the failure cause-and-effect table is Failure cause-and-effect table memory consisting of a group of variables for converting into a deterioration index of 0 to 1 indicating the degree of deterioration for each cause of failure, and a group of weighting coefficients indicating the degree of causality between the deterioration index and each cause of failure. and a vibration signal input unit, which processes the vibration signal input from the signal input unit to calculate a plurality of vibration feature quantities, and calculates a plurality of vibration feature quantities from the vibration feature quantities stored in the failure cause-and-effect table storage unit and the failure cause-and-effect relationship. 1. A failure diagnosis device for a rotating machine, comprising: a failure cause estimating section that estimates various failure causes based on a database; and a result display section that displays estimation results from the failure cause estimating section.
JP20377182A 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine Granted JPS5994018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20377182A JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20377182A JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Publications (2)

Publication Number Publication Date
JPS5994018A JPS5994018A (en) 1984-05-30
JPH0252971B2 true JPH0252971B2 (en) 1990-11-15

Family

ID=16479531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20377182A Granted JPS5994018A (en) 1982-11-22 1982-11-22 Trouble diagnosing apparatus for rotary machine

Country Status (1)

Country Link
JP (1) JPS5994018A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433697A (en) * 1987-07-30 1989-02-03 Anritsu Corp Abnormality diagnosis method for system
JP2685513B2 (en) * 1988-07-04 1997-12-03 株式会社日立製作所 Abnormality diagnosis device for machine sliding parts by AE
JP3213304B2 (en) * 1989-03-14 2001-10-02 株式会社戸上電機製作所 Distribution line accident diagnosis method and device
JPH03885A (en) * 1989-05-30 1991-01-07 Ishikawajima Harima Heavy Ind Co Ltd Failure diagnosis of dryer in papermaking machine
JP2966001B2 (en) * 1989-07-19 1999-10-25 株式会社戸上電機製作所 Distribution line accident diagnosis method
JP2613360B2 (en) * 1994-06-03 1997-05-28 株式会社日立製作所 Equipment / facility diagnostic system
JP4613755B2 (en) * 2005-08-31 2011-01-19 オムロン株式会社 Inspection apparatus and inspection method
JP2007101244A (en) * 2005-09-30 2007-04-19 Omron Corp Inspection device
JP5161645B2 (en) * 2008-04-30 2013-03-13 株式会社東芝 Time series data monitoring system
DE102010041889A1 (en) * 2010-10-01 2012-04-05 Continental Automotive Gmbh Diagnostic method for a torsion damper in a drive train of a vehicle

Also Published As

Publication number Publication date
JPS5994018A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
McFadden A technique for calculating the time domain averages of the vibration of the individual planet gears and the sun gear in an epicyclic gearbox
McFadden Interpolation techniques for time domain averaging of gear vibration
McFadden Window functions for the calculation of the time domain averages of the vibration of the individual planet gears and sun gear in an epicyclic gearbox
US4419897A (en) Apparatus for harmonic oscillation analysis
JP2001137243A (en) Method and apparatus for adaptive wall filtering process in spectrum doppler ultrasonic imaging
JPH0252971B2 (en)
Rodopoulos et al. A parametric approach for the estimation of the instantaneous speed of rotating machinery
CN109682597A (en) A kind of gear-box vibration signal processing and analysis method
CN113702043A (en) Planetary gear box fault diagnosis method based on POVMD and FDTW under time-varying rotation speed
Shreve Signal processing for effective vibration analysis
US6324290B1 (en) Method and apparatus for diagnosing sound source and sound vibration source
US4678990A (en) Motor monitor signal analysis system
Lopatinskaia et al. Monitoring varying speed machinery vibrations—I. The use of non-stationary recursive filters
CN113029553B (en) Method, system and device for extracting rotating speed information of gearbox shaft and storage medium
JPS5979817A (en) Transducer selector
JPH0733976B2 (en) Gear abnormality diagnosis device
JPH0153728B2 (en)
JPH07318457A (en) Abnormality diagnostic device for bearing
Klein Comparison of methods for separating excitation sources in rotating machinery
RU2643696C1 (en) Method of vibration diagnostics of gas turbine engine gear reducer
US5313549A (en) Procedure for filtering the speed feedback signal
JPH05264335A (en) Method and apparatus for analyzing rotational order ratio
JPH04289431A (en) Method for analyzing rotary body
JPS58131518A (en) Analysing method for tracking
SU1652862A1 (en) Device for vibrotesting of turbine set