JPS599269B2 - Fixed tube circumferential arc welding method - Google Patents

Fixed tube circumferential arc welding method

Info

Publication number
JPS599269B2
JPS599269B2 JP53092021A JP9202178A JPS599269B2 JP S599269 B2 JPS599269 B2 JP S599269B2 JP 53092021 A JP53092021 A JP 53092021A JP 9202178 A JP9202178 A JP 9202178A JP S599269 B2 JPS599269 B2 JP S599269B2
Authority
JP
Japan
Prior art keywords
electrode
welding
current
tube
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53092021A
Other languages
Japanese (ja)
Other versions
JPS5519450A (en
Inventor
順 鵜飼
豊造 鉄
憲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53092021A priority Critical patent/JPS599269B2/en
Publication of JPS5519450A publication Critical patent/JPS5519450A/en
Publication of JPS599269B2 publication Critical patent/JPS599269B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 この発明は溶接すべき固定管の円周全姿勢溶接を、いわ
ゆる「TIG溶接法」によつて行なう固定管円周アーク
溶接法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fixed tube circumferential arc welding method in which the fixed tube to be welded is welded in all circumferential positions by the so-called "TIG welding method."

従来、この種固定管の円周溶接において、特に溶接すべ
き固定管の外径寸法が30m/m以下の小径管で、この
被溶接管の構造の関係からその内面からでないと溶接で
きない場合には「TIG自動溶接法」が用いられている
。この「TIG自動溶接法」を第1図によつて説明する
Conventionally, in circumferential welding of this type of fixed pipe, especially when the fixed pipe to be welded is a small diameter pipe with an outer diameter of 30 m/m or less, and due to the structure of the pipe to be welded, welding can only be done from the inner surface. The "TIG automatic welding method" is used. This "TIG automatic welding method" will be explained with reference to FIG.

1は管板、2はこの管板1に溶接する固定管、3はこの
固定管2と上記管板1とを溶接するために、アーク6を
母材との間に発生させるためのタングステン電極、4は
電極ホルダ、5は絶縁カラーである。
1 is a tube plate, 2 is a fixed tube to be welded to the tube plate 1, and 3 is a tungsten electrode for generating an arc 6 between the base metal and the base metal in order to weld the fixed tube 2 and the tube plate 1 together. , 4 is an electrode holder, and 5 is an insulating collar.

しかして、上記固定管2の内径は25m/m以下の場合
が多く、溶接トーチの構造上、フイラフイヤ等を挿入す
ることができない。したがつて、必然的にノンフイラワ
イヤ溶接となるが、このような場合には内周側ビード(
表ビード)、および外面側ビード(裏波ビード)を共に
凸形に形成することは困難である。一般にこの種溶接部
は溶融凝固するため、下向姿勢で、しかも裏当て材の有
る場合には、溶融金属は凝固するときに収縮して、第2
図bの矢印10に示すように両側の母材を引張るため、
ノンフイラワイヤ溶接の場合でも両面共に凸形に形成す
ることが可能である。この状態を第2図aおよび第2図
bに示す。なお、この第2図aおよびbにおいて、7は
裏当て材、8は溶着金属、9は被溶接材である。しかし
ながら、上述した」・径固定管の溶接においては、第2
図a、bに示すような裏当て材7を使用することが困難
であるため、溶融金属の表面張力や固体面との付着力と
によつて、重力を支え、バランスした位置で凝固するた
め、第2図a、bに示すように溶接ビード両面が凸形に
なるようなことはなく、一般的には管上部において管外
面のビードが凹み、管下部で管内面のビードが凹み易い
。この傾向は、溶接すべき固定管の肉厚が大きくなるほ
ど顕著で、通常固定管の肉厚が1.5即廂以上のものに
この状態が発生し易く、肉厚が1.5m/m以下のもの
では重力の影響が少なく、溶接上問題とはならない。上
述した問題となる溶接ビードの例を第3図a、b、cに
示す、第3図bは、第3図a(7)A−A’線における
断面図、第3図cは、第3図AOB−B′,線における
断面図で、管上部においては管外面のビードが凹み、管
下部では管内面のビードが凹むことを示すもので、この
ような状態にならないようにするために、従来から例え
ば入熱制御を行なうことにより溶融池の形成を安定に適
正な大きさにしたりして各種工夫がなされているが、こ
のような制御手段{は種々原因がからみ合つて満足した
結果が得られなかつた。
However, the inner diameter of the fixed tube 2 is often less than 25 m/m, and due to the structure of the welding torch, it is not possible to insert a filler fire or the like. Therefore, non-filler wire welding is inevitably required, but in such a case, the inner bead (
It is difficult to form both the front bead (front bead) and the outer bead (uranami bead) into a convex shape. In general, this type of weld zone melts and solidifies, so if the molten metal is in a downward position and there is a backing material, the molten metal will shrink as it solidifies and the second
In order to pull the base material on both sides as shown by the arrow 10 in Figure b,
Even in the case of non-filler wire welding, it is possible to form a convex shape on both sides. This state is shown in FIGS. 2a and 2b. In addition, in FIGS. 2a and 2b, 7 is a backing material, 8 is a weld metal, and 9 is a welded material. However, as mentioned above, in welding fixed diameter pipes, the second
Since it is difficult to use the backing material 7 as shown in Figures a and b, the surface tension of the molten metal and the adhesion force with the solid surface support gravity and solidify at a balanced position. As shown in FIGS. 2a and 2b, both sides of the weld bead are not convex, and generally the bead on the outer surface of the tube is concave in the upper part of the tube, and the bead on the inner surface of the tube in the lower part of the tube is likely to be concave. This tendency becomes more pronounced as the wall thickness of the fixed pipe to be welded increases, and this condition is more likely to occur when the wall thickness of the fixed pipe is 1.5 mm or more, and when the wall thickness is 1.5 m/m or less. In this case, the influence of gravity is small and there is no problem in welding. Examples of the above-mentioned problematic weld bead are shown in Figures 3a, b, and c. Figure 3b is a cross-sectional view taken along line AA' of Figure 3a(7), and Figure 3c is a cross-sectional view taken along line AA' of Figure 3a(7). Figure 3 is a cross-sectional view taken along the line AOB-B', which shows that the bead on the outer surface of the tube is depressed in the upper part of the tube, and the bead on the inner surface of the tube is depressed in the lower part of the tube.To prevent this situation, Various efforts have been made to stably form a molten pool to an appropriate size by, for example, controlling heat input. was not obtained.

この発明は、かかる点に着目してなされたもので、溶融
池の形成を安定に適正な大きさに制御するための新規な
入熱制御手段を提供しようとするものである。
The present invention has been made with attention to this point, and an object thereof is to provide a novel heat input control means for stably controlling the formation of a molten pool to an appropriate size.

一般にノンフイラワイヤ溶接における溶融池11の形状
{は、TIG@接の場合、第4図に示すような断面形状
となる。
In general, the shape of the molten pool 11 in non-filler wire welding has a cross-sectional shape as shown in FIG. 4 in the case of TIG@ welding.

すなわち、第4図aは裏面まで溶融していないときを示
し、この場合、必然的に湯の保持が良く、溶融池11の
直径、および溶け込み深さにもよるが、各種の姿勢で垂
れ落ちが発生しにくい。しかしながら、第4図bに示す
ように、裏面まで溶融した場合には、底が抜けた状態の
ため湯の保持が悪く、溶融池11の直径、および管厚等
によつては、瞬間的に溶け落ち易い。また、静止アーク
、すなわち電極が静止しているときに形成される溶融池
と、移動アーク、すなわち電極が移動しているときに形
成される溶融池とを比較したとき、静止アークのほうが
湯の保持が良い。これは移動アークの場合、第5図bに
示すように、湯流れ13が溶融池11内で生じており、
これが湯の保持を悪くするわけである。この発明は、上
述した性質に着目してなされたもので、湯の保持を最良
の状態に保持しながら溶接を行なわんとするものである
In other words, Fig. 4a shows a case where the melt has not reached the back surface, and in this case, the hot water is inevitably held well, and depending on the diameter of the molten pool 11 and the depth of penetration, it drips in various positions. is less likely to occur. However, as shown in Fig. 4b, when the melt reaches the back side, the bottom of the molten metal is exposed and the retention of the molten metal is poor, and depending on the diameter of the molten pool 11, the pipe thickness, etc. Easy to melt off. Also, when comparing a stationary arc, that is, a molten pool formed when the electrode is stationary, and a moving arc, that is, a molten pool that is formed when the electrode is moving, the stationary arc has a higher flow of molten metal. Good retention. In the case of a moving arc, a flow 13 of the molten metal occurs within the molten pool 11, as shown in FIG.
This makes it difficult to retain hot water. This invention has been made with attention to the above-mentioned properties, and is intended to perform welding while maintaining the best possible retention of hot water.

すなわち、いま、TIGノンフイラワイヤ溶接が可能な
限界の管の肉厚が5〜6m/mとして、これらの肉厚を
1バスで溶融するときに形成される表ビード巾を数m/
mとする。
That is, assuming that the maximum wall thickness of a pipe that can be welded by TIG non-filler wire is 5 to 6 m/m, the width of the surface bead formed when melting these wall thicknesses in one bath is several meters/m/m.
Let it be m.

この場合、裏波ビードが僅かに形成される瞬間裏波ビー
ドの直径3〜5m/mとして、これを連続して形成する
ために、電極を断続移動させる。この移動量は最大3m
/m程度が望ましい。そして、溶接すべき固定管の円周
を30〜48等分して、その各等分間を電極が移動する
時間を同一とする。すなわち、溶融池を形成させるとき
は、所定の高いレベルの溶融電流で、電極を静止させた
まま管を溶融し、裏面まで溶融した瞬間に低いレベルの
溶融電流に切り換えて溶融池を凝固させるとともに、そ
の間に溶接トーチを移動させる。この溶接トーチの移動
量{ま、最初に分割した1区分とし、その分割数は裏波
ビードの直径から考慮して移動量が1〜3m/m程度に
なるように設定する。したがつて、この発明にかかるア
ーク溶接法は、第6図に示すように、高レベルと低レベ
ルの二段の脈動電流を用いると共に、この脈動電流と電
極の断続移行の周期とを同期させ、しかも溶融池の形成
は、電極の停止時間、すなわち高いレベルの電流が流れ
ている時間「Tlj(1′決定され、円周方向の熱の蓄
積に対する入熱制?をこの時間[T1」と、高いレベル
の溶接電流「Ip」とで行ない、この「T1]と[Ip
]をあらかじめ設定されたプログラムにしたがつて′1
11卸しておくものとする。
In this case, the electrode is moved intermittently in order to continuously form an instantaneous uranami bead with a diameter of 3 to 5 m/m when the uranami bead is formed slightly. This movement distance is up to 3m
/m is desirable. Then, the circumference of the fixed tube to be welded is divided into 30 to 48 equal parts, and the time taken for the electrode to move through each equal part is set to be the same. That is, when forming a molten pool, the tube is melted with a predetermined high-level melting current while the electrode remains stationary, and at the moment when the back side is melted, the melting current is switched to a lower level to solidify the molten pool. , while moving the welding torch. The amount of movement of this welding torch {well, the first division is one division, and the number of divisions is set so that the amount of movement is about 1 to 3 m/m in consideration of the diameter of the Uranami bead. Therefore, as shown in FIG. 6, the arc welding method according to the present invention uses a two-stage pulsating current of high level and low level, and synchronizes this pulsating current with the period of intermittent transition of the electrode. , Moreover, the formation of a molten pool is determined by the stop time of the electrode, that is, the time when a high level current is flowing, "Tlj (1'), and the heat input limit for heat accumulation in the circumferential direction is defined as this time [T1]. , with a high level welding current "Ip", and this "T1" and [Ip
] according to a preset program'1
11 shall be sold wholesale.

そして、低レベルの溶接電流[B」は、溶融池の凝固が
目的であるから、溶接部に収縮割れが生じない程度に最
低アークが持続できる程度に小さく設定しておくものと
する。また、上記「T1」と「P」は主に「T1」によ
つて制御するが、溶接の後半、「Ip」を多少変えるほ
うが実効が上つた。このときのプログラムは、第7図に
示す特性曲線のように、「T1」もしくは[P」および
その両方を制御することが好ましい。この第7図の特性
曲線は材質、管径、管肉厚、および電極先端形状によつ
て決定され、管の円周パス溶接の場合の入熱バランス特
性曲線である。この発明のアータ溶接法は上述したよう
に静止アークの状態で管の裏面まで溶融し、裏面が溶け
始めると、この不安定な状態を速やかに解消するため、
溶接電流を低くすると共に、この間に電極を移動して再
び静止アークで溶融させるようにしたもので、溶融池の
不安定な湯流れを匝度に小さくして安定した固定管の円
周片面溶接が可能となる優れた効果を有するものである
Since the purpose of the low-level welding current [B] is to solidify the molten pool, it is set to be low enough to maintain a minimum arc without causing shrinkage cracks in the weld. Further, although the above-mentioned "T1" and "P" are mainly controlled by "T1", it was found that it was more effective to slightly change "Ip" in the latter half of welding. The program at this time preferably controls "T1" or "P" or both, as shown in the characteristic curve shown in FIG. The characteristic curve shown in FIG. 7 is determined by the material, pipe diameter, pipe wall thickness, and electrode tip shape, and is a heat input balance characteristic curve in the case of circumferential pass welding of the pipe. As mentioned above, the arter welding method of this invention melts the back surface of the tube in a static arc state, and when the back surface begins to melt, this unstable state is quickly resolved.
The welding current is lowered, and the electrode is moved during this time to melt the metal again with a stationary arc. This reduces the unstable flow of the molten pool to the tenacity, resulting in stable circumferential single-sided welding of fixed pipes. It has an excellent effect that enables

なお、上述した一実施例は、内面からの管円周溶接につ
いて述べたが、管外面に電極を配置する場合においても
同様の効果が得られること(1いうまでもない。
In addition, although the above-mentioned embodiment described welding the circumference of the tube from the inner surface, it goes without saying that the same effect can be obtained even when electrodes are arranged on the outer surface of the tube (1).

また、この発明のアーク溶接法をより効果的に実施する
ために、第7図の曲線A部に相当する入熱相当分を、あ
らかじめ裏面まで溶融させずに、1回転溶接后に上述し
たこの発明の溶接法を実絶することも、管材料、管径、
肉厚によつて必要であることはいうまでもない。
In addition, in order to carry out the arc welding method of the present invention more effectively, the heat input equivalent to the curve A part in FIG. The inventive welding method can also be improved by changing the pipe material, pipe diameter,
Needless to say, this is necessary depending on the wall thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の管板と固定管の溶接方法を示す断面図、
第2図A,bはノンフイラワイヤ溶接時において裏当て
材がある場合の溶接ビード形成の説明図、第3図A,b
,cは管円周内面溶接時に生じる溶接ビード形成の説明
図、第4図A,bはノンフイラワイヤ溶接時の溶融池の
説明図、第5図は静止アークと移動アークの溶融池の説
明図、第6図は脈動電流と電極断続移行の同期および入
熱制御のタイムチヤート、第7図は入熱制御プログラム
設定基本特性曲線図である。 図面中、1は管板、2は固定管、3は電極、6はアーク
、8は溶着金属、9は被溶接材、11は溶融池、12は
溶接ビ!ドである。
Figure 1 is a cross-sectional view showing a conventional welding method for a tube plate and a fixed tube.
Figures 2A and b are explanatory diagrams of weld bead formation when there is a backing material during non-filler wire welding, and Figures 3A and b
, c is an explanatory diagram of weld bead formation that occurs when welding the inner circumferential surface of a pipe, Figures 4A and b are explanatory diagrams of a molten pool during non-filler wire welding, and Figure 5 is an explanatory diagram of a molten pool of a stationary arc and a moving arc. FIG. 6 is a time chart of synchronization of pulsating current and electrode intermittent transition and heat input control, and FIG. 7 is a basic characteristic curve diagram of heat input control program setting. In the drawings, 1 is a tube plate, 2 is a fixed tube, 3 is an electrode, 6 is an arc, 8 is a weld metal, 9 is a welded material, 11 is a molten pool, and 12 is a welding pipe! It is de.

Claims (1)

【特許請求の範囲】[Claims] 1 溶接電流として高低2レベルの脈動電流を用いると
共に、溶接すべき固定管の円周に沿つて移動する非消耗
電極の移動を断続移動とし、高い電流のときには電極が
停止し、また低い電流のときは電極が移動するように上
記脈動電流と電極の断続移動とを同期させるように構成
し、入熱制御を高い電流が流れている時間および高い電
流レベルのみで行ない電極の移動量を常に一定にしたこ
とを特徴とする固定管円周アーク溶接法。
1 A pulsating current with two levels, high and low, is used as the welding current, and the movement of the non-consumable electrode that moves along the circumference of the fixed pipe to be welded is intermittent movement, and when the current is high, the electrode stops, and when the current is low, When the electrode moves, the pulsating current and the intermittent movement of the electrode are synchronized, and heat input control is performed only during times when high current is flowing and at a high current level, so that the amount of electrode movement is always constant. A fixed tube circumferential arc welding method characterized by:
JP53092021A 1978-07-27 1978-07-27 Fixed tube circumferential arc welding method Expired JPS599269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53092021A JPS599269B2 (en) 1978-07-27 1978-07-27 Fixed tube circumferential arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53092021A JPS599269B2 (en) 1978-07-27 1978-07-27 Fixed tube circumferential arc welding method

Publications (2)

Publication Number Publication Date
JPS5519450A JPS5519450A (en) 1980-02-12
JPS599269B2 true JPS599269B2 (en) 1984-03-01

Family

ID=14042870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53092021A Expired JPS599269B2 (en) 1978-07-27 1978-07-27 Fixed tube circumferential arc welding method

Country Status (1)

Country Link
JP (1) JPS599269B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702915A (en) * 1970-10-23 1972-11-14 Astro Arc Co Automatic melt-thru welding method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702915A (en) * 1970-10-23 1972-11-14 Astro Arc Co Automatic melt-thru welding method and apparatus

Also Published As

Publication number Publication date
JPS5519450A (en) 1980-02-12

Similar Documents

Publication Publication Date Title
JP3522199B2 (en) Method and apparatus for welding railway rails
JPS599269B2 (en) Fixed tube circumferential arc welding method
US3325619A (en) Consumable nozzle for electroslag welding
KR100605669B1 (en) New copper shoe for electro gas welding
JPH0825049A (en) Method for welding all position of pipe line fixing tube
JPH0218953B2 (en)
JPH0353068B2 (en)
JP2679843B2 (en) Flux supply device
JP2646388B2 (en) Gas shielded arc welding method
JPS6147635B2 (en)
JPS6222313Y2 (en)
JPH09271992A (en) Backing material for t-joint
JPS6310219Y2 (en)
SU1466888A1 (en) Method of submerged arc welding of horizontal butt joint in the vertical plane
JPH046472B2 (en)
JPS5927779A (en) Gas metal arc welding method
JPS6310220Y2 (en)
JPS6125464B2 (en)
JPS566786A (en) Welding method of corrugated sheet
JPS61273259A (en) Tig arc welding method
JPS5823833B2 (en) Butt welding method for fixed pipes
JPS5913575A (en) Two electrode metal active gas welding method
JP3105124B2 (en) Non-consumable nozzle type electroslag welding method
JPH0373387B2 (en)
JPH0445268B2 (en)