JPS6310220Y2 - - Google Patents

Info

Publication number
JPS6310220Y2
JPS6310220Y2 JP13259880U JP13259880U JPS6310220Y2 JP S6310220 Y2 JPS6310220 Y2 JP S6310220Y2 JP 13259880 U JP13259880 U JP 13259880U JP 13259880 U JP13259880 U JP 13259880U JP S6310220 Y2 JPS6310220 Y2 JP S6310220Y2
Authority
JP
Japan
Prior art keywords
grooves
circumference
cross
lower half
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13259880U
Other languages
Japanese (ja)
Other versions
JPS5756578U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13259880U priority Critical patent/JPS6310220Y2/ja
Publication of JPS5756578U publication Critical patent/JPS5756578U/ja
Application granted granted Critical
Publication of JPS6310220Y2 publication Critical patent/JPS6310220Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【考案の詳細な説明】 本考案は、被溶接物とスタツド間のアーク熱又
は抵抗発熱によつてスタツド先端を溶融した後に
被溶接物に圧接するときのスタツド先端を外気か
ら包囲し、余盛を成型するスタツド溶接用の磁器
管(以下フエルールという)に関するものであ
る。
[Detailed description of the invention] The present invention melts the tip of the stud by arc heat or resistance heat between the workpiece and the stud, and then surrounds the stud tip from the outside air when press-welding it to the workpiece. This relates to porcelain tubes for stud welding (hereinafter referred to as ferrules).

通常の被溶接物に接するフエルールの円周上に
略等間隙の溝を有する磁器管を用いて、建築、橋
梁等の大形構造物(以下被溶接物という)に直径
16mm以上の太径のスタツドを横向溶接をしようと
すれば、そのスタツドの直径が大になるほど、ア
ーク熱又は抵抗発熱によるスタツド先端の溶融金
属量が増し、溶融中に重力によつて溶融金属が下
方に流出する傾向が大になるために、溶融金属の
凝固後に溶接部分の上方に余盛不足、アンダーカ
ツト等の欠陥が発生して溶接部の充分な機械的強
度が得られなくなる。
Using a porcelain tube with grooves with approximately equal spacing on the circumference of the ferrule that is in contact with the workpiece, it is possible to attach the diameter to large structures such as buildings and bridges (hereinafter referred to as the workpiece).
If you try to horizontally weld studs with a diameter of 16 mm or more, the larger the diameter of the stud, the more molten metal will be at the tip of the stud due to arc heat or resistance heat generation, and the molten metal will be moved by gravity during melting. Since the tendency of the molten metal to flow downward increases, defects such as insufficient reinforcement and undercuts occur above the welded part after solidification of the molten metal, making it impossible to obtain sufficient mechanical strength of the welded part.

そこで、直径16mm以上のスタツドを横向溶接す
る場合に、フエルールの被溶接物に接する側の円
周上の上部の略半周上にのみ溝を設けて溶接中に
発生するガスを放出させ、下方の略半周上には溝
を設けないで溶融金属の流出を防止しようとする
フエルールが提案されている。
Therefore, when horizontally welding studs with a diameter of 16 mm or more, a groove is provided only on the upper half of the circumference of the ferrule on the side that contacts the workpiece to release the gas generated during welding. A ferrule has been proposed that attempts to prevent the outflow of molten metal without providing a groove on approximately half the circumference.

しかし、フエルールの円周上に設けられている
溝は、本来、被溶接物に接する円周上に略等間隔
に設けられており、アーク発生中に生じるガスを
均等に放出させるようになつている。したがつ
て、上記のように円周上の略半分にしか溝を設け
ていないフエルールを使用して横向姿勢で溶接す
れば、溶融金属が下方の溝から流出することは防
ぐことができるが、発生ガスは上方にしか放出さ
れないために、下方のガスの放出が遅れ溶融金属
の凝固が始まり、その凝固した溶融金属中にガス
がとじこめられてその残留ガスが溶接部の気孔発
生の原因となつたり、下方の内圧の過渡的な上昇
によつてスパツターが発生したり、先端が溶融し
たスタツドを被溶接物に圧接するときの押し込み
量が不足したりして、安定した機械的強度が得ら
れにくい欠点があつた。
However, the grooves provided on the circumference of the ferrule were originally provided at approximately equal intervals on the circumference in contact with the workpiece, and were designed to evenly release the gas generated during arc generation. There is. Therefore, if welding is performed in a horizontal position using a ferrule that has grooves only on approximately half of its circumference as described above, it is possible to prevent molten metal from flowing out from the grooves below. Since the generated gas is released only upward, the release of the gas from below is delayed and the molten metal begins to solidify, and the gas is trapped in the solidified molten metal, and the residual gas causes porosity in the welded part. Stable mechanical strength may not be obtained due to sputtering caused by a transient increase in the internal pressure below, or insufficient pressure when pressing a stud with a molten tip to the workpiece. It had some serious flaws.

そこで、このような欠点を幾分でも減少させよ
うとして、フエルールの被溶接物に接する面の円
周上の下方の略半周上に、上半周上の溝の数より
少ない数の溝を設けたり、さらに本出願人がすで
に提案したように下方の略半周上の各溝の断面積
を上方の略半周上のそれよりも小さくしたフエル
ールを提案した。このような改良されたフエルー
ルにおいては上述した欠点のかなりの部分が除去
されてそれなりの効果を有していることは確かで
ある。しかしこれらの改良されたフエルールにお
いては、本質的に下方の略半周上の溝の断面積の
総和が上方の溝のそれよりも小さいために、発生
するガスが円周上の溝から均一に放出しないとい
う問題点は解決されていない。
Therefore, in an attempt to reduce these defects to some extent, a method is used in which a smaller number of grooves are provided on approximately the lower half of the circumference of the surface of the ferrule in contact with the object to be welded than the number of grooves on the upper half of the circumference. Furthermore, as previously proposed by the present applicant, a ferrule has been proposed in which the cross-sectional area of each groove on the lower half of the circumference is smaller than that of the groove on the upper half of the circumference. It is certain that such an improved ferrule eliminates a considerable portion of the above-mentioned drawbacks and has certain effects. However, in these improved ferrules, the sum of the cross-sectional areas of the grooves on the lower half of the circumference is essentially smaller than that of the upper grooves, so the generated gas is released uniformly from the grooves on the circumference. The problem of not doing so has not been resolved.

本考案は、溶接中に発生したガスを円周上から
均一に放出させること、発生したガスは圧力を有
しているので小断面積の溝からでも放出する性質
があるのに対して、溶融金属は表面張力によつて
流出を妨げる性質と重力によつて流出する性質と
があることを利用することによつて、フエルール
が横向姿勢で溶接するときの方向であつて、複数
個の溝が左右略対称になる位置を基準としたとき
に、円周面の下半周に設けられた溝の断面積を、
上半周に設けられた溝の断面積よりも小にして表
面張力が重力に打ち勝つて溶融金属の流出を防止
するとともに、下半周に設けられた溝の内周側の
断面積の総和を上半周に設けられた溝の円周側の
断面積の総和と同等又はそれ以上にすることによ
つて、発生ガスを円周上から略均一に放出させて
溶接欠陥の発生を防止するようにしたスタツド溶
接用磁器管を提供したものである。
The present invention aims to uniformly release the gas generated during welding from around the circumference, and since the generated gas has pressure, it has the property of being released even from grooves with a small cross-sectional area. By taking advantage of the fact that metal has the property of preventing metal from flowing out due to surface tension and the property of metal flowing out due to gravity, it is possible to weld the ferrule in a horizontal position with multiple grooves. The cross-sectional area of the groove provided on the lower half of the circumferential surface, based on the position where the left and right sides are approximately symmetrical, is
By making the cross-sectional area smaller than the cross-sectional area of the grooves provided on the upper half of the circumference, the surface tension overcomes gravity and prevents the molten metal from flowing out. A stud whose diameter is equal to or greater than the sum of the cross-sectional areas on the circumferential side of the grooves provided in the stud, so that the generated gas is released almost uniformly from the circumference, thereby preventing the occurrence of welding defects. It provides porcelain tubes for welding.

以下本考案の実施例について図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は一般的なフエルールの平面図であり、
第2図は第1図のイ−イ線断面矢視図であり、第
3図および第4図は、本考案のフエルールが被溶
接物に接する側の円周面すなわち第1図の裏面を
示す図である。第3図および第4図において符号
V−Vはフエルールの中心Oを通る鉛直線であ
り、H−Hはフエルールの中心Oを通る水平線で
あり、符号1乃至8および符号1乃至14は下半
周に設けられた溝であり、符号21乃至25は上
半周に設けられた溝であり、上半周に設けられた
溝21乃至25の内周側の各断面積は下半周に設
けられた溝1乃至8および溝1乃至14の内周側
の各断面積の2倍以上である。
Figure 1 is a plan view of a typical ferrule.
FIG. 2 is a cross-sectional view taken along the line A--A in FIG. FIG. In FIGS. 3 and 4, the symbol V-V is a vertical line passing through the center O of the ferrule, H-H is a horizontal line passing through the center O of the ferrule, and the symbols 1 to 8 and 1 to 14 are the lower half circumference. The grooves 21 to 25 are grooves provided in the upper half circumference, and the cross-sectional area of each inner circumferential side of the grooves 21 to 25 provided in the upper half circumference is equal to the groove 1 provided in the lower half circumference. It is more than twice the cross-sectional area of each of the inner peripheral sides of grooves 1 to 8 and grooves 1 to 14.

第3図において、下半周に設けられた溝1乃至
8の断面積を上半周に設けられた溝21乃至24
の断面積の例えば、1/2以下と小さくすることに
よつて、溶融金属の表面張力が重力に打ち勝つて
溶融金属の流出を防止するとともに、下半周に設
けられた溝の数は8ケであつて、上半周に設けら
れた溝の数4ケの2倍である。その結果、上半周
に設けられた溝の断面積の総和と下半周に設けら
れた溝の断面積の総和とは略同等になり、上半周
と下半周とにおいて発生したガスは、略均一に放
出されるので、均一な肉盛りおよび溶け込みが得
られる。
In FIG. 3, the cross-sectional area of grooves 1 to 8 provided on the lower half circumference is compared to that of grooves 21 to 24 provided on the upper half circumference.
By reducing the cross-sectional area to, for example, 1/2 or less, the surface tension of the molten metal overcomes gravity and prevents the molten metal from flowing out, and the number of grooves provided on the lower half of the circumference is 8. The number of grooves provided on the upper half of the circumference is twice as many as four. As a result, the sum of the cross-sectional areas of the grooves provided in the upper half circumference and the sum of the cross-sectional areas of the grooves provided in the lower half circumference are approximately equal, and the gas generated in the upper half circumference and the lower half circumference is approximately uniform. Since it is released, uniform filling and melting can be obtained.

第4図は、本考案のフエノールの第2の実施例
を示す。上記第3図の実施例においては、下半周
の溝の断面積の総和と上半周の溝の断面積の総和
とは略等しいが、下半周の溝の断面積が上半周の
それの1/2以下であつて溝内の単位断面積を通過
する発生ガスの抵抗が大であるために、下半周内
面に発生したガス圧が過渡的に大になりやすい。
そこで第4図に示すよう下半周に設けられた溝の
数を、下半周の溝の断面積の総和が上半周の溝の
断面積の総和よりも大になるように、積極的に増
加させることによつて、下半周内面のガス圧が過
渡的に上昇することを抑制することが望ましい。
同図において、上半周では略30゜ごとに21乃至
25の5個の溝が設けられているのに対して下半
周では、1乃至7及び8乃至14の合計14個の溝
がそれぞれ略10゜ごとに設けられている。上半周
の各溝の断面積を下半周の各溝のそれの約2.5倍
としても、下半周の溝の断面積の総和は、上半周
の溝の断面積の総和よりも大になつている。
FIG. 4 shows a second embodiment of the phenol of the present invention. In the embodiment shown in FIG. 3 above, the sum of the cross-sectional areas of the grooves in the lower half circumference and the sum of the cross-sectional areas of the grooves in the upper half circumference are approximately equal, but the cross-sectional area of the grooves in the lower half circumference is 1/1/1 that of the grooves in the upper half circumference. 2 or less and the resistance of the generated gas passing through the unit cross-sectional area in the groove is large, so the gas pressure generated on the inner surface of the lower half of the circumference tends to increase transiently.
Therefore, as shown in Figure 4, the number of grooves provided on the lower half circumference is actively increased so that the sum of the cross-sectional areas of the grooves on the lower half circumference is larger than the sum of the cross-sectional areas of the grooves on the upper half circumference. In particular, it is desirable to suppress a transient increase in the gas pressure on the inner surface of the lower half circumference.
In the figure, in the upper half of the circumference, 5 grooves 21 to 25 are provided approximately every 30 degrees, while in the lower half of the circumference, a total of 14 grooves, 1 to 7 and 8 to 14, are provided approximately 10 degrees each. It is set for each degree. Even if the cross-sectional area of each groove on the upper half circumference is approximately 2.5 times that of each groove on the lower half circumference, the sum of the cross-sectional areas of the grooves on the lower half circumference is larger than the sum of the cross-sectional areas of the grooves on the upper half circumference. .

また、第3図及び第4図に示されたフエルール
の外周に第1図の符号Pで示す突起を1ケ所又は
2ケ所設けることによつて、スタツドおよびフエ
ルールを溶接ガンに装着する場合に、断面積の小
なる下半周の溝が正確に下方になるように自動的
に位置決めすることができる。
Furthermore, by providing one or two protrusions indicated by the symbol P in FIG. 1 on the outer periphery of the ferrule shown in FIGS. 3 and 4, when the stud and ferrule are attached to a welding gun, It is possible to automatically position the groove on the lower half of the circumference, which has a small cross-sectional area, accurately downward.

以上のように、本考案のフエルールを使用して
大径のスタツドの横向溶接をしても、フエルール
の被溶接物に接触する円周面の下半周の各溝の断
面積を上半周の各溝の断面積よりも小さくして溶
融金属の表面張力が重力に打勝つて溶融金属の落
下流出を防止するとともに、上半周の溝の数を上
半周の溝の数よりも多くして、下半周に設けられ
た溝の断面積の総和を、上半周のそれと略同等ま
たは積極的に増加させることによつて、上半周か
らの発生ガスと下半周からの発生ガスを略均一に
放出させることができるので、良好な肉盛および
均一な溶け込みを得ることができ、実益が大であ
る。
As described above, even if the ferrule of the present invention is used to horizontally weld large-diameter studs, the cross-sectional area of each groove on the lower half of the circumferential surface that contacts the workpiece of the ferrule is The cross-sectional area of the grooves is made smaller to allow the surface tension of the molten metal to overcome gravity and prevent the molten metal from falling and flowing out. The total cross-sectional area of the grooves provided in the half circumference is approximately equal to that of the upper half circumference, or by actively increasing it, so that the gas generated from the upper half circumference and the gas generated from the lower half circumference are released almost uniformly. As a result, it is possible to obtain good overlay and uniform melting, which is of great practical benefit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、一般的なフエルールの平面図であ
り、第2図は第1図のイ−イ線断面矢視図であ
り、第3図および第4図は、本考案のフエルール
が被溶接物に接する側の内周面を示す図である。
Fig. 1 is a plan view of a general ferrule, Fig. 2 is a cross-sectional view taken along the line A--A in Fig. 1, and Figs. It is a figure which shows the inner peripheral surface of the side which contacts an object.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被溶接材に接する円周面の内周側と外周側とを
貫通する複数個の溝を設けたスタツド溶接用磁器
管において、前記磁器管が横向姿勢で溶接すると
きの方向であつて、前記複数個の溝が左右略対称
になる位置を基準としたときに、前記円周面の下
半周に設けられた溝の断面積が上半周に設けられ
た溝の断面積よりも小さく、かつ前記下半周に設
けられた溝の内周側の断面積の総和が前記上半周
に設けられた溝の内周側の断面積の総和と同等以
上であるスタツド溶接用磁器管。
In a stud welding porcelain tube provided with a plurality of grooves passing through the inner and outer circumferential sides of a circumferential surface in contact with the material to be welded, the direction when the porcelain tube is welded in a horizontal position, The cross-sectional area of the grooves provided on the lower half of the circumferential surface is smaller than the cross-sectional area of the grooves provided on the upper half of the circumferential surface, with reference to a position where the plurality of grooves are substantially symmetrical on the left and right sides, and A porcelain tube for stud welding, wherein the sum of the cross-sectional areas on the inner circumferential side of the grooves provided on the lower half circumference is equal to or greater than the sum of the cross-sectional areas on the inner circumferential side of the grooves provided on the upper half circumference.
JP13259880U 1980-09-17 1980-09-17 Expired JPS6310220Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13259880U JPS6310220Y2 (en) 1980-09-17 1980-09-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13259880U JPS6310220Y2 (en) 1980-09-17 1980-09-17

Publications (2)

Publication Number Publication Date
JPS5756578U JPS5756578U (en) 1982-04-02
JPS6310220Y2 true JPS6310220Y2 (en) 1988-03-25

Family

ID=29492828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13259880U Expired JPS6310220Y2 (en) 1980-09-17 1980-09-17

Country Status (1)

Country Link
JP (1) JPS6310220Y2 (en)

Also Published As

Publication number Publication date
JPS5756578U (en) 1982-04-02

Similar Documents

Publication Publication Date Title
US2719210A (en) Method of welding thin walled tubes from a single side
JPS6310220Y2 (en)
JPS6310219Y2 (en)
US3503631A (en) Brazed joints
US3934107A (en) Process for repairing slag ladles
JPH049276A (en) Production of tank for liquid
CA1110036A (en) Repair of bottle top moulds
JPH0216874Y2 (en)
EP1156278A1 (en) Fire-resistant structural body supporting metal bar for protection of water pipe
JPS58209486A (en) Welding method of copper to iron or steel
JP5594512B2 (en) Lower nozzle brick and sealing method using the same
KR102209800B1 (en) Brazing joint method for pipes
JPH09271992A (en) Backing material for t-joint
JP3546483B2 (en) Method of strengthening local heat resistance for cast iron and welding wire used therefor
JPS6037191Y2 (en) Sliding type dowel for welding
KR102625066B1 (en) The method of butt welding
EP0244436A1 (en) Root insert and method for welding
JPS6125464B2 (en)
JPH09227929A (en) Immersion tube for molten steel
KR20220002462U (en) Ferrule for horizontal stud welding
JPS591064A (en) Uranami welding of fixed tube
JPS62110864A (en) Brazing method
JPH057115B2 (en)
JPH06269933A (en) Method for welding edge of thin plate
JP2520150B2 (en) Ceramics lined container for molten metal