JPS599236B2 - High heat defluoridation wastewater treatment method - Google Patents

High heat defluoridation wastewater treatment method

Info

Publication number
JPS599236B2
JPS599236B2 JP52041109A JP4110977A JPS599236B2 JP S599236 B2 JPS599236 B2 JP S599236B2 JP 52041109 A JP52041109 A JP 52041109A JP 4110977 A JP4110977 A JP 4110977A JP S599236 B2 JPS599236 B2 JP S599236B2
Authority
JP
Japan
Prior art keywords
water
treatment
fluorine
wastewater
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52041109A
Other languages
Japanese (ja)
Other versions
JPS53130853A (en
Inventor
清 小松
信子 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP52041109A priority Critical patent/JPS599236B2/en
Publication of JPS53130853A publication Critical patent/JPS53130853A/en
Publication of JPS599236B2 publication Critical patent/JPS599236B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明はふっ素含有廃水の処理方法に係り、特にふっ素
の高度除去が可能な廃水処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating fluorine-containing wastewater, and particularly to a method for treating wastewater that can remove fluorine to a high degree.

公害問題の深刻化にともない、各独廃水の浄化が希求さ
れている。
As pollution problems become more serious, there is a need for purification of wastewater in each country.

アルミニウム製錬工業等から排出されるふっ素含有廃水
についても、ふっ素(イオン)の排出を可及的に減少せ
しめることか必要でありかつ望ましいことは云うまでも
ない。
It goes without saying that it is necessary and desirable to reduce the emission of fluorine (ions) as much as possible with respect to fluorine-containing wastewater discharged from aluminum smelting industries and the like.

現在、廃水中のふっ素イオンの排出規準は全国一律1
5 ppm以下であり、一部地方自治体において上のせ
規準8 ppm以下を採用している程度である。
Currently, the discharge standard for fluoride ions in wastewater is uniform nationwide.
5 ppm or less, and some local governments have adopted an upper standard of 8 ppm or less.

しかしながら、今後は総量規制の導入が図られる見込み
であり、一層厳しい規制へと進むことが予想されている
However, it is expected that total volume regulations will be introduced in the future, and regulations are expected to become even stricter.

従来よりふっ素含有廃水の処理方法として各種の方法が
知られている。
Various methods have been known for treating fluorine-containing wastewater.

例えは、(イ)酸化カルシウム、水酸化カルシウムある
いは炭酸カルシウム等のカルシウム塩で代表されるカル
シウム化合物を廃水中に添加し、含有ふっ素イオンをぶ
つ化カルシウムに転化させて沈殿除去する方法、(口)
硫酸アルミニウム等のアルミニウム塩やアルギン酸ナト
リウム等で代表される凝集剤を廃水中に添加し、含有ふ
っ素イオンを凝集除去する方法、(ハ)カルシウム塩と
りん酸塩を廃水中に添加し、含有ふっ素イオンを固定し
て除去する所謂アパタイト処理法、(ニ)イオン交換樹
脂を用いる処理によりふっ素イオンを除去する方法等が
広く試みられている。
For example, (a) a method in which a calcium compound represented by calcium salts such as calcium oxide, calcium hydroxide, or calcium carbonate is added to wastewater to convert the contained fluoride ions into calcium oxide and precipitate and remove the )
A method in which flocculants such as aluminum salts such as aluminum sulfate and sodium alginate are added to the wastewater to coagulate and remove the fluorine ions contained in the wastewater; (c) a method in which calcium salts and phosphates are added to the wastewater to remove the fluorine ions contained A so-called apatite treatment method in which ions are fixed and removed, and (iv) a method in which fluorine ions are removed by treatment using an ion exchange resin have been widely tried.

しかしながら、(イ)の方法は多量のふっ素イオンを含
有する廃水を処理する場合には有効であっても、ふっ素
濃度を1 5 ppm以下に処理することは困難であり
、また(口)の方法はふっ素濃度を8 ppm以下に処
理することは困難である上に、汚泥発生量が多量でかつ
脱水性が悪い等の欠点を有している。
However, although method (a) is effective when treating wastewater containing a large amount of fluoride ions, it is difficult to reduce the fluorine concentration to 15 ppm or less, and method (a) It is difficult to reduce the fluorine concentration to 8 ppm or less, and it also has drawbacks such as a large amount of sludge generated and poor dewatering properties.

さらに、(/→の方法は処理効果はよいが、りん酸の添
加量を必要最少量、すなわち理論上のモル比であるCa
”:PO! :F =5:3:1を満す量に保った場
合でも、処理水中に多量のりん酸イオンが残存してくる
ためその処理が問題となるはかりでなく、薬品コストも
高い等の欠点があり、また(ニ)の方法はふっ素イオン
に対するイオン交換樹脂の選択性が低いため処理効果が
劣る等の欠点が避けられなかった。
Furthermore, although the method (/→) has a good treatment effect, the amount of phosphoric acid added is the minimum necessary amount, that is, the theoretical molar ratio of Ca
”:PO!: Even if the amount is maintained at a level that satisfies the ratio of 5:3:1, a large amount of phosphate ions will remain in the treated water, so the treatment is not a problem, and the chemical costs are high. In addition, method (d) inevitably has disadvantages such as poor treatment effects due to the low selectivity of the ion exchange resin to fluorine ions.

本発明の目的は、前記従来技術の欠点を克服し、二次公
害をともなうことなくふっ素の高度除去を達成可能なふ
っ素含有廃水の処理方法を提供するにある。
An object of the present invention is to provide a method for treating fluorine-containing wastewater that overcomes the drawbacks of the prior art and can achieve a high degree of fluorine removal without secondary pollution.

前記目的を達成するため、本発明は、ふっ素含有廃水を
(1)PHIO〜12に調整した後水溶性カルシウム化
合物を添加し、生成するぶつ化カルシウム含有沈殿物を
分離除去し、然して得られる澄水をPH4〜7に調整し
て一次処理水を得る工程と、(2)一次処理水を逆浸透
圧処理に賦してふっ素イオンを含む濃縮水と透過水とに
分離し、然る後透過水をPH6〜8に調整して二次処理
水を得る工程と、(3)二次処理水を脱炭酸処理して三
次処理水を得る工程と、(4)三次処理水を活性アルミ
ナ充填帯中に通す工程により順次処理することを特徴と
する。
In order to achieve the above object, the present invention adjusts fluorine-containing wastewater to (1) PHIO ~ 12, then adds a water-soluble calcium compound, separates and removes the produced calcium-bubbly-containing precipitate, and clears the resulting clear water. (2) subjecting the primary treated water to reverse osmosis treatment to separate it into concentrated water containing fluorine ions and permeated water; (3) Decarbonating the secondary treated water to obtain tertiary treated water; (4) Injecting the tertiary treated water into an activated alumina-filled zone. It is characterized by sequential processing through the process of passing through.

本発明において、処理の対象となるふっ素含有廃水はふ
っ素の除去を必要とする限り各種の廃水を広く意味する
In the present invention, fluorine-containing wastewater to be treated broadly refers to various types of wastewater as long as fluorine needs to be removed.

前記PH調整後の廃水に添加′する水溶性カルシウム化
合物は、かかる意味で知られるカルシウム化訃物であれ
ば特に制限はないが、安価かつ入手が容易な消石灰〔C
a(OH)2〕が特に好ましい。
The water-soluble calcium compound added to the wastewater after the pH adjustment is not particularly limited as long as it is a known calcified carcass, but slaked lime [C
a(OH)2] is particularly preferred.

水容性カルシウム化合物の添加量は、廃水中のふっ素濃
度を基準にして10倍程度でよい。
The amount of water-soluble calcium compound added may be about 10 times the fluorine concentration in wastewater.

前記水溶性カルシウム化合物の添加により、廃水中の大
部分、一般に80係程度のふっ素がぶつ化カルシウムに
転化沈殿する。
By adding the water-soluble calcium compound, most of the fluorine in the wastewater, generally about 80%, is converted into calcium fluoride and precipitated.

該沈殿物の除去は、公知の分離方法、例えは遠心分離、
デカンテーション等により行なえばよい。
The precipitate can be removed by known separation methods, such as centrifugation,
This may be done by decantation or the like.

沈殿物除去後の澄水は、次工程の処理に好適なPH4−
・・7に調整ざれる(一次処理水)。
The clear water after removing the precipitate has a pH of 4-, which is suitable for the next step.
...Adjusted to 7 (primary treated water).

該PH調整は、一般に塩酸等の鉱酸を添加することによ
り好適に行ない得る。
The pH adjustment can generally be carried out suitably by adding a mineral acid such as hydrochloric acid.

一次処理水の逆浸透圧処理は、一次処理水を公知の逆浸
透圧装置中に通すことにより行ない得る。
Reverse osmosis treatment of the primary treated water can be carried out by passing the primary treated water through a known reverse osmosis device.

該処理により、一次処理水はふっ素イオン、りん酸イオ
ン等の活性アルミナ吸着妨害イオン及び塩類等の濃縮さ
れた濃縮水と透過水に分離される。
Through this treatment, the primary treated water is separated into permeated water and concentrated water in which ions such as fluorine ions and phosphate ions that interfere with the adsorption of active alumina and salts are concentrated.

濃縮水は、好ましくは既述した水溶性カルシウム化合物
の添加工程に返送されて再度同様に処理される。
The concentrated water is preferably returned to the water-soluble calcium compound addition step described above and treated in the same manner again.

一方、透過水は、次工程の処理に好適なPH6〜8に調
整される(二次処理水)。
On the other hand, the permeated water is adjusted to pH 6 to 8, which is suitable for the next process (secondary treated water).

該PH調整は、鉱酸、例えば硫酸あるいはアルカリ′剤
、例えば苛性ソーダを添加することにより行ない得る。
The pH adjustment can be carried out by adding mineral acids such as sulfuric acid or alkaline agents such as caustic soda.

前記処理の結果、二次処理水中のふっ素量は、一般に一
次処理水中のふっ素量の1/4程度に減少する。
As a result of the above treatment, the amount of fluorine in the secondary treatment water is generally reduced to about 1/4 of the amount of fluorine in the primary treatment water.

二次処理水中には、炭酸イオンを主体とする活性アルミ
ナ吸着妨害イオンが含まれているため、次工程の処理を
好適に好なう必要上その除去が必要となる。
The secondary treatment water contains ions, mainly carbonate ions, that interfere with the adsorption of activated alumina, and therefore their removal is necessary in order to suitably perform the treatment in the next step.

該除去は、二次処理水を公知の脱炭酸装置で処理するこ
とにより達成される(三次処理水)。
This removal is achieved by treating the secondary treated water with a known decarboxylation device (tertiary treated water).

活性アルミナの吸着(選択)順位はOH >PO4”>
>F>Fe(CN6)4 ,Cro42>S 04’
)Fe ( CNa ) 3−、CrO72》CN−〉
NO3一’:AMnO4 >C1304− となる。
The adsorption (selection) order of activated alumina is OH >PO4''>
>F>Fe(CN6)4, Cro42>S 04'
)Fe (CNa) 3-, CrO72》CN-〉
NO3':AMnO4>C1304-.

したかってPO43−は活性アルミナにおけるフッ素の
吸着に対し妨害イオンになる。
Therefore, PO43- becomes an ion that interferes with the adsorption of fluorine in activated alumina.

またHCO3−、C0327も同様に活性アルミナにお
けるフッ素の吸着に対し妨害イオンとなる。
Similarly, HCO3- and C0327 become ions that interfere with the adsorption of fluorine in activated alumina.

PO43−は逆浸透圧処理により除去されるので三次処
理水を得る工程では脱炭酸処理によりHCO3’− 、
CO32一等の妨害イオンを除去するものである。
Since PO43- is removed by reverse osmosis treatment, HCO3'-, HCO3'-,
This removes interfering ions such as CO32.

三次処理水は、公知の接触通水手法に従い、活性アルミ
ナ充填帯中に通すことにより行ない得る。
The tertiary treated water can be carried out by passing it through an activated alumina packed zone according to known catalytic water passage techniques.

かかる通水処理により、ふっ素濃度1ppm以下の処理
水を得ることが可能となる。
This water flow treatment makes it possible to obtain treated water with a fluorine concentration of 1 ppm or less.

なお、前記活性アルミナ自体の性能に起因するかあるい
は通水を継続することにより、活性アルミナのふっ素吸
着能が徐々に低下して処理目標値例である1 ppmを
越える場合には、活性アルミナを再生処理すればよい。
In addition, if the fluorine adsorption ability of activated alumina gradually decreases and exceeds the treatment target value of 1 ppm due to the performance of the activated alumina itself or due to continued water flow, the activated alumina should be replaced. All you have to do is play it back.

該再生処理は、活性アルミナ充填帯中に処理剤、例えば
硫酸等の鉱酸、苛性ソーダ等のアルカリ剤や硫酸アルミ
ニウム等の水溶液を通水した後水洗することにより容易
に行ない得る。
The regeneration treatment can be easily carried out by passing a treatment agent such as a mineral acid such as sulfuric acid, an alkaline agent such as caustic soda, or an aqueous solution such as aluminum sulfate through the activated alumina packed zone, followed by washing with water.

前記処理剤の通水は、例えばSV5 hr ” 、1
時間、また水洗はSV60hr’ 、1時間程度で十分
である。
The water flow of the treatment agent is, for example, SV5 hr'', 1
It is sufficient to wash with water at SV60hr' for about 1 hour.

水洗に際しては、予め活性アルミナ充填帯で処理された
三次処理水を用いることも可能である。
When washing with water, it is also possible to use tertiary treated water that has been previously treated with an activated alumina filling zone.

再生処理剤廃液及び水洗廃液は、好ましくは既述した水
浴性カルシウムの添加工程に返送される。
The regeneration treatment agent waste liquid and the washing waste liquid are preferably returned to the water bath calcium addition step described above.

以北は、主として1個の活性アルミナ充填帯(以下、充
填帯と称することがある)を用いる場合について説明し
たが、本発明の好適態様例においては、2個以上の充填
帯を並列に用いて切替え運転することも可能である。
Hereinafter, the case where one activated alumina filling zone (hereinafter sometimes referred to as a filling zone) is mainly used has been explained, but in a preferred embodiment of the present invention, two or more filling zones are used in parallel. It is also possible to perform switching operation.

例えは、2個の充填帯を用いる場合について説明すると
、一方の充填帯が既述の処理目標値に達したところで他
方の充填帯へ通水を切り替え、前者の充填帯については
前述の活性アルミナ再生処理を実施する。
For example, when two packed zones are used, when one packed zone reaches the treatment target value described above, water flow is switched to the other packed zone, and the former filled zone is filled with activated alumina as described above. Perform regeneration processing.

次いで、後者の充填帯が処理目標値に達したところで前
者の充填帯へ通水を切り替え、以下同様にして活性アル
ミナの再生処理と通水の切替えを繰り返せばよい。
Next, when the latter filling zone reaches the treatment target value, the water flow is switched to the former filling zone, and the activated alumina regeneration process and the water flow switching are repeated in the same manner.

本発明によれは、後記実施例からも明らかなように、廃
水処理に際して、二次公害の心配もなくふっ素の高度除
去を達成できるという著効が得られる。
As is clear from the Examples described later, the present invention has the remarkable effect of achieving a high degree of fluorine removal without worrying about secondary pollution during wastewater treatment.

実施例 第1表に示す3種の廃水試料について、それぞれ以下の
処理を実施した。
Example The following treatments were carried out for each of the three types of wastewater samples shown in Table 1.

一次処理:試料に苛性ソーダを添加してPHを11に調
整し、次いで消石灰を添加した。
Primary treatment: Caustic soda was added to the sample to adjust the pH to 11, and then slaked lime was added.

生成するぶつ化カルシウム含有沈殿物を分離し、然して
得られる澄水に塩酸を添加してPHを7に調整した。
The resulting calcium-bubbly-containing precipitate was separated, and the pH was adjusted to 7 by adding hydrochloric acid to the resulting clear water.

二次処理二一次処理水を内圧式チューブラの逆浸透圧装
置により運転圧5 0 Ky,/cx”にて処理し、そ
の透過水に苛性ソーダを添加してPHを7に調整した。
Secondary Treatment 2 The primary treated water was treated with an internal pressure type tubular reverse osmosis device at an operating pressure of 50 Ky,/cx'', and the pH was adjusted to 7 by adding caustic soda to the permeated water.

三次処理二二次処理水を内筒竪型開放型の脱炭酸塔にL
V1 0m/hrで通水した。
Tertiary treatment Secondary treatment water is sent to an inner cylinder vertical open type decarbonation tower L
V1 Water was passed at a rate of 0 m/hr.

最終処理:活性アルミナ(水沢化学製ネオビードD−3
)を2m層高まで充填塔に充填し、硫酸アルミニウム5
係溶液を用いてSV5hr’ で1時間再生し、次いで
SV30hr−1で1時間水洗した活性アルミナ充填塔
に、三次処理水をSV5hr−1で通水した。
Final treatment: Activated alumina (Neobead D-3 manufactured by Mizusawa Chemical Co., Ltd.
) was packed into a packed tower to a height of 2 m, and aluminum sulfate 5
The tertiary treated water was passed through an activated alumina packed column which had been regenerated using the related solution at SV5hr' for 1 hour and then washed with water at SV30hr-1 for 1 hour, at SV5hr-1.

前記各処理段階の処理水につき、ふっ素濃度を求めたと
ころ第2表の結果を得た。
When the fluorine concentration was determined for the treated water at each treatment stage, the results shown in Table 2 were obtained.

なお仝表中、最終処理水の値は通水倍量300倍の値で
ある。
In the table, the value of the final treated water is 300 times the water flow rate.

第2表から、本発明による場合には1 1)I)m以下
のふっ素濃度を容易に達成できること(最終処理水参照
)、しかもこれらの値は後記比較例からも明らかなよう
に、従来法と比べて格段にすぐれた値であることが理解
される。
Table 2 shows that in the case of the present invention, it is possible to easily achieve a fluorine concentration of 1. It can be seen that this value is much better than that of .

比較例 実施例で用いた3種の廃水試料について、それぞれ以下
の処理を実施した。
Comparative Example The three types of wastewater samples used in the example were each subjected to the following treatments.

(イ)カルシウム化合物添加処理: 試料に苛性ソーダ
を添加してPHを11に調整し、次いで消石灰を2,0
0 0ppm添加した後生成するぶつ化カルシウム含
有沈殿物を分離した。
(a) Calcium compound addition treatment: Add caustic soda to the sample to adjust the pH to 11, then add slaked lime to 2.0
The precipitate containing calcium oxide formed after the addition of 0.00 ppm was separated.

(口)アルミニウム塩添加処理: 試料に硫酸アルミニ
ウムを2,0 0 0 ppm添加し、生成する沈殿物
を分離した。
(Example) Aluminum salt addition treatment: 2,000 ppm of aluminum sulfate was added to the sample, and the resulting precipitate was separated.

(ハ)アパクイト処理: 試料に硫酸(試料/I61及
び3)または苛性ソーダ(試料/I62)を添加してP
Hを7に調整し、次いでCa2+を2,0 0 0pp
m , PO4 ”一を3,0 0 0 ppmそれぞ
れ添加し、然して生成する沈殿物を分離した。
(c) Apaquite treatment: Add sulfuric acid (sample/I61 and 3) or caustic soda (sample/I62) to the sample to treat P.
Adjust H to 7, then Ca2+ to 2,000pp
3,000 ppm of M and PO4'' were added, and the resulting precipitate was separated.

(ニ)イオン交換樹脂処理: イオン交換樹脂(三菱化
成製SKIOA)を苛性ソーダ10係溶液で再生した後
水洗したものに試料をSV20hr1で通水した。
(d) Ion exchange resin treatment: An ion exchange resin (SKIOA, manufactured by Mitsubishi Kasei) was regenerated with a 10 part solution of caustic soda and then washed with water, and the sample was passed through water at an SV of 20 hours.

前記各処理水につき−,ふっ素濃度を求めたところ第3
表の結果を得た。
When the fluorine concentration was determined for each of the treated water, the third
Obtained the results in the table.

なお、仝表中、(ニ)の値は通水倍量50倍の値である
Note that in the table, the value (d) is the value 50 times the water flow rate.

Claims (1)

【特許請求の範囲】[Claims] 1 ふっ素含有廃水を(A)PHIO〜12に調整した
後水溶性カルシウム化合物を添加し、生成するぶつ化カ
ルシウム含有沈澱物を分離除去し、然して得られる澄水
をPH4〜7に調整して一次処理水を得る工程み、(B
)一次処理水を逆浸透圧処理に賦してふっ素イオンを含
む濃縮水と透過水とに分離し、然る後透過水をPH6〜
8に調整して二次処理水を得る工程と、(C)二次処理
水を脱炭酸処理して三次処理水を得る工程と、(旬三次
処理水を活性アルミナ充填帯中に通す工程により順次処
理することを特徴とする高度脱ふっ素廃水処理法。
1. After adjusting the fluorine-containing wastewater to (A) PHIO ~ 12, add a water-soluble calcium compound, separate and remove the resulting precipitate containing calcium oxides, and adjust the resulting clear water to pH 4 ~ 7 for primary treatment. The process of obtaining water (B
) The primary treated water is subjected to reverse osmosis treatment to separate it into concentrated water containing fluorine ions and permeated water, and then the permeated water has a pH of 6~
(C) decarbonating the secondary treated water to obtain tertiary treated water; (C) passing the tertiary treated water through an activated alumina-filled zone An advanced defluoridation wastewater treatment method that is characterized by sequential treatment.
JP52041109A 1977-04-11 1977-04-11 High heat defluoridation wastewater treatment method Expired JPS599236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52041109A JPS599236B2 (en) 1977-04-11 1977-04-11 High heat defluoridation wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52041109A JPS599236B2 (en) 1977-04-11 1977-04-11 High heat defluoridation wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS53130853A JPS53130853A (en) 1978-11-15
JPS599236B2 true JPS599236B2 (en) 1984-03-01

Family

ID=12599297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52041109A Expired JPS599236B2 (en) 1977-04-11 1977-04-11 High heat defluoridation wastewater treatment method

Country Status (1)

Country Link
JP (1) JPS599236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591170B2 (en) * 2004-11-15 2010-12-01 パナソニック株式会社 Fluorine-containing water treatment equipment
JP5692278B2 (en) * 2013-04-25 2015-04-01 栗田工業株式会社 Method and apparatus for treating fluoride-containing water
SG11201609957RA (en) * 2014-06-26 2017-01-27 Kurita Water Ind Ltd Method and device for treating fluoride-containing water

Also Published As

Publication number Publication date
JPS53130853A (en) 1978-11-15

Similar Documents

Publication Publication Date Title
US2155318A (en) Processes for the deacidification of liquids, especially water
US2004257A (en) Purification of water by zeolites
JP2005193167A (en) Drainage purification method and purification method
JPH0512040B2 (en)
JPS599236B2 (en) High heat defluoridation wastewater treatment method
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP3942235B2 (en) Method for treating boron-containing water
JP4543482B2 (en) Fluorine-containing water treatment method
SU1722566A1 (en) Method of regeneration of anionite filter of desalination plant
RU2226177C2 (en) Method of sorption recovery of uranium from solutions and pulps
JPS5830387A (en) Treatment of waste water containing amines
JP2001276814A (en) Treatment method of drain containing fluorine and/or boron
JPS59199097A (en) Disposal of waste cement slurry
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
SU835956A1 (en) Method of producing granulated alumosilicate adsorbent
RU2815146C1 (en) Method for treating terephthalic acid production wastewater from cobalt, manganese and bromine ions
SU1122620A1 (en) Method for purifying natural effluents
JPS5924669B2 (en) Treatment method for wastewater containing heavy metals
RU2074122C1 (en) Method of thermally desalting water
SU1032810A1 (en) Method of producing rare metals
JP2003047972A (en) Method for treating fluorine-containing wastewater
JPS6230596A (en) Method for treating fluorine in waste water
SU1186577A1 (en) Method of ion exchanger recovery
JPS591396B2 (en) How to treat water containing boron and COD
SU664330A1 (en) Method for filtering liquors during purification of natural waters and effluents