JPS5992336A - Realizing device for fixed point of temperature - Google Patents

Realizing device for fixed point of temperature

Info

Publication number
JPS5992336A
JPS5992336A JP20281682A JP20281682A JPS5992336A JP S5992336 A JPS5992336 A JP S5992336A JP 20281682 A JP20281682 A JP 20281682A JP 20281682 A JP20281682 A JP 20281682A JP S5992336 A JPS5992336 A JP S5992336A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
temperature
fixed
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20281682A
Other languages
Japanese (ja)
Inventor
Koichi Nara
奈良 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20281682A priority Critical patent/JPS5992336A/en
Publication of JPS5992336A publication Critical patent/JPS5992336A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure quantitatively the magnetic field in the space where a sample is present when the sample becomes superconduction by utilizing the sample at a fixed point of temperature itself as a magnetic field sensor. CONSTITUTION:The device consists of fixed-point samples 1, 2, and 3, a superconductor 4 wound around the samples to constitute a superconductive loop having higher transition temperature than the fixed-point samples, a switch 5, and a coil 6 coupled with a superconductive quantum interference element. Magnets 7 and 8 are arranged outside of the device. The switch 5 is turned on when the fixed-point samples 1, 2, and 3 are in normal conduction states to cool the samples. When the sample 1 becomes superconduction firstly at the transition temperature, the magnetic flux in the space where the sample 1 is present is dischrged, but the magnetic flux in the superconduction loop is unchanged, so the discharged magnetic flux is transferred to the coil 6 and detected by a fluxmeter coupled with the coil. The temperature at which its variation is detected is the transition temperature of the sample 1 and the extent of the variation is proportional to the magnetic flux where the sample 1 is present.

Description

【発明の詳細な説明】 最近IK以下の温度定点は超伝導体の超伝導転移により
実現されるのが一般的になってきた。しかし、その再現
性は依然1mK程度しかなく不十分な状態に留まってい
る。
DETAILED DESCRIPTION OF THE INVENTION Recently, it has become common to realize a fixed temperature point below IK by superconducting transition of a superconductor. However, the reproducibility is still only about 1 mK, which is still insufficient.

その再現性の感歪の原因は残留磁場によるものと推定さ
れるが、高感度の磁場センサーと温度定点素子をごく近
傍で同時に機能させる事が不可能である為に、改善の見
通しは立っていない。
The cause of the distortion in reproducibility is presumed to be due to the residual magnetic field, but since it is impossible to have a highly sensitive magnetic field sensor and temperature fixed point element function simultaneously in close proximity, there is no prospect of improvement. do not have.

本発明は温度定点の試料そのものを磁界センサーとして
も利用する事により、試料が超伝償市珈”τにるまさに
その時にその試料の存在する空間の磁界本発明の温度定
点実現装置を用いて高い−(現性で温度定点を実現する
際の構成は、ある温度で超伝導状態となる温度定点物質
とその周囲に巻かれた定点物質よりも高い転移温度を持
つ超伝導線。
The present invention uses the sample itself at a temperature fixed point as a magnetic field sensor, so that the magnetic field in the space where the sample exists just when the sample reaches the superconductor temperature τ using the temperature fixed point realizing device of the present invention. High - (The configuration used to realize a temperature fixed point is a temperature fixed point material that becomes superconducting at a certain temperature, and a superconducting wire that has a higher transition temperature than the fixed point material wrapped around it.

及び超伝導ループを構成するスイッチと、同じく超伝導
ループを構成し5QLJID(超伝導量子干渉素子)に
代表される磁束計に結合されているコイルである。特に
零磁場中での温度定点が必要でる あれば磁場を加え実装置を付加する。
and a switch that constitutes a superconducting loop, and a coil that also constitutes a superconducting loop and is coupled to a magnetometer typified by a 5QLJID (superconducting quantum interference device). In particular, if a fixed temperature point in a zero magnetic field is required, a magnetic field is applied and an actual device is added.

本発明の原理は定点物質が超伝導になる際に。The principle of the present invention is when a fixed point substance becomes superconducting.

その物質から磁場が排出されること(マイスナー効果)
に依っている。本発明の温度定点実現装置を用いれば、
転移温度に於て定点物質から排出された磁束を超伝導ル
ープの働きで、ループの一部をなすコイルに結合した磁
束計により階定する事ができる。この測定により、その
定点物質の転移温度と、その転移の際定点物質が存在し
た空間の残留磁界の大きさを同時に知る事ができ、残留
磁界の影響に対する補正を正確に行う事が可能となる。
The magnetic field is emitted from the substance (Meissner effect)
It depends on If the temperature fixed point realizing device of the present invention is used,
The magnetic flux emitted from a fixed point material at the transition temperature can be determined by the action of a superconducting loop using a magnetometer connected to a coil that forms part of the loop. Through this measurement, it is possible to simultaneously know the transition temperature of the fixed point material and the magnitude of the residual magnetic field in the space where the fixed point material existed during the transition, making it possible to accurately compensate for the effects of the residual magnetic field. .

また、磁界が0となるように磁場を加えて残留磁場を打
ち消し、残留磁場が極めて小さい状況下で超伝導転移を
実現させる事も可能となる。
Furthermore, it is also possible to cancel the residual magnetic field by applying a magnetic field so that the magnetic field becomes 0, thereby realizing superconducting transition in a situation where the residual magnetic field is extremely small.

本発明の実施例は第1図にある如く定点試料1゜2.3
及び定点試料よりも高い転移温度をもつ超伝導ループを
構成する。試料に巻いた超伝導線4゜スイッチ5,5Q
UIDに結合しているコイル6により構成されている。
The embodiment of the present invention uses a fixed point sample of 1°2.3 as shown in FIG.
and constitute a superconducting loop with a higher transition temperature than the fixed point sample. Superconducting wire 4° switch 5, 5Q wrapped around the sample
It consists of a coil 6 coupled to the UID.

その外側にマグネット7゜8を配置する。A magnet 7°8 is placed outside of it.

まず定点試料1,2.3が常伝導状態の時にスイッチ5
を入れて試料を冷却する。転移温度で1がまず超伝導と
なると、■の存在した空間の磁束が排出されるが、超伝
導ループ中の磁束は変化しないのでその排出された磁束
はコイル6に移され。
First, when the fixed point samples 1, 2.3 are in the normal conduction state, switch 5
to cool the sample. When 1 first becomes superconducting at the transition temperature, the magnetic flux in the space where ■ existed is discharged, but the magnetic flux in the superconducting loop does not change, so the discharged magnetic flux is transferred to the coil 6.

そのコイルに結合する磁束計によって第2図の如く検出
される。その変化が検出された温度が試料1の転移温度
であり、その変化の大きさは試料1の存在した場所の磁
界に比例する。このように試料1の存在した磁界の大き
さを直接知ることができるので、定点温度に対し正確な
補正を行う事が可能となる。
It is detected as shown in FIG. 2 by a magnetometer coupled to the coil. The temperature at which the change is detected is the transition temperature of the sample 1, and the magnitude of the change is proportional to the magnetic field at the location where the sample 1 is present. Since the magnitude of the magnetic field in the sample 1 can be directly known in this way, it is possible to accurately correct the fixed point temperature.

また一方で以下の手順を行えば磁界を打ち消した状況下
で、零磁場中ての転移を観測する事もできる。それには
上記の測定を行って磁界を測定した後に温度を上げて試
料1を常伝導に戻し、磁界を打ち消すだけの磁界をマグ
ネット8により印加した後スイッチ5を切る。これで1
の場所における磁界はOに極めて近くなったことになる
。スイッチ5を入れた後冷却するが、零磁場中では第2
図のような信号はあられれないので、転移温度を知るた
めにもう一つのマグネット9を用いて極く微弱な交流磁
界を印加する。その交流磁界は超伝導ループの働きで磁
束計に検知されて交流信号が得られ、その信号は第3図
のように超伝導転移で振幅が変化する。これによって転
移温度を知る事ができる。この場合残留磁場が何らかの
原因であられれれば出力の転移温度における変化には第
2図のような直流成分が重畳され、第4図のような出力
が得られる。そのために、すぐに残留磁場の存在を知る
事ができ、常に零磁場での転移点を決定する事ができる
のである。
On the other hand, by following the steps below, it is also possible to observe transitions in a zero magnetic field in a situation where the magnetic field is canceled out. To do this, after performing the above measurements and measuring the magnetic field, the temperature is raised to return the sample 1 to normal conduction, and after a magnetic field sufficient to cancel the magnetic field is applied by the magnet 8, the switch 5 is turned off. This is 1
The magnetic field at the location becomes extremely close to O. After turning on the switch 5, it is cooled down, but in the zero magnetic field, the second
Since the signal shown in the figure cannot be obtained, another magnet 9 is used to apply a very weak alternating magnetic field to find the transition temperature. The alternating magnetic field is detected by a magnetometer through the action of a superconducting loop, and an alternating current signal is obtained, and the amplitude of this signal changes due to the superconducting transition, as shown in Figure 3. This allows us to know the transition temperature. In this case, if the residual magnetic field is caused by some reason, a DC component as shown in FIG. 2 will be superimposed on the change in the transition temperature of the output, and an output as shown in FIG. 4 will be obtained. Therefore, the existence of a residual magnetic field can be immediately known, and the transition point at zero magnetic field can always be determined.

この様に本発明により定点試料の転移温度に対する残留
磁場の影響を正確に補正できるばかりでなく、定点試料
を極めて残留磁場の小さい空間で超伝導に転移させる事
も可能となり、その際常に残留磁界の大きさを確認しつ
づける事が容易である。このように本発明によって現在
の温度定点の再現性を大きく向上させる事ができる。
In this way, the present invention not only makes it possible to accurately correct the influence of the residual magnetic field on the transition temperature of a fixed-point sample, but also makes it possible to transition the fixed-point sample to superconductivity in a space with an extremely small residual magnetic field, and in this case, the residual magnetic field is always It is easy to keep checking the size of As described above, the present invention can greatly improve the reproducibility of the current temperature fixed point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の構成図、第2図、第3図及び第4図は
特性を示す線図。 1.2.3   超伝導に転移する試料4      
超伝導線 5      スイッチ 6       5QUIDに連結したコイル7.8 
   マグネット 9.10   電源 指定代理人
FIG. 1 is a configuration diagram of an embodiment, and FIGS. 2, 3, and 4 are diagrams showing characteristics. 1.2.3 Sample 4 transitioning to superconductivity
Superconducting wire 5 Switch 6 5 Coil connected to QUID 7.8
Magnet 9.10 Power supply designated agent

Claims (1)

【特許請求の範囲】[Claims] 1、ある温度で超伝導となる物質の周囲に超伝導線が配
されその超伝導線を超伝導ループの一部とするための装
置を付加したことを特徴とする温度定点実現装置。
1. A device for realizing a fixed temperature point, characterized in that a superconducting wire is arranged around a substance that becomes superconducting at a certain temperature, and a device for making the superconducting wire part of a superconducting loop is added.
JP20281682A 1982-11-18 1982-11-18 Realizing device for fixed point of temperature Pending JPS5992336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20281682A JPS5992336A (en) 1982-11-18 1982-11-18 Realizing device for fixed point of temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20281682A JPS5992336A (en) 1982-11-18 1982-11-18 Realizing device for fixed point of temperature

Publications (1)

Publication Number Publication Date
JPS5992336A true JPS5992336A (en) 1984-05-28

Family

ID=16463671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20281682A Pending JPS5992336A (en) 1982-11-18 1982-11-18 Realizing device for fixed point of temperature

Country Status (1)

Country Link
JP (1) JPS5992336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238672A (en) * 2020-02-17 2020-06-05 重庆大学 Superconducting tape dynamic temperature measurement method based on magnetic microscopy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537978A (en) * 1978-09-11 1980-03-17 Toshiba Corp Superconductive magnetism measuring element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537978A (en) * 1978-09-11 1980-03-17 Toshiba Corp Superconductive magnetism measuring element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238672A (en) * 2020-02-17 2020-06-05 重庆大学 Superconducting tape dynamic temperature measurement method based on magnetic microscopy
CN111238672B (en) * 2020-02-17 2021-10-08 重庆大学 Superconducting tape dynamic temperature measurement method based on magnetic microscopy

Similar Documents

Publication Publication Date Title
EP0775917B1 (en) Superconducting quantum interference device fluxmeter and nondestructive inspection apparatus
EP1950578B1 (en) Superconductive quantum interference device (squid) system for measuring magnetic susceptibility of materials
JP3095440B2 (en) DC current monitor
JP2569542B2 (en) Magnetic flux transmission circuit
Tsukada et al. Hybrid type HTS-SQUID magnetometer with vibrating and rotating sample
Tsukada et al. Hybrid magnetic sensor combined with a tunnel magnetoresistive sensor and high-temperature superconducting magnetic-field-focusing plates
JPS5992336A (en) Realizing device for fixed point of temperature
JPH03264874A (en) Sensitized fluxmeter
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
JP2000091653A (en) Superconducting quantum interference element
JPH1026608A (en) Nondestructive inspecting method
JPH045588A (en) Squid fluxmeter provided with coil for calibration
JPS58169070A (en) Squid fluxmeter
Dyvorne et al. High Critical Temperature Superconducting Wire Based Flux Transformers
JPH05312842A (en) Large current induction-type critical current measuring apparatus
JPS5990069A (en) Magnetic field measuring method
JPH01217981A (en) Superconducting quantum interference device
JPH0460477A (en) Measurement of magnetic characteristic for superconductor
JPS58174866A (en) Squid fluxmeter
JP2902007B2 (en) Magnetic flux detector
JPH03189580A (en) Magnetic flux meter for measuring dc magnetic field
JPH06324130A (en) Squid sensor device
JPS59213110A (en) Magnetic field controlling device
JPS6123813Y2 (en)
SU100528A1 (en) Device for measuring magnetic field strength vector