JPS6123813Y2 - - Google Patents

Info

Publication number
JPS6123813Y2
JPS6123813Y2 JP6345078U JP6345078U JPS6123813Y2 JP S6123813 Y2 JPS6123813 Y2 JP S6123813Y2 JP 6345078 U JP6345078 U JP 6345078U JP 6345078 U JP6345078 U JP 6345078U JP S6123813 Y2 JPS6123813 Y2 JP S6123813Y2
Authority
JP
Japan
Prior art keywords
circuit
impedance
oscillation
winding
control winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6345078U
Other languages
Japanese (ja)
Other versions
JPS54166377U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6345078U priority Critical patent/JPS6123813Y2/ja
Publication of JPS54166377U publication Critical patent/JPS54166377U/ja
Application granted granted Critical
Publication of JPS6123813Y2 publication Critical patent/JPS6123813Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【考案の詳細な説明】 この実用新案は電気的に無接触で被測定回路の
インピーダンス検出を行う為に、磁気的に同一の
磁心を媒介して被測定回路のインピーダンスを、
やはり同一の磁心を媒介してなる帰還発振回路の
発振勢力としてとらえ、この発振勢力を検知して
被測定回路のインピーダンスを検出することを特
徴とするものであつて、その実施例につき図面と
ともに説明すると次の通りである。
[Detailed description of the invention] This utility model detects the impedance of the circuit under test using the same magnetic core in order to detect the impedance of the circuit under test without electrical contact.
It is characterized in that the impedance of the circuit under test is detected by detecting this oscillating force, which is regarded as the oscillating force of a feedback oscillating circuit formed through the same magnetic core, and an embodiment thereof will be explained with reference to drawings. Then, it is as follows.

本考案の構成は第1図に示す通りであつて、同
一の磁心1に、入力巻線2、出力巻線3、および
制御巻線4を巻き、前述の入力巻線2と前述の出
力巻線3と増幅器5とによつて帰還発振器を構成
し、さらに前述の帰還発振器の発振勢力検知器6
を設け、前述の制御巻線4の回路インピーダンス
7の値によつて前述の帰還発振器の発振勢力を制
御し、前述の発振勢力検知器6によつて前述の制
御巻線4の回路インピーダンスを電気的に無接触
で検知することを特徴とするものである。第1図
における制御巻線4の回路インピーダンスZ7、
の大きさと、前述の帰還発振器の発振勢力Aとの
関係を第2図に示す。この図において、aは発振
勢力の遮断領域、bはその遷移領域、cはその飽
和領域を示している。
The configuration of the present invention is as shown in FIG. The line 3 and the amplifier 5 constitute a feedback oscillator, and the feedback oscillator's oscillation force detector 6 is further connected to the feedback oscillator.
The oscillation force of the feedback oscillator is controlled by the value of the circuit impedance 7 of the control winding 4, and the circuit impedance of the control winding 4 is electrically controlled by the oscillation force detector 6. It is characterized by non-contact detection. The circuit impedance Z7 of the control winding 4 in FIG.
FIG. 2 shows the relationship between the magnitude of A and the oscillation force A of the feedback oscillator mentioned above. In this figure, a indicates the cutoff region of the oscillation force, b indicates its transition region, and c indicates its saturation region.

まず、第2図の遷移領域bをとつて実施例を述
べる。従来、インピーダンスを測定する方法とし
て共振法やインピーダンスブリツジ法などがある
が、これらはいずれも回路構成が複雑となつたり
面倒な計算を必要としたりする傾向があつた。
First, an example will be described with reference to transition region b in FIG. Conventionally, methods for measuring impedance include the resonance method and the impedance bridge method, but these tend to require complicated circuit configurations and troublesome calculations.

ところが、第1図に示す本考案によれば、従来
の面倒が軽減され、容易にインピーダンスの大き
さを検出することが可能となる。第2図の遷移領
域bにおいては、kを比例定数として Z≒kA が成り立つ。従つて第1図において発振勢力を検
知することにより、制御巻線4の回路インピーダ
ンス7をリニアに直続することができる。特に制
御巻線4に接続する外部回路の被測定インピーダ
ンスが、制御巻線4のインピーダンスに比較して
十分大きければ、測定値はそのまま前述の外部回
路の被測定インピーダンスとみなすことができ
る。第3図はこの実施回路例である。この図にお
いて8は電源、9は発振周波数制御コンデンサ
ー、11は増幅用トランジスタ、12は直流阻止
用コンデンサ、13,14はバイアス抵抗であ
る。ここでは発振勢力検知器6、すなわちインピ
ーダンス検知器として交流電圧計(または電流
計)を用いた場合を示している。無論、前述の発
振勢力検知器は整流検知器と直流電圧計(または
電流計)などを用いても差しつかえない。こうし
てこの考案によれば従来の面倒が軽減され、電気
的に無接触でインピーダンスの大きさを検出する
ことが可能となる。
However, according to the present invention shown in FIG. 1, the conventional troubles are alleviated and it becomes possible to easily detect the magnitude of impedance. In the transition region b of FIG. 2, Z≒kA holds true, where k is a proportionality constant. Therefore, by detecting the oscillation force in FIG. 1, the circuit impedance 7 of the control winding 4 can be linearly connected. In particular, if the impedance to be measured of the external circuit connected to the control winding 4 is sufficiently large compared to the impedance of the control winding 4, the measured value can be directly regarded as the impedance to be measured of the external circuit. FIG. 3 shows an example of this implementation circuit. In this figure, 8 is a power supply, 9 is an oscillation frequency control capacitor, 11 is an amplification transistor, 12 is a DC blocking capacitor, and 13 and 14 are bias resistors. Here, a case is shown in which an AC voltmeter (or ammeter) is used as the oscillation force detector 6, that is, the impedance detector. Of course, a rectifier detector, a DC voltmeter (or ammeter), or the like may be used as the oscillation force detector described above. In this way, according to this invention, the conventional troubles are alleviated, and it becomes possible to detect the magnitude of impedance without electrical contact.

次に第2図の遮断領域aから、飽和領域cまで
をとつて実施例を述べる。この場合、第1図の制
御巻線4の回路インピーダンス7の変化によつて
発振勢力が前述の遮断領域aから遷移領域bを経
て飽和領域cまで変化する。ここで遮断領域aを
論理“0”(または“1”)、飽和領域cを論理
“1”(または“0”)とすれば、前述の制御巻線
4の回路インピーダンス7の変化を通じてその回
路インピーダンス状態を電気的に無接触てオン・
オフ検知、すなわちデイジタル的に検知すること
が可能となる。ところで、回路電圧V、電流Iと
インピーダンスZとは Z=V/I の関係にあるから、被測定回路の電圧Vと電流I
を知ればその回路のインピーダンスZの状態を知
ることができる。
Next, an example will be described with reference to the cut-off region a to the saturation region c in FIG. In this case, the oscillation force changes from the above-mentioned cutoff region a through the transition region b to the saturation region c due to a change in the circuit impedance 7 of the control winding 4 shown in FIG. Here, if the cutoff region a is a logic "0" (or "1") and the saturation region c is a logic "1" (or "0"), the circuit changes through the change in the circuit impedance 7 of the control winding 4 described above. The impedance state can be turned on and off electrically without contact.
Off detection, that is, digital detection becomes possible. By the way, since the circuit voltage V, current I and impedance Z have the relationship Z=V/I, the voltage V and current I of the circuit under test
If you know, you can know the state of the impedance Z of the circuit.

従来、この電流を検出する手段として、回路の
一部にその電流によつて生じる磁界をホール素子
や磁気抵抗素子で検知する方法がある。然しなが
らこれらの感応素子は回路電流が特に大きいとき
すなわち強磁界下では単体で使用可能であるが、
通常使用される弱ないし中磁界下では透磁率の大
きい磁心の一部に空隙を設けて、そこへ前述の感
応素子を挿入し感度を補つていた。従つて硬い磁
性材料を加工したり、また機械的強度も空隙のな
い磁心に較べて劣るなどの欠点があつた。
Conventionally, as a means for detecting this current, there is a method of detecting a magnetic field generated by the current in a part of a circuit using a Hall element or a magnetoresistive element. However, these sensing elements can be used alone when the circuit current is particularly large, that is, under strong magnetic fields;
Under the weak to medium magnetic field that is normally used, a gap is provided in a part of the magnetic core with high magnetic permeability, and the above-mentioned sensing element is inserted into the gap to compensate for the sensitivity. Therefore, it has disadvantages such as the need to process hard magnetic materials and its mechanical strength is inferior to that of a magnetic core without voids.

ところが第1図に示す本考案によれば、前述の
電流検知によるインピーダンスの検出を行う方法
と同様に磁心を用いるのであるが、ホール素子や
磁気抵抗素子が不要になるばかりでなく、透磁率
の大きい磁性材料を空隙を設けるなどの加工なく
そのまま使用することができる。従つて磁気的に
安定であり、機械的強度も保たれ、磁気抵抗も低
くできるので前述の磁心1の巻線の空間形状のバ
ラツキによる影響もほとんどなく、電気的に無接
触でインピーダンスの高低状態の測定が可能であ
る。
However, according to the present invention shown in Fig. 1, a magnetic core is used in the same way as the method of detecting impedance by current detection described above, but not only does the Hall element and magnetoresistive element become unnecessary, but the magnetic permeability is also reduced. Large magnetic materials can be used as is without any processing such as creating gaps. Therefore, it is magnetically stable, mechanical strength is maintained, and magnetic resistance can be lowered, so there is almost no influence from the above-mentioned variations in the spatial shape of the windings of the magnetic core 1, and high and low impedance states are achieved without electrical contact. can be measured.

しかも前述の制御巻線4の被測定回路が直流電
源を含むオン・オフ動作であつても、被測定回路
がオン状態においては第1図の発振勢力は前述の
遮断領域aにあるので、本考案のインピーダンス
検出装置が被測定回路に与える影響は前述の制御
巻線4(磁心を貫通させるだけでもよい)の直流
抵抗値のみである。逆に被測定回路がオフ状態・
すなわち開路状態においては前述の発振勢力は前
述の飽和領域cにあるが、制御巻線回路が開いて
いるので前述の発振勢力は前述の制御巻線回路に
影響を及ぼさない。従つて被測定回路がオン・オ
フいずれの状態にあつても本考案のインピーダン
ス検出回路が被測定回路に与える影響は皆無に近
い。
Moreover, even if the circuit under test of the control winding 4 described above is in an on-off operation including a DC power supply, the oscillation force in FIG. The impedance detection device of the invention has only an effect on the DC resistance value of the control winding 4 (which may just pass through the magnetic core) mentioned above on the circuit under test. Conversely, when the circuit under test is off,
That is, in the open circuit state, the aforementioned oscillating force is in the aforementioned saturation region c, but since the control winding circuit is open, the aforementioned oscillating force does not affect the aforementioned control winding circuit. Therefore, whether the circuit under test is in an on or off state, the impedance detection circuit of the present invention has almost no influence on the circuit under test.

他方、前述の被測定回路が交流電源を含むオ
ン・オフ動作回路であつても、前述の制御巻線4
のインピーダンスが問題とならないほど小さけれ
ば前述の直流電源の場合と同様に被測定回路に与
える影響は無視できる。
On the other hand, even if the above-mentioned circuit under test is an on-off operation circuit including an AC power supply, the above-mentioned control winding 4
If the impedance is small enough to cause no problem, the effect on the circuit under test can be ignored, as in the case of the DC power supply described above.

第4図は第2図の遮断領域aから飽和領域cま
でをとつて具体化した回路例であり、ランプの寿
命測定器として応用した場合を示している。第4
図において10は電源、15は直流阻止用コンデ
ンサー、16,17,18は検波整流回路、19
は増幅トランジスター、20は出力用リレーであ
る。ランプ寿命のように負荷寿命が印加電圧の僅
かな変化によつて1012〜1013倍という大きな影響
を受けるときには、電源と被測定回路の間に電気
的に挿入されて被測定回路に影響を与えるものは
全く存在しないことが望ましい。従来はメータ・
リレーや低抵抗を回路の一部に挿入したり、感温
素子や感光素子を近づけて回路状態を検知してい
たが、それぞれ被測定回路に影響を及ぼしたり、
高価であつたり応答速度や周囲の光雑音等の問題
があつた。ところが本考案によれば前述の問題を
すべて解決することができ、被測定回路にほとん
ど影響なく、低価格で高速応答、広い有効温度領
域、光雑音の影響皆無などの利点を活用すること
ができる。
FIG. 4 is a concrete example of a circuit from the cut-off region a to the saturation region c of FIG. 2, and shows the case where it is applied as a lamp life measuring device. Fourth
In the figure, 10 is a power supply, 15 is a DC blocking capacitor, 16, 17, 18 is a detection rectifier circuit, 19
is an amplification transistor, and 20 is an output relay. When load life, such as lamp life, is significantly affected by a small change in applied voltage by a factor of 10 12 to 10 13 , it is necessary to insert a capacitor electrically between the power supply and the circuit under test to affect the circuit under test. It is preferable that there is no giving at all. Conventionally, meters
The circuit status has been detected by inserting a relay or low resistance into a part of the circuit, or by bringing a temperature-sensitive element or a photo-sensitive element close to each other, but each has an effect on the circuit under test.
It was expensive and had problems such as response speed and ambient optical noise. However, according to the present invention, all of the above-mentioned problems can be solved, and advantages such as low cost, high speed response, wide effective temperature range, and no influence of optical noise can be utilized with almost no effect on the circuit under test. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の磁気式帰還発振型無接触イン
ピーダンス検出装置の構成図、第2図はその制御
巻線の回路インピーダンスZと帰還発振回路の発
振勢力Aとの関係図、第3図は第2図の遷移領域
bを用いたリニア的な実施回路例、第4図は第2
図の遮断領域aから飽和領域cまでを用いたデイ
ジタル的な実施回路例。
Fig. 1 is a configuration diagram of the magnetic feedback oscillation type non-contact impedance detection device of the present invention, Fig. 2 is a relationship diagram between the circuit impedance Z of the control winding and the oscillation force A of the feedback oscillation circuit, and Fig. 3 is An example of a linear implementation circuit using transition region b in Fig. 2;
An example of a digital implementation circuit using the cutoff region a to the saturation region c in the figure.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 同一の磁心に、入力巻線、出力巻線、および制
御巻線を巻き、前述の入力巻線と前述の出力巻線
と増幅器とによつて帰還発振器を構成し、さらに
前述の帰還発振器の発振勢力検知器を設け、前述
の制御巻線の回路インピーダンスの値によつて前
述の帰還発振器の発振勢力を制御し、前述の発振
勢力検知器によつて前述の制御巻線の回路インピ
ーダンスを電気的に無接触で検知することを特徴
とする磁気式帰還発振型無接触インピーダンス検
出装置。
An input winding, an output winding, and a control winding are wound around the same magnetic core, a feedback oscillator is configured by the input winding, the output winding, and the amplifier, and the oscillation of the feedback oscillator is A force detector is provided to control the oscillation force of the feedback oscillator according to the value of the circuit impedance of the control winding, and the circuit impedance of the control winding is electrically controlled by the oscillation force detector. A magnetic feedback oscillation type non-contact impedance detection device that is characterized by non-contact detection.
JP6345078U 1978-05-12 1978-05-12 Expired JPS6123813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6345078U JPS6123813Y2 (en) 1978-05-12 1978-05-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6345078U JPS6123813Y2 (en) 1978-05-12 1978-05-12

Publications (2)

Publication Number Publication Date
JPS54166377U JPS54166377U (en) 1979-11-22
JPS6123813Y2 true JPS6123813Y2 (en) 1986-07-16

Family

ID=28966643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6345078U Expired JPS6123813Y2 (en) 1978-05-12 1978-05-12

Country Status (1)

Country Link
JP (1) JPS6123813Y2 (en)

Also Published As

Publication number Publication date
JPS54166377U (en) 1979-11-22

Similar Documents

Publication Publication Date Title
US7923996B2 (en) Magnetic field sensor with automatic sensitivity adjustment
JP3212985B2 (en) Magnetic sensor device and current sensor device
US5124648A (en) Single winding saturable core magnetometer with field nulling
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
JPS60104263A (en) Detector measuring parameter
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
JPH04334115A (en) Inductive proximity sensor
CN109270325B (en) Self-excitation type open-loop fluxgate current sensor circuit and self-excitation oscillation method thereof
JP2816175B2 (en) DC current measuring device
EP0316914A2 (en) High-frequency oscillation type proximity switch
JP4716030B2 (en) Current sensor
JPH10232259A (en) Current leakage sensor
JPS6123813Y2 (en)
JP2001116773A (en) Current sensor and current detector
US4059796A (en) Second harmonic magnetic field detection circuit with means to rectify the sensed signal
JPH11281678A (en) Current sensor
JPH0131591B2 (en)
US5831424A (en) Isolated current sensor
JPH05223910A (en) Measuring method for magnetism
JPS58180964A (en) Magnetic detector
JPH0240551Y2 (en)
JPH0296661A (en) Clamp-type ammeter
JPH0810799Y2 (en) Current sensor
JPH0232567B2 (en) JIKISHIKIORYOKUSOKUTEISOCHI
JPH0733171Y2 (en) Non-contact type DC ammeter