JPS5990069A - Magnetic field measuring method - Google Patents

Magnetic field measuring method

Info

Publication number
JPS5990069A
JPS5990069A JP20058082A JP20058082A JPS5990069A JP S5990069 A JPS5990069 A JP S5990069A JP 20058082 A JP20058082 A JP 20058082A JP 20058082 A JP20058082 A JP 20058082A JP S5990069 A JPS5990069 A JP S5990069A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic flux
sample
magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20058082A
Other languages
Japanese (ja)
Inventor
Koichi Nara
奈良 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20058082A priority Critical patent/JPS5990069A/en
Publication of JPS5990069A publication Critical patent/JPS5990069A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0358SQUIDS coupling the flux to the SQUID

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To measure a magnetic field with extremely high sensitivity by utilizing the discharge of magnetic flux proportional to the magnetic field in the space wherein a material is present preceding the material becomes superconductive in the magnetic field. CONSTITUTION:A superconductor 5 is coiled around a sample 4 and a coil 7 coupling with SQUID through a switch 6 and the superconductor 5 constitute a superconduction loop. The switch 6 is closed when the sample is normally conductive to cool the sample 4. Magnetic flux penetrating the superconduction loop is held constant, so a current flows through the loop as the magnetic flux is discharged; the current is detected with high sensitivity by the coil 7 coupling with the SQUID and its output varies as shown by a graph. The magnetic field is known from the variation. Further, plural samples 8, 9, and 10 are arranged in parallel to three axes X, Y, and Z and coils wound around them are connected in series; and both their terminals are connected to a fluxmeter or voltmeter 11 and the samples are made superconductive successively to measure magnetic fields on the three axes with high sensitivity.

Description

【発明の詳細な説明】 現在直流磁界を測定する際は、物性を利用したホール素
子筒を用いる場合を除き、検出コイルと磁場との相対的
位皺を変化させる午によって磁束変化を作り出して、そ
の変jヒ屑を測定する事により行われてきた。しかし、
その感度は十分とはいえず、装置も機械的可動部が存在
する等の理由から、大きくなりがちであった。
[Detailed Description of the Invention] Currently, when measuring a DC magnetic field, except when using a Hall element tube that utilizes physical properties, a change in magnetic flux is created by changing the relative position of the detection coil and the magnetic field. This has been done by measuring the deformation debris. but,
Its sensitivity was not sufficient, and the device tended to be large due to the presence of mechanically moving parts.

一方、現在磁束変化に対しては、SQUより (超伝導
量子子る。そこで、直流磁界を磁束変化に変換できれは
、極めて高感度に磁界を測定できることになる。
On the other hand, current changes in magnetic flux can be measured using superconducting quanta from SQU. Therefore, if a direct current magnetic field can be converted into changes in magnetic flux, magnetic fields can be measured with extremely high sensitivity.

1本測定法に必要とされるのは、ある適当な温度で超伝
導・Iiなる物質と、その物質が超伝導となる際にその
物質から排出される磁束を測定する測定系である。
What is required for the single measurement method is a substance that becomes superconducting Ii at a certain appropriate temperature, and a measurement system that measures the magnetic flux emitted from the substance when it becomes superconducting.

本発明の原理は、物質が超伝導となるとその物質から磁
場イ(排出されスマイスナー効果に依っており、磁場中
で超伝導となると、超伝導となる前にその物質の存在し
た空間の磁界に比例した磁束が排出されるので、その磁
束の大きさから逆に、元の磁界の大きさを知る事ができ
る。
The principle of the present invention is that when a substance becomes superconducting, the magnetic field is ejected from the substance, which is due to the Smyessner effect. Since a proportional magnetic flux is discharged, the magnitude of the original magnetic field can be determined from the magnitude of the magnetic flux.

本発明の実施例は、磁束変化の測定に、SQUよりを用
いるか、用いないかにより大きく異なる。
The embodiments of the present invention differ greatly depending on whether or not an SQU is used to measure magnetic flux changes.

第1図は用いない例であり、試料1の周囲にコイル状に
導線2を巻き、その両端を電圧言13に接続する。試料
1を冷却することにより、試料1は超伝導状態に移行し
、超伝導体から磁束が排出される。その排出に伴いコイ
ル状の2に起電力が発生しその両端に電圧が現れる。そ
の出力を時間に対して示すと第2図のように変化しその
電圧を時間に対して積分すれは磁束、ひいては磁界の測
定ができる。
FIG. 1 shows an example in which a conductive wire 2 is not used, and a conductive wire 2 is wound in a coil around a sample 1, and both ends thereof are connected to a voltage source 13. By cooling the sample 1, the sample 1 transitions to a superconducting state, and magnetic flux is discharged from the superconductor. As it is discharged, an electromotive force is generated in the coil 2, and a voltage appears at both ends thereof. When the output is shown as a function of time, it changes as shown in Figure 2. By integrating the voltage over time, the magnetic flux, and thus the magnetic field, can be measured.

一方現在もつとも高分解能磁束用である5QUIDを用
いれば、より高感度の磁界測定が可能となる。その場合
では第7 “13図にあるように試料4に超伝導線5をコイ)b状
に巻き、; +1?、イノチロを通してSQUよりと結合するコイル
7とこの5と五超伝導ループを構成する。試料4が常伝
導の時にスイッチ6をつないて、試料4を冷却する。超
伝導/レープ中゛を貫く磁束は一定に保たれるので磁束
が排出されるに従いル−プには電流が流れ、その電流は
SQUよりと結合しているコイル7によって高感度に検
出され、その出力は第4図のように変化する。その変化
量によって磁界を知る事ができる。
On the other hand, if 5QUID, which is currently available for high-resolution magnetic flux, is used, it becomes possible to measure magnetic fields with higher sensitivity. In that case, as shown in Fig. 7, superconducting wire 5 is wound around sample 4 in the shape of a coil (b), and this 5 and coil 7 are connected to SQU through +1? and Inochiro to form 5 superconducting loops. When sample 4 is normally conducting, switch 6 is connected to cool sample 4. The magnetic flux passing through the superconducting/loop remains constant, so as the magnetic flux is discharged, current flows through the loop. The current is detected with high sensitivity by the coil 7 connected to the SQU, and its output changes as shown in Fig. 4. The magnetic field can be determined by the amount of change.

また、複数の試料8.9.10〜第5図のようにX、Y
、2の3軸に平行に配置し、それらに巻いた3つのフィ
ルを直列に接続して、その両端を磁束用あるいけ電圧計
11−゛接読して試料を順次超伝導とする事によって、
3軸の磁、1 界番測定する事ができる。
In addition, multiple samples 8.9.10 to X, Y as shown in Figure 5
, 2, are placed parallel to the three axes, and the three films wound around them are connected in series, and both ends are read directly by a magnetic flux meter or a voltmeter (11-) to make the sample superconducting one after another. ,
3-axis magnetic field, 1 field number can be measured.

°:この様に本発明により、SQUよりの持つ磁束変化
に対する作る事ができる。また、検出素子は超伝導体の
み・でli−で、小さくする事が可能であり、局所的な
磁界の大きさを知る事も可能となる。また、°機械的可
動部分を持たないので、その適用範囲は非常に広い事が
期待されると同時に、前述のように磁界の3構成分を検
出する事も容易である。
°: In this way, according to the present invention, it is possible to make changes in the magnetic flux of the SQU. Furthermore, since the detection element is made of only superconductors and is li-, it can be made small, and it is also possible to know the magnitude of the local magnetic field. Furthermore, since it has no mechanically movable parts, it is expected to have a very wide range of application, and at the same time, it is easy to detect the three components of the magnetic field as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図及び第5図は実施例の構成図、第2図及
ム第4図はその特性を示す線図。 1.4.8,9,10  ・偉・超伝導に転移する試料
2、e**扉線 3、・・・電圧用 5、・・・超伝導線 6、・・・スイッチ 7、+1・・SQUよりに連結したコイル11、・・・
電圧刷あるいは、SQUよりに連結したコイル31図 第2図 凍3回 箪4図 峙門
1, 3 and 5 are configuration diagrams of the embodiment, and FIGS. 2 and 4 are diagrams showing its characteristics. 1.4.8, 9, 10 ・Sample 2 that transitions to superconductivity, e** door wire 3, ... 5 for voltage, ... superconducting wire 6, ... switch 7, +1.・Coil 11 connected to SQU,...
Coil connected to voltage plate or SQU 31 Figure 2 Freezing 3 times 4 Figure 1 gate

Claims (1)

【特許請求の範囲】[Claims] 1 ある物質が超伝導状態に移行する際に排出する磁束
を測定する事により、超伝導状態になる前にその物質が
存在した空間の磁界を検出する事を特徴とする磁界測定
法。
1. A magnetic field measurement method that detects the magnetic field in the space where a substance existed before it became a superconductor by measuring the magnetic flux emitted by a substance when it transitions to a superconductor state.
JP20058082A 1982-11-16 1982-11-16 Magnetic field measuring method Pending JPS5990069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20058082A JPS5990069A (en) 1982-11-16 1982-11-16 Magnetic field measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20058082A JPS5990069A (en) 1982-11-16 1982-11-16 Magnetic field measuring method

Publications (1)

Publication Number Publication Date
JPS5990069A true JPS5990069A (en) 1984-05-24

Family

ID=16426696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20058082A Pending JPS5990069A (en) 1982-11-16 1982-11-16 Magnetic field measuring method

Country Status (1)

Country Link
JP (1) JPS5990069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237478A (en) * 1988-03-17 1989-09-21 Agency Of Ind Science & Technol Magnetic sensor
JPH0266478A (en) * 1988-08-31 1990-03-06 Shimadzu Corp Magnetic field detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537978A (en) * 1978-09-11 1980-03-17 Toshiba Corp Superconductive magnetism measuring element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537978A (en) * 1978-09-11 1980-03-17 Toshiba Corp Superconductive magnetism measuring element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237478A (en) * 1988-03-17 1989-09-21 Agency Of Ind Science & Technol Magnetic sensor
JPH0266478A (en) * 1988-08-31 1990-03-06 Shimadzu Corp Magnetic field detecting device

Similar Documents

Publication Publication Date Title
Goree et al. Magnetometers using RF‐driven squids and their applications in rock magnetism and paleomagnetism
Ferrari et al. Magnetic flux noise in copper oxide superconductors
EP0147655B1 (en) Miniature squid susceptometer
Deaver Jr et al. Some techniques for sensitive magnetic measurements using superconducting circuits and magnetic shields
US3504283A (en) Flux quantization measuring device
Webb Superconducting quantum magnetometers
JPS5990069A (en) Magnetic field measuring method
Banerjee et al. AC susceptibility apparatus for use with a closed-cycle helium refrigerator
Nave et al. Micromagnetic susceptometer
Dziuba et al. Cryogenic direct current comparators and their applications
Elmquist et al. Using a high-value resistor in triangle comparisons of electrical standards
Lobotka et al. The complex AC susceptibility of superconducting Y Ba CuO thin film and bulk samples
US4506996A (en) Cryogenic thermometer
Sakai et al. Compact rotating-sample magnetometer for relaxation phenomenon measurement using HTS-SQUID
Templeton The use of superconductive devices in research at low temperatures
SILVER et al. Josephson weak-link devices
Hensel et al. A pulsed nuclear magnetic resonance thermometer for use below 100 mK
Tanaka et al. Development of Metallic Contaminant Detection System Using High-Tc RF SQUIDs for Li-ion Battery Slurry
Antcliffe et al. Germanium resistance thermometry at temperatures below 1° K
JPS5537978A (en) Superconductive magnetism measuring element
Mamin et al. Observation of thermoelectrically induced charge imbalance in superconducting aluminum
Enyao et al. Some improvements of induced current technique used to measure superconductor short sample critical currents
Trofimov SQUIDs in thermal detectors of weakly interacting particles
Hornung et al. Current sharing and critical current distribution in Bi-2223 tapes
Dyvorne et al. High Critical Temperature Superconducting Wire Based Flux Transformers