JPS59213110A - Magnetic field controlling device - Google Patents

Magnetic field controlling device

Info

Publication number
JPS59213110A
JPS59213110A JP8792483A JP8792483A JPS59213110A JP S59213110 A JPS59213110 A JP S59213110A JP 8792483 A JP8792483 A JP 8792483A JP 8792483 A JP8792483 A JP 8792483A JP S59213110 A JPS59213110 A JP S59213110A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
superconductive
coils
switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8792483A
Other languages
Japanese (ja)
Other versions
JPH0534815B2 (en
Inventor
Kazunori Yamanaka
一典 山中
Eiji Horikoshi
堀越 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8792483A priority Critical patent/JPS59213110A/en
Publication of JPS59213110A publication Critical patent/JPS59213110A/en
Publication of JPH0534815B2 publication Critical patent/JPH0534815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To enable to generate a stabilized magnetic field on a wide area ranging from a weak magnetic field to a ferromagnetic field consuming a low electric power by a method wherein two superconductive coils and a high sensitivity magnetic field meter are provided. CONSTITUTION:First, an OFF position is given to superconductive switches 8 and 9, and superconductive coils 2 and 3 are excited by controlling the output current of constant current sources 12 and 13 in such a manner that the intensity of magnetic field will be brought to the desired value. Then, when an ON position is given to the superconductive switches 8 and 9, a superconductive closed circuit containing the superconductive coils 2 and 3 is formed. The value of current running on the respective superconductive closed circuit is maintained at the output current value of the constant current sources 12 and 13 which is set in such a manner that the prescribed magnetic field intensity will be given, and also the superconductive coils 2 and 3 function in such a manner that the fluctuations of the outer magnetic field will be completely cancelled in accordance with the magnetic flux retaining rule of the superconductive closed circuit. As a result, a highly accurate and stabilized magnetic field in wide area ranging from a weak magnetic field to a ferromagnetic field can be obtained.

Description

【発明の詳細な説明】 (a1発明の技術分野 本発明は超伝導回路の動作環境として必要とされる程度
の極微弱磁場から磁化率測定に必要な程度の強磁場まで
の範囲で一定かつ変動の少ない磁場を発生する磁場制御
装置に関する。
Detailed Description of the Invention (a1 Technical Field of the Invention) The present invention is directed to a magnetic field that is constant and variable in the range from an extremely weak magnetic field required as an operating environment for a superconducting circuit to a strong magnetic field required for magnetic susceptibility measurement. The present invention relates to a magnetic field control device that generates a magnetic field with a small amount of magnetic field.

(b)技術の背景 超伝導回路素子は極めて微弱な磁場の影響によって誤動
作するために、その動作環境の磁場は理想的にはゼロ、
少なくとも地磁気(40,000γ)の100万分の1
程度の磁場強度であることが望ましいとされている。ま
た、磁化率の測定等においては数T(テスラ)程度の安
定した強磁場が必要とされる。
(b) Background of the technology Since superconducting circuit elements malfunction due to the influence of extremely weak magnetic fields, the magnetic field in their operating environment should ideally be zero.
At least 1/1 millionth of geomagnetism (40,000γ)
It is said that it is desirable that the magnetic field strength is approximately Furthermore, in measurements of magnetic susceptibility, etc., a stable strong magnetic field of approximately several T (Tesla) is required.

(C1従来技術と問題点 従来の磁場発生装置としては、磁気シールドを目的とし
たへルムホルツコイルを用いた方式と、強磁場の発生を
目的とした常伝導の電磁石を用いた方式とがあるが、前
者は過渡的な外界磁場変動に対して有効に磁場強度を一
定に制御することが難しく、また、非常に小さい磁場か
ら強磁場までの広@囲の磁場を与えることが難しいとい
う欠点があり、後者は強磁場を与える以外には不適であ
り、かつ消費電力が大きいという欠点があった。
(C1 Conventional technology and problems) Conventional magnetic field generators include a method using a Helmholtz coil for the purpose of magnetic shielding, and a method using a normal conduction electromagnet for the purpose of generating a strong magnetic field. However, the former has the disadvantage that it is difficult to effectively control the magnetic field strength to a constant value against transient external magnetic field fluctuations, and it is also difficult to apply a wide range of magnetic fields from very small to strong magnetic fields. However, the latter is unsuitable for anything other than applying a strong magnetic field, and has the drawback of high power consumption.

(d)発明の目的 本発明゛は、低消費電力であり、微弱磁場から強磁場ま
での広範囲の、かつ安定した磁場発生が可能な磁場制御
装置を提供することを目的とする。
(d) Purpose of the Invention An object of the present invention is to provide a magnetic field control device that consumes low power and is capable of generating a stable magnetic field over a wide range from a weak magnetic field to a strong magnetic field.

(e)8明の構成 本発明は、所定間隔を設けて配置された2つの超伝導コ
イルと、該超伝導コイル間に配置された高感度磁場計と
、該超伝導コイルのそれぞれと超伝導線によって結線さ
れた2つの超伝導スイッチと、該磁場計の出力にしたが
って該超伝導コイルを励磁するための定電流源と、該2
つの超伝導コイルと核剤感度磁場計と該2つの超伝導ス
イッチと該超伝導線とを極低温に維持するための極低温
容器とから成ることを特徴とする。
(e) 8th Structure two superconducting switches connected by a wire; a constant current source for exciting the superconducting coil according to the output of the magnetometer;
It is characterized by comprising two superconducting coils, a nuclear agent-sensitive magnetometer, the two superconducting switches, and a cryogenic container for maintaining the superconducting wire at a cryogenic temperature.

(f)発明の実施例 以下に本発明の実施例を図面を参照して説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

本発明の要旨は、超伝導体の電気抵抗が零という性質を
利用して低消費電力で強磁場を発生するとともに、ジョ
セフソン効果によって動作するいわゆる5QUID (
Superconducting Quantum I
nter−ference Device)を用いた高
感度磁場計を磁場検出に使用して磁場制御を行うことに
より微弱磁場を与え、また、超伝導体の電気抵抗零の条
件と超伝導閉回路内の磁束保存則を利用することにより
磁場変動を抑制するのである。
The gist of the present invention is to utilize the zero electrical resistance property of superconductors to generate a strong magnetic field with low power consumption, and to utilize the so-called 5QUID (5QUID) which operates by the Josephson effect.
Superconducting Quantum I
A highly sensitive magnetic field meter using an inter-ference device (inter-ference device) is used to detect the magnetic field, and a weak magnetic field is provided by controlling the magnetic field. Magnetic field fluctuations are suppressed by using the law.

すなわち、超伝導コイルがエネルギー損失なく強磁場を
発生できることと、前記5QUIDが1磁束量子程度の
微弱磁束を検出可能であること、超伝導閉回路が磁場を
保存することを利用し、極低温容器中に2つの超伝導コ
イルを、また該2つの超伝導コイル間に前記SO旧りを
用いた磁場計のプローブを配置し、まず該2つの超伝導
コイルを定電流電源に接続して励磁し、前記磁場計の出
力を該定電流電源の電流制御端子に帰還して該2つの超
伝導コイル間を所望の磁場強度に設定し、つぎに該2つ
の超伝導コイルのそれぞれを、同じく極低温容器内で超
伝導状態にされている超伝導スイッチを閉じて短絡する
ことにより該所望の磁場強度を維持させ、かつ外部磁場
の変動を完全に打ち消させるのである。
In other words, the superconducting coil can generate a strong magnetic field without energy loss, the 5QUID can detect a weak magnetic flux of about one flux quantum, and the superconducting closed circuit conserves the magnetic field. Two superconducting coils are placed inside the superconducting coil, and a probe of a magnetic field meter using the SO old is placed between the two superconducting coils, and the two superconducting coils are first connected to a constant current power source and excited. , the output of the magnetic field meter is fed back to the current control terminal of the constant current power supply to set the desired magnetic field strength between the two superconducting coils, and then each of the two superconducting coils is also heated to an extremely low temperature. By closing and short-circuiting a superconducting switch that is in a superconducting state within the container, the desired magnetic field strength is maintained and fluctuations in the external magnetic field are completely canceled out.

図において、極低温に維持されている容器1の内部には
、例えばニオブ−チタン合金(Nb−Ti)線から成る
ヘルムホルツ型の超伝導コイル2および3が所定の距離
を設けて、また該超伝導コイル2および3間の中央付近
には前記5QUIDを用いた磁場針プローブ4が配置さ
ている。磁場を与えられる、例えば超伝導回路素子等の
被検物体5は磁場針プローブ4近傍に設置される。
In the figure, Helmholtz-type superconducting coils 2 and 3 made of, for example, niobium-titanium alloy (Nb-Ti) wire are placed at a predetermined distance inside a container 1 maintained at an extremely low temperature. A magnetic field needle probe 4 using the 5QUID is placed near the center between the conduction coils 2 and 3. A test object 5 , such as a superconducting circuit element, to which a magnetic field is applied is placed near the magnetic field needle probe 4 .

該超伝導コイル2および3のそれぞれは超伝導体線6お
よび7によって超伝導スイッチ(閉時の電気抵抗が完全
に零であるスイッチ)8および9と接続されている。一
方、該超伝導スイッチ8および9のそれぞれには常伝導
線10および11を経て定電流源12および13が接続
されている。磁場計プローブ4の検出出力は磁場計本体
15を経て制御部14に入力され、該検出磁場強度が所
定値になるように、制御部14により該定電流源12お
よび13の出力が制御される。
The superconducting coils 2 and 3 are connected to superconducting switches 8 and 9 (switches whose electrical resistance is completely zero when closed) by superconducting wires 6 and 7, respectively. On the other hand, constant current sources 12 and 13 are connected to the superconducting switches 8 and 9 via normal conducting wires 10 and 11, respectively. The detection output of the magnetic field meter probe 4 is input to the control unit 14 via the magnetic field meter main body 15, and the output of the constant current sources 12 and 13 is controlled by the control unit 14 so that the detected magnetic field strength becomes a predetermined value. .

上記の構成において、最初に超伝導スイッチ8および9
を開いておき、磁場計プローブ4および制御部14によ
り磁場強度を測定しながら、該磁場強度が所望の値にな
るように定電流源12および13の出力電流を制御して
超伝導コイル2および3を励磁する。
In the above configuration, first superconducting switches 8 and 9
The superconducting coils 2 and 13 are opened, and while measuring the magnetic field strength using the magnetometer probe 4 and the control unit 14, the output currents of the constant current sources 12 and 13 are controlled so that the magnetic field strength becomes a desired value. 3 is excited.

次いで、超伝導スイッチ8および9を閉じると、超伝導
コイル2および3を含む超伝導閉回路が形成される。こ
の場合に、それぞれの超伝導閉回路を流れる電流値は、
上記において所定磁場強度を与えるように設定された定
電流源12および13の出力電流値に保持され、また超
伝導コイル2および3は超伝導閉回路の磁束保存則にし
たがって外部磁場の変動を完全に打ち消すように動作す
る。
Then, when superconducting switches 8 and 9 are closed, a superconducting closed circuit including superconducting coils 2 and 3 is formed. In this case, the current value flowing through each superconducting closed circuit is
In the above, the output current values of the constant current sources 12 and 13 are set to provide a predetermined magnetic field strength, and the superconducting coils 2 and 3 completely eliminate fluctuations in the external magnetic field according to the law of conservation of magnetic flux of superconducting closed circuits. It acts to cancel out.

上記本発明の磁場制御装置においては、超伝導コイル2
および3間の中央で、コイル軸方向にOからLOTの範
囲の任意の強さの磁場を、2×10wb/s (ただし
Sは超伝導コイル2および3の断面積、単位M)の高精
度で与えることが可能で、しかも該超伝導コイル軸方向
における磁場変動を極めて小さくすることが可能である
In the above magnetic field control device of the present invention, the superconducting coil 2
and 3, apply a magnetic field of arbitrary strength in the range of O to LOT in the coil axial direction with a high precision of 2 x 10 wb/s (where S is the cross-sectional area of superconducting coils 2 and 3, unit M). Moreover, it is possible to make the magnetic field fluctuation in the axial direction of the superconducting coil extremely small.

(酌発明の効果 本発明によれば、微弱磁場から強磁場までの広範囲で高
精度かつ高安定度の磁場を与えることが7櫚暘!?−2
13110(3) できる低消費電力の磁場制御装置を提供可能とする効果
がある。
(Effects of the Invention According to the present invention, it is possible to provide a highly accurate and highly stable magnetic field over a wide range from a weak magnetic field to a strong magnetic field.
13110(3) This has the effect of making it possible to provide a magnetic field control device with low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る磁場制御装置の原理を説明するための
図である。 図において、1は極低温容器、2および3は超伝導コイ
ル、4は磁場計プローブ、5は被検物体、6および7は
超伝導線、8および9は超伝導スイッチ、10および1
1は常伝導線、12および13は定電流源、14は制御
部、15は磁場計本体である。 代理人  弁理士 検量 宏四% ▽35−
The figure is a diagram for explaining the principle of a magnetic field control device according to the present invention. In the figure, 1 is a cryogenic container, 2 and 3 are superconducting coils, 4 is a magnetometer probe, 5 is a test object, 6 and 7 are superconducting wires, 8 and 9 are superconducting switches, 10 and 1
1 is a normal conducting wire, 12 and 13 are constant current sources, 14 is a control section, and 15 is a main body of the magnetometer. Agent Patent attorney Weighing Koji% ▽35-

Claims (1)

【特許請求の範囲】[Claims] 所定間隔を設けて配置された2つの超伝導コイルと、該
超伝導コイル間に配置された高感度磁場針と、該超伝導
コイルのそれぞれと超伝導線によって結線された2つの
超伝導スイッチと、該磁場計の出力にしたがって該超伝
導コイルを励磁するための定電流源と、該2つの超伝導
コイルと該高感度磁場計と該2つの超伝導スイッチと該
超伝導線とを極低温に維持するための極低温容器とから
成ることを特徴とする磁場制御装置。
Two superconducting coils arranged at a predetermined interval, a highly sensitive magnetic field needle arranged between the superconducting coils, and two superconducting switches connected to each of the superconducting coils by a superconducting wire. , a constant current source for exciting the superconducting coil according to the output of the magnetometer, the two superconducting coils, the high-sensitivity magnetometer, the two superconducting switches, and the superconducting wire at an extremely low temperature. A magnetic field control device comprising: a cryogenic container for maintaining the temperature at a low temperature;
JP8792483A 1983-05-19 1983-05-19 Magnetic field controlling device Granted JPS59213110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8792483A JPS59213110A (en) 1983-05-19 1983-05-19 Magnetic field controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8792483A JPS59213110A (en) 1983-05-19 1983-05-19 Magnetic field controlling device

Publications (2)

Publication Number Publication Date
JPS59213110A true JPS59213110A (en) 1984-12-03
JPH0534815B2 JPH0534815B2 (en) 1993-05-25

Family

ID=13928465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8792483A Granted JPS59213110A (en) 1983-05-19 1983-05-19 Magnetic field controlling device

Country Status (1)

Country Link
JP (1) JPS59213110A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591112U (en) * 1978-12-20 1980-06-24
JPS5631324A (en) * 1979-08-23 1981-03-30 Tokyo Shibaura Electric Co Superconductive electromagnet unit
JPS5830173A (en) * 1981-08-18 1983-02-22 Toshiba Corp Permanent current switch for superconducting coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591112U (en) * 1978-12-20 1980-06-24
JPS5631324A (en) * 1979-08-23 1981-03-30 Tokyo Shibaura Electric Co Superconductive electromagnet unit
JPS5830173A (en) * 1981-08-18 1983-02-22 Toshiba Corp Permanent current switch for superconducting coil

Also Published As

Publication number Publication date
JPH0534815B2 (en) 1993-05-25

Similar Documents

Publication Publication Date Title
Gallop et al. SQUIDs and their applications
JPH06196761A (en) Superconductive quantum interference device magnetometer
Tsukada et al. Hybrid magnetic sensor combined with a tunnel magnetoresistive sensor and high-temperature superconducting magnetic-field-focusing plates
Wilson An improved technique for measuring hysteresis loss in superconducting magnets
Clarke Ultrasensitive measuring devices
JPS59213110A (en) Magnetic field controlling device
Ma et al. Rogowski coil for current measurement in a cryogenic environment
Nave et al. Micromagnetic susceptometer
US3528001A (en) Test cell for measuring the magnetic properties of cryogenic materials
JP3000226B2 (en) SQUID magnetometer with calibration coil
Hartland Development of a cryogenic current comparator for the measurement of small currents.
Elmquist et al. Using a high-value resistor in triangle comparisons of electrical standards
Fagaly Superconducting magnetometers and instrumentation
ten Kate et al. A new type of superconducting direct current meter for 25 kA
Kuchnir et al. Flux creep in a Tevatron cable
Walker et al. Alternating field losses in mixed matrix multifilament superconductors
Erne’ SQUID sensors
JPH02296157A (en) Ac-loss measuring apparatus
Golovashkin et al. Simple high-temperature superconducting yttrium cuprate-based device for measuring weak magnetic fields
Lu et al. Improved Multipole Moment Electrical Heater for Magnetic Field Self-Suppression Based on Discrete Currents
Sasayama et al. Magnetic Particle Imaging U sing an Optically Pumped Magnetometer and a Flux Transformer
Guillaume et al. Dipole-sensitive homogeneous-field compensated high-$ T_ {c} $ DC SQUID
JPH01312806A (en) Superconductive coil
Ripka et al. Orthogonal fluxgate effect in electroplated wires
Espy et al. SQUID noise as a function of temperature: A survey of three SQUID's