JPS5991503A - Control amplifier - Google Patents

Control amplifier

Info

Publication number
JPS5991503A
JPS5991503A JP20114482A JP20114482A JPS5991503A JP S5991503 A JPS5991503 A JP S5991503A JP 20114482 A JP20114482 A JP 20114482A JP 20114482 A JP20114482 A JP 20114482A JP S5991503 A JPS5991503 A JP S5991503A
Authority
JP
Japan
Prior art keywords
value
proportional
integral
amplifier
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20114482A
Other languages
Japanese (ja)
Other versions
JPS6322324B2 (en
Inventor
Ryoichi Kurosawa
黒沢 良一
Toshiaki Kudo
工藤 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20114482A priority Critical patent/JPS5991503A/en
Publication of JPS5991503A publication Critical patent/JPS5991503A/en
Publication of JPS6322324B2 publication Critical patent/JPS6322324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To control the input of a controlled system by adding a quantity obtained by integrating a deviation value between an instructed value and a detected value to a quantity proportional to the deviation value to obtain a proportional integral value and outputting a value obtained by subtracting a compensating value proportional to the detected value from this proportional integral value. CONSTITUTION:A deviation value X1 between an instructed value ni and a feedback value n0 is obtained by subtraction. This deviation value X1 is inputted to a proportinal integral amplifier 12. First, the deviation value X1 and a constant Kp are multiplied to obtain a proportional component X2, and next, the deviation value X1 is divided by a value (for example, 1,000) corresponding to a sampling period to obtain a value X3. This value ismultiplied by a constant KI to obtain an integral quantity X4 per one sampling. The quantity X4 is added to the preceding integrated value to obtain a new integral value X5 as an integral component. The integral component and the proportional component are added to obtain a proportional integral value X6. Meanwhile, the feedback value n0 is inputted to a proportional amplifier 13 and is multiplied by a constant KB to obtain an overshoot preventing compensating value X7, and these values are subtracted in a subtractor 14 to obtain an output eC of a control amplifier 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は制御増幅器に係り、峙にフィードバック制御に
用いる制御増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control amplifier, and more particularly to a control amplifier used for feedback control.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

フィードバック制御の基本的な構成を第1図に示す。指
令値(目標値)eiと制御対象2の出力値(制御値)e
oが制御増幅器1により比較増幅され、その出力(操作
値)eCにより制御対象20入力が制御され、出力値e
oが指令値eiに近い値となるように制御される。
The basic configuration of feedback control is shown in Figure 1. Command value (target value) ei and output value (control value) e of controlled object 2
o is compared and amplified by the control amplifier 1, and its output (operation value) eC controls the 20 inputs to be controlled, and the output value e
o is controlled so that it has a value close to the command value ei.

第2図にフィードバック制イ卸の例として電動機の速度
制御の場合を示す。以下、この速度制御を例に説明する
。この速度制御系では電動機4の速度noを制御するの
が目的であり、指令値は速度指令、値旧で与えられる。
FIG. 2 shows the case of speed control of an electric motor as an example of feedback control. This speed control will be explained below as an example. The purpose of this speed control system is to control the speed no of the electric motor 4, and the command value is given as a speed command and a value old.

速度指令値niと速度検出器5により検出された速度n
oは制御増幅器lにより比較増幅され、その出力ecは
電力増幅器3に入力される。電力増幅器3はその人力e
cに応じた電流1を電動機4に流すために電力増幅を行
なう。電動機は電流に比例したトルクを発生し、このト
ルクに応じて速度が増減して、速度偏差(ni−no)
が小さくガるように制御される。
Speed command value ni and speed n detected by speed detector 5
o is compared and amplified by a control amplifier l, and its output ec is input to a power amplifier 3. The power amplifier 3 is powered by the human power e.
Power amplification is performed to cause a current 1 corresponding to c to flow through the motor 4. An electric motor generates a torque proportional to the current, and the speed increases or decreases according to this torque, resulting in speed deviation (ni-no)
is controlled so that it is slightly distorted.

電動機に負荷が加わった場合、電動機の速度n。When a load is applied to the motor, the speed n of the motor.

が減少し、速度偏差が増加するとともに、制御増幅器の
出力ec、電動機電流監が増加し、電動機の発生トルク
が増加し、結局速度noが変化しない様に制御される。
decreases, the speed deviation increases, the output ec of the control amplifier and the motor current limit increase, the torque generated by the motor increases, and eventually the speed is controlled so that it does not change.

第3図に制御増幅器としてもつとも簡単寿比例増幅器を
示す。6は減算器、7は増幅器で入力をKp倍に増幅す
る。指令値旧と出力の検出値noとの偏差が減算器6に
より求められ、これを単にKp倍に増幅するだけである
。制御増幅器lの出力ecがある値を持つためには必ず
偏差がなければならず、電動機がトルクを発生している
場合、速度指令や負荷トルクが一定の定常状態でも速度
は指令値に対して偏差(定常偏差)を持つことになる。
Figure 3 shows a simple lifetime proportional amplifier that can be used as a control amplifier. 6 is a subtracter, and 7 is an amplifier, which amplifies the input by Kp times. The deviation between the command value old and the detected output value no is determined by the subtracter 6, and this is simply amplified by a factor of Kp. In order for the output ec of the control amplifier l to have a certain value, there must be a deviation, and if the motor is generating torque, the speed will differ from the command value even in a steady state where the speed command and load torque are constant. It will have a deviation (steady deviation).

定常偏差をなくすために使用される?[tt制御増幅器
として第4図に示す比例積分増幅器がある。8は比例積
分増幅器で、偏差をKp倍した鎗と、偏差の積分量に比
例した童の和が出力される。比例積分増幅器の入9−K
、対゛する出力の伝達関係数o、、(−p ニー )は
(1)式で示される KI G(PI)=Kp+−・・・・・・・・・(1ンただし
Kp、に工は比例定数 Sはラプラス演算子 定常偏差が生じようとすると、この偏差が積分されて、
制御増幅器1の゛出力ecが増減し、結局、定常的な偏
差を発生することがない。定常状j線では速度指令値旧
と速度noは一致することになる。
Is it used to eliminate steady-state deviation? [tt There is a proportional-integral amplifier shown in FIG. 4 as a control amplifier. 8 is a proportional-integral amplifier, which outputs the sum of the difference multiplied by Kp and the sum of the difference proportional to the integral amount of the deviation. Proportional-integral amplifier input 9-K
, the transfer relation coefficient o, , (-p ni ) of the corresponding output is expressed by the equation (1). is the proportionality constant S is the Laplace operator. When a steady deviation is about to occur, this deviation is integrated,
The output ec of the control amplifier 1 increases and decreases, and as a result, no steady deviation occurs. On the steady state j-line, the speed command value old and the speed no match.

しかしながら比例積分増幅器を用いた場合は、第5図に
示すように、速度指令値旧の変化に対して速度が一度指
令値を越えるいわゆるオーバーシュートを生ずる。フィ
ードバック制御においては、必らず制御の遅れがあり、
この遅れの間に積分される債(図示のAの面積に比例)
とオーバーシュートした部分で負に積分されるt(図示
のBの面積に比例)が等しくなくてはならないことから
生ずる。
However, when a proportional-integral amplifier is used, as shown in FIG. 5, a so-called overshoot occurs in which the speed exceeds the command value once due to a change in the speed command value. In feedback control, there is always a control delay,
Bonds integrated during this delay (proportional to the area of A shown)
This arises from the fact that t (proportional to the area of B shown in the figure), which is negatively integrated in the overshoot portion, must be equal to t.

このオーバーシュートを防止するために、第6図に示す
ように比例積分増幅器にオーバーシュート防止補償回N
I9が付加される。これは、フィードバラ、り回路に一
種の微分回路(−次進み回路)を付加し、11ilJ御
の遅れにより積分される量を検出値の変化分で打消させ
るものである。オーバーシュート防止補償回路の入力に
対する出力の伝達関数G(A)は(2)式で示される ただしKAは比例定数 0人は定数 Sはラプラス演算子 第7図にオーバーシュート防止補償付比例積分増幅器を
用いた場合の速度指令値niに対する各部の応答を示す
。斜線で示した部分がオーバーシュート防止補償回路に
よって発生さiする信号Naの大きさである。この斜線
部の面積と制御の遅れにより積分されz量(図示のAの
面積)が等しくなるように定数KA、ω人を調整するこ
とによって速度n。
In order to prevent this overshoot, the proportional-integral amplifier has an overshoot prevention compensation circuit N as shown in FIG.
I9 is added. This is to add a type of differentiation circuit (-next advance circuit) to the feed balance circuit, and to cancel the amount integrated due to the delay of the 11ilJ control by the change in the detected value. The transfer function G(A) of the output to the input of the overshoot prevention compensation circuit is shown by the equation (2). However, KA is the proportional constant. If 0, then the constant S is the Laplace operator. The response of each part to the speed command value ni when using is shown. The shaded area is the magnitude of the signal Na generated by the overshoot prevention compensation circuit. The speed n is determined by adjusting the constants KA and ω so that the area of the shaded area and the z amount integrated by the control delay (area of A in the figure) are equal.

のオーバーシュートを防止できる′。この制御増幅器は
定常偏差もなくオーバーシュートも発生せず非常にすぐ
れた特性を持つ。
overshoot can be prevented. This control amplifier has very excellent characteristics with no steady-state deviation and no overshoot.

しかしオーバーシュート防止補償付比例積分増幅器は調
督しなければならない定数がKp 、KI 、KA 。
However, in the proportional-integral amplifier with overshoot prevention compensation, the constants that must be controlled are Kp, KI, and KA.

0人の4つあり、調整がやっかいである。There are 4 with 0 people, making it difficult to adjust.

また従来、これらの制御増幅器は演算増幅器を用いたア
ナログ回路で構成されていたため、理論的には定潜S差
を生じない積分要素を持つ制御増幅器でも演算増幅器の
誤差に起因する定常偏差を生じていた。
In addition, conventionally, these control amplifiers were constructed from analog circuits using operational amplifiers, so even control amplifiers with integral elements that theoretically do not produce a constant latent S difference can produce steady-state deviations due to errors in the operational amplifiers. was.

これに対して最近は、マイクロコンピュータなどを使用
してデジタル的にこれらの制御層1@を行なって精度の
改善が行なわれ始めた。デジタル的な積分は誤差のない
積分が行なえ比例積分増幅器の場合、定常偏差を全った
く無くすことができる。
In contrast, recently, improvements in precision have begun to be achieved by digitally controlling these control layers 1@ using microcomputers and the like. Digital integration can perform error-free integration, and in the case of a proportional-integral amplifier, steady-state deviation can be completely eliminated.

しかしオーバーシュート防止補償を付加して微分演算を
行なう場合、定常状態に近くなると微分量は無限に小さ
くなり、デジタル演算では演算の打切りを行なわざるを
得ない。このためオーバーシュート防止補償付比例積分
増幅ではデジタル演算L算を行なっても定常偏屋を完全
に無くすことができない。制御の高性能、^精度化のた
めデジタル化に適した制御増幅器の開発が望まれていた
However, when differential calculation is performed with overshoot prevention compensation added, the amount of differentiation becomes infinitely small as the steady state approaches, and digital calculation has no choice but to abort the calculation. For this reason, in the proportional-integral amplification with overshoot prevention compensation, the stationary bias cannot be completely eliminated even if the digital calculation L calculation is performed. There was a desire to develop a control amplifier suitable for digitalization in order to improve control performance and precision.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、オーバーシ
ュート防止補償付比例積分増幅器を容易にし、デジタル
化した場合に定常偏差を完−全に無くす浸れた特性の制
御増幅器を得ることを目的とする。
The present invention was made in view of the above-mentioned circumstances, and aims to facilitate the construction of a proportional-integral amplifier with overshoot prevention compensation, and to obtain a control amplifier with submerged characteristics that completely eliminates steady-state deviation when digitalized. do.

〔発明の概要〕[Summary of the invention]

本発明は制御対象の出力に対する指令値と前記制御対象
の出力の検出値を入力して比軟増幅し、前記制御序数の
入力を制御する制御増幅器に於て、前記指令値と前記検
出値との偏差値に比例した量に前記偏差値を積分した量
を加えた比例積分値を得る第1の演算手段と、前記比例
積分値から前記検出値に比例した補償量を減じた値を出
力して前記制−御対象の入力を制御する第2の演算手段
を設は調整が容易で優れた応答特性が得られる様にした
制御増幅器である。
The present invention provides a control amplifier that inputs a command value for the output of a controlled object and a detected value of the output of the controlled object, performs soft amplification, and controls the input of the control ordinal. a first calculation means for obtaining a proportional integral value obtained by adding an integral amount of the deviation value to an amount proportional to the deviation value of , and outputting a value obtained by subtracting a compensation amount proportional to the detected value from the proportional integral value; In this control amplifier, a second calculation means for controlling the input of the controlled object is provided so that adjustment is easy and excellent response characteristics can be obtained.

〔発明の実施例〕[Embodiments of the invention]

第8図に本発明の実施例を示す。11. 、14は減算
器、12は比例積分増幅器、13は比例増幅器であり、
これらによって制御増幅器lOが構成されている。
FIG. 8 shows an embodiment of the present invention. 11. , 14 is a subtracter, 12 is a proportional-integral amplifier, 13 is a proportional amplifier,
These constitute a control amplifier lO.

指令値n1とフィードバック値noは減算器11に人力
され偏差(ni−no)が求められる。この偏差は比例
積分増幅器12に入力される。−万、フィードバック値
noは比例増幅器13にも入力される。減算器14によ
り比例積分増幅器12の出力から比例増幅器13の出力
が減算されて制御増幅器1oの出力としてのecが求め
られる。
The command value n1 and the feedback value no are manually input to the subtracter 11 to obtain a deviation (ni-no). This deviation is input to the proportional-integral amplifier 12. -10,000, the feedback value no is also input to the proportional amplifier 13. A subtracter 14 subtracts the output of the proportional amplifier 13 from the output of the proportional-integral amplifier 12 to obtain ec as the output of the control amplifier 1o.

指令値niに対する制御増幅器出力ecの伝達関数Gc
iは(3)式で示され、第6図に示した従来例と全った
く同一である。
Transfer function Gc of control amplifier output ec to command value ni
i is expressed by equation (3), which is completely the same as the conventional example shown in FIG.

一方、フィードバック値noに対する制御増幅器出力e
cの伝達関数Gcoは(4)式で示される。
On the other hand, the control amplifier output e for the feedback value no
The transfer function Gco of c is expressed by equation (4).

第6図に示した従来例の場合のフィードバック値・・に
対する制御増幅器出力・・の伝達関数捧・・は(5)式
で示される。
In the case of the conventional example shown in FIG. 6, the transfer function of the control amplifier output with respect to the feedback value is expressed by equation (5).

しかしながら従来例の場合、一般に(Kr /Kp )
とωAをほぼ等しく選ぶと良い特性となることが経験的
に知られている。ωAに(K工/Kp)を代入すると(
6)式となる。
However, in the case of the conventional example, generally (Kr /Kp)
It is known from experience that good characteristics can be obtained if ωA and ωA are selected to be approximately equal. Substituting (K/Kp) for ωA, we get (
6) Equation becomes.

KI Gco’ = −(KP +−+KPKA)   ・・
・・・・・・・(6)したがってKaをKPKA と等
しく選べば従来例と同一の伝達関数となり、全ったく同
一の特性の制御増幅器とすることができ、調整が必要な
定数は従来例のKp 、’KI 、KA 、0人の4つ
からKA 、KI、KBの3つに減少させることができ
る−8 また、第8図から容易にわかるようにデンタル演算にお
いて演算打切り誤差を生ずる微分演算を必要とせず、デ
ジタル化した場合には定常偏差を完全になくしたオーバ
ーシュート防止補償付比例積分増幅が行々える。
KI Gco' = -(KP +-+KPKA)...
(6) Therefore, if Ka is chosen equal to KPKA, the transfer function will be the same as in the conventional example, and a control amplifier with exactly the same characteristics can be obtained, and the constants that need to be adjusted will be the same as in the conventional example. Kp, 'KI, KA, 0 can be reduced from 4 to 3, KA, KI, KB-8 Also, as can be easily seen from Figure 8, the differential that causes arithmetic truncation errors in dental calculations No calculations are required, and when digitized, proportional-integral amplification with overshoot prevention compensation can be performed that completely eliminates steady-state deviations.

第9図に演算増幅器を用いた場合の具体的な本発明の構
成を示す。15〜22は抵抗器、乙はコンデンサ、潤〜
局は演算増幅器である。抵抗器15 、17〜2】の抵
抗値をRとした時の定5 Kp 、KI 、Kaに対す
る抵抗器16 、22の値をKpLも、几/KBコンデ
ンサnの値を1 /K r Rとすれば同様の伝達関数
が得られる。一般的に広く使われている演算増幅器の基
本的な構成を組合せたものなので詳しい説明は省略する
が、抵抗器19 、20−、演算増幅器劇で構成される
部分は信号の極性反転を行ない、抵抗器15 、16゜
21、コンデンサお、演算増幅器5で構成される部分(
グ加算と比例積分増幅を行ない、抵抗器17 、18゜
22、演昇増幅器扉で構成される部分は加算を行なって
いる。演算増幅器の入力と出力との間で信号の極性が反
転されることに注意すれば第8図に示した実施例と同一
の伝達関数となることがわかる。
FIG. 9 shows a specific configuration of the present invention when an operational amplifier is used. 15 to 22 are resistors, O is a capacitor, Jun~
The station is an operational amplifier. When the resistance values of resistors 15, 17 to 2 are R, the values of resistors 16 and 22 for constant 5 Kp, KI, and Ka are KpL, and the value of the capacitor n is 1/K r R. A similar transfer function can be obtained. Since it is a combination of the basic configuration of commonly used operational amplifiers, a detailed explanation will be omitted, but the part consisting of resistors 19 and 20- and the operational amplifier inverts the polarity of the signal. The part consisting of resistors 15, 16゜21, capacitors, and operational amplifier 5 (
The section consisting of the resistors 17, 18.degree. 22, and the step-up amplifier door performs the addition. If it is noted that the polarity of the signal is inverted between the input and output of the operational amplifier, it can be seen that the transfer function is the same as that of the embodiment shown in FIG.

第10図に本発明の制(fitl増幅をマイクロコンピ
ュータで実現したーアルコリズムを示すフローチャート
の例を示す。ステップnで割込みが入るとステップ28
で指令1直旧、フィードバック値no、定111Kp 
FIG. 10 shows an example of a flowchart showing the algorithm of the present invention (fitl amplification realized by a microcomputer). When an interrupt occurs at step n, step 28
With command 1 immediately old, feedback value no, constant 111Kp
.

Kx 、Ksを読み込む。この割込は所定の時間(例え
ば1m5)ごとに実行する。次にステップ四で指令値n
iとフィードバック値noの偏差値X、を引き算によっ
て求める。ステップ力で論点!直入と定数Kpを采算し
て比例分へを求める。ステップ31で偏差値X、を割込
みによるサンプリング周期に応じた領(例えば1000
)で割り算してX3を求め、これにステップ32で定数
に工を乗算して1回のサンプリング尚りの積分世人を求
める。ステップおで前回に積分された値均に入を加えて
新しい積分値淘が積分分として求まる。ステップあて積
分分&と比例分視を加えて比例積分分淘を求める。次に
ステップ35でフィードバック値nOK定数KBを乗算
してオーバーシュート防止補償分へを求める。ステップ
あて比列積分分入からオーバーシュート防止補償分へを
減じてX8を求め、ステップ37でこの人を制御増幅出
力ecとして出力する。ステップ38で一連の割込みプ
ログラムを終える。
Read Kx and Ks. This interrupt is executed at predetermined intervals (for example, every 1 m5). Next, in step 4, the command value n
The deviation value X between i and the feedback value no is obtained by subtraction. The point of discussion is step power! Calculate the direct input and constant Kp to find the proportional component. In step 31, the deviation value
) to find X3, which is then multiplied by a constant in step 32 to find the integral over one sampling. At the step, a new integral value is obtained as an integral by adding the previously integrated value to the equation. Add the step integral & and the proportional division to find the proportional integral division. Next, in step 35, the feedback value nOK is multiplied by the constant KB to obtain an overshoot prevention compensation amount. X8 is obtained by subtracting the overshoot prevention compensation amount from the step application ratio sequence integral input, and in step 37, this person is outputted as the control amplification output ec. Step 38 ends the series of interrupt programs.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によればフィードバック制御に
おいて調整箇所が少なくなり、調整が容易となる。また
デジタル化した場合、定常偏差を完全になくすことがで
き、従来にない精度の高い制御が行なえる。電動機の速
度制御を例に説明したが、フィードバック制御は広くあ
らゆる分野に利用されており、本発明の効果は絶大での
る。
As described above, according to the present invention, there are fewer adjustment points in feedback control, and adjustment becomes easier. Furthermore, when digitalized, steady-state deviations can be completely eliminated, allowing for control with unprecedented precision. Although the speed control of an electric motor has been explained as an example, feedback control is widely used in all fields, and the effects of the present invention are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はフィードベック厚」御を説明するため
のブロック図、第3図、第4図、第6図は従来の制御増
幅器の例、第5図、第7図は制御応答を説−明する図、
第8図は本発明の制御増幅器の一実施例、第9図は本発
明の制御増幅器の具体的な回路構成図、第10図は本発
明をマイクロコンピュ、−夕で実施したアルゴリズムを
示すフローチャートである。 1.10・・・制御増幅器   2・・・制御対象3・
・・電力増幅器    4・・・電動機5・・・速度検
出器    6,11.14・・・減算器7.13・・
・比例増幅器  8,12・・・比例積分増幅器9・・
・オーバーシュート防止補償回路15〜22・・・抵抗
器    η・・・コンデンサ24〜26・・・演算増
幅器 (7317)代理人 弁理士  則近廠佑(ほか1名)
第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 裏IC !−ルθ XX/ /10o。 XJ r”X4 5+X2 Bx7!σ −X7 二し2ボ乃 ′r′38 ]〜29 ト30 ト31 N2 ト33 ト34 ト3..5 ト3乙 −37
Figures 1 and 2 are block diagrams for explaining feedback thickness control, Figures 3, 4, and 6 are examples of conventional control amplifiers, and Figures 5 and 7 are control responses. A diagram explaining
FIG. 8 is an embodiment of the control amplifier of the present invention, FIG. 9 is a specific circuit configuration diagram of the control amplifier of the present invention, and FIG. 10 is a flowchart showing an algorithm for implementing the present invention in a microcomputer. It is. 1.10... Control amplifier 2... Controlled object 3.
...Power amplifier 4...Electric motor 5...Speed detector 6,11.14...Subtractor 7.13...
・Proportional amplifier 8, 12... Proportional integral amplifier 9...
・Overshoot prevention compensation circuit 15-22...Resistor η...Capacitor 24-26...Operation amplifier (7317) Agent: Patent attorney Noriyuki Noriyuki (and one other person)
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Back IC! -le θ XX/ /10o. XJ r”

Claims (1)

【特許請求の範囲】[Claims] 制御対象の出力に対する指令値と前記制御対象の出力の
検出値を入力して比較増幅し前記制御対象の入力を制御
する制御増幅器に於て、前記指令値と前記検中値との偏
差値に比例−した量に前記偏差値を積分した量を加えた
比例積分値を得る第1の演算手段と、前記比例積分値か
ら前記検出値に比例した量を減じた値を出力して前記制
御対象の入力を制御する第2の演算手段を設けたことを
特徴とする制御増幅器。
In a control amplifier that inputs a command value for the output of a controlled object and a detected value of the output of the controlled object, compares and amplifies the input, and controls the input of the controlled object, a deviation value between the command value and the detected value is determined. a first calculating means for obtaining a proportional integral value obtained by adding an integral amount of the deviation value to a proportional amount; A control amplifier characterized in that it is provided with a second arithmetic means for controlling the input of the control amplifier.
JP20114482A 1982-11-18 1982-11-18 Control amplifier Granted JPS5991503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20114482A JPS5991503A (en) 1982-11-18 1982-11-18 Control amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20114482A JPS5991503A (en) 1982-11-18 1982-11-18 Control amplifier

Publications (2)

Publication Number Publication Date
JPS5991503A true JPS5991503A (en) 1984-05-26
JPS6322324B2 JPS6322324B2 (en) 1988-05-11

Family

ID=16436124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20114482A Granted JPS5991503A (en) 1982-11-18 1982-11-18 Control amplifier

Country Status (1)

Country Link
JP (1) JPS5991503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036061A (en) * 2009-08-04 2011-02-17 Yaskawa Electric Corp Motor control device and motor control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543647A (en) * 1978-09-21 1980-03-27 Toshiba Corp Plant control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543647A (en) * 1978-09-21 1980-03-27 Toshiba Corp Plant control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036061A (en) * 2009-08-04 2011-02-17 Yaskawa Electric Corp Motor control device and motor control system

Also Published As

Publication number Publication date
JPS6322324B2 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US5053692A (en) Temperature dependent power supply for use with a bridge transducer
JPS5991503A (en) Control amplifier
US20100128912A1 (en) Logarithmic Compression Systems and Methods for Hearing Amplification
US5216354A (en) Controllable voltage-to-current converter having third-order distortion reduction
JP3962215B2 (en) Control device
JPH06294664A (en) Nonlinear circuit
JPH09105680A (en) Temperature measuring circuit
JPH079602B2 (en) Control device
JP2923993B2 (en) Motor control device
JPS61128303A (en) Proportional integrating device
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JP2850076B2 (en) Control device
US5020126A (en) Method and circuit for the automatic control of the speed of a DC motor by the control voltage of the motor
JPS6337599B2 (en)
JP3339275B2 (en) Inverter device torque control device
JP2663387B2 (en) Stabilization feedback control method
JPS6325917Y2 (en)
KR100360373B1 (en) Control algorithm for suppressing vibration of shaft at rolling mill
JP2516647Y2 (en) Temperature compensation circuit
JPH02695Y2 (en)
JPS6162102A (en) Control arithmetic unit
JP3539782B2 (en) Control circuit
CN113758596A (en) Sensor drive circuit
JPS6334712B2 (en)
JPS6343785B2 (en)