JPS6322324B2 - - Google Patents
Info
- Publication number
- JPS6322324B2 JPS6322324B2 JP57201144A JP20114482A JPS6322324B2 JP S6322324 B2 JPS6322324 B2 JP S6322324B2 JP 57201144 A JP57201144 A JP 57201144A JP 20114482 A JP20114482 A JP 20114482A JP S6322324 B2 JPS6322324 B2 JP S6322324B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- amplifier
- proportional
- control
- integral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000002265 prevention Effects 0.000 description 12
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Feedback Control In General (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は制御増幅器に係り、特にフイードバツ
ク制御に用いる制御増幅器に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control amplifier, and particularly to a control amplifier used for feedback control.
フイードバツク制御の基本的な構成を第1図に
示す。指令値(目標値)eiと制御対象2の出力値
(制御値)eoが制御増幅器1により比較増幅さ
れ、その出力(操作値)ecにより制御対象2の入
力が制御され、出力値eoが指令値eiに近い値とな
るように制御される。
The basic configuration of feedback control is shown in FIG. The command value (target value) ei and the output value (control value) eo of the controlled object 2 are compared and amplified by the control amplifier 1, and the input of the controlled object 2 is controlled by the output (operated value) ec, and the output value eo is set as the command. It is controlled to have a value close to the value ei.
第2図にフイードバツク制御の例として電動機
の速度制御の場合を示す。以下、この速度制御を
例に説明する。この速度制御系では電動機4の速
度noを制御するのが目的であり、指令値は速度
指令値niで与えられる。速度指令値niと速度検出
器5により検出された速度noは制御増幅器1に
より比較増幅され、その出力ecは電力増幅器3に
入力される。電力増幅器3はその入力ecに応じた
電流iを電動機4に流すために電力増幅を行な
う。電動機は電流に比例したトルクを発生し、こ
のトルクに応じて速度が増減して、速度偏差(ni
−no)が小さくなるように制御される。 FIG. 2 shows a case of speed control of an electric motor as an example of feedback control. This speed control will be explained below as an example. The purpose of this speed control system is to control the speed no of the electric motor 4, and the command value is given by the speed command value ni. The speed command value ni and the speed no detected by the speed detector 5 are compared and amplified by the control amplifier 1, and its output ec is input to the power amplifier 3. The power amplifier 3 performs power amplification in order to cause a current i corresponding to the input ec to flow through the motor 4. An electric motor generates a torque proportional to the current, and the speed increases or decreases according to this torque, resulting in a speed deviation (ni
-no) is controlled to be small.
電動機に負荷が加わつた場合、電動機の速度
noが減少し、速度偏差が増加するとともに、制
御増幅器の出力ec、電動機電流iが増加し、電動
機の発生トルクが増加し、結局速度noが大きく
変化しない様に制御される。 When a load is applied to the motor, the speed of the motor
As no decreases and the speed deviation increases, the output ec of the control amplifier and the motor current i increase, and the torque generated by the motor increases, so that the speed no is controlled so as not to change significantly.
第3図に制御増幅器としてもつとも簡単な比例
増幅器を示す。6は減算器、7は増幅器で入力を
Kp倍に増幅する。指令値niと出力の検出値noと
の偏差が減算器6により求められ、これを単に
Kp倍に増幅するだけである。制御増幅器1の出
力ecがある値を持つためには必ず偏差がなければ
ならず、電動機がトルクを発生している場合、速
度指令や負荷トルクが一定の定常状態でも速度は
指令値に対して偏差(定常偏差)を持つことにな
る。 Figure 3 shows a simple proportional amplifier that can be used as a control amplifier. 6 is a subtracter and 7 is an amplifier for input.
Amplify by Kp times. The deviation between the command value ni and the detected output value no is obtained by the subtracter 6, and is simply
It just amplifies it by Kp times. In order for the output ec of control amplifier 1 to have a certain value, there must be a deviation, and if the motor is generating torque, the speed will differ from the command value even in a steady state where the speed command and load torque are constant. It will have a deviation (steady deviation).
定常偏差をなくすために使用される制御増幅器
として第4図に示す比例積分増幅器がある。8は
比例積分増幅器で、偏差をKp倍した量と、偏差
の積分量に比例した量の和が出力される。比例積
分増幅器の入力に対する出力の伝達関係数G
(PI)は(1)式で示される。 There is a proportional-integral amplifier shown in FIG. 4 as a control amplifier used to eliminate steady-state deviation. 8 is a proportional-integral amplifier, which outputs the sum of an amount obtained by multiplying the deviation by Kp and an amount proportional to the integrated amount of the deviation. Transfer relationship coefficient G of output to input of proportional-integral amplifier
(PI) is expressed by equation (1).
G(PI)=Kp+KI/S ……(1)
ただしKP,KIは比例定数
Sはラプラス演算子
定常偏差が生じようとすると、この偏差が積分
されて、制御増幅器1の出力ecが増減し、結局、
定常的な偏差を発生することがない。定常状態で
は速度指令値niと速度noは一致することになる。 G (PI) = Kp + K I /S ... (1) where K P and K I are proportional constants S is Laplace operator When a steady deviation is about to occur, this deviation is integrated and the output ec of the control amplifier 1 becomes It increases and decreases, and eventually,
No steady deviation occurs. In a steady state, the speed command value ni and the speed no will match.
しかしがら比例積分増幅器を用いた場合は、第
5図に示すように、速度指令値niの変化に対して
速度が一度指令値を越えるいわゆるオーバーシユ
ートを生ずる。フイードバツク制御においては必
らず制御の遅れがあり、この遅れの間に積分され
る量(図示のAの面積に比例)とオーバーシユー
トした部分で負に積分される量(図示のBの面積
に比例)が等しくなくてはならないことから生ず
る。 However, when a proportional-integral amplifier is used, as shown in FIG. 5, a so-called overshoot occurs in which the speed exceeds the command value once in response to a change in the speed command value ni. In feedback control, there is always a control delay, and the amount integrated during this delay (proportional to the area of A shown in the figure) and the amount negatively integrated at the overshot part (proportional to the area of B shown in the figure) (proportional to) must be equal.
このオーバーシユートを防止するために、第6
図に示すように比例積分増幅器にオーバーシユー
ト防止補償回路9が付加される。これは、フイー
ドバツク回路に一種の微分回路(一次進み回路)
を付加し、制御の遅れにより積分される量を検出
値の変化分で打消させるものである。オーバーシ
ユート防止補償回路の入力に対する出力の伝達関
数G(A)は(2)式で示される。 In order to prevent this overshoot, the sixth
As shown in the figure, an overshoot prevention compensation circuit 9 is added to the proportional-integral amplifier. This is a type of differential circuit (primary advance circuit) in the feedback circuit.
is added, and the amount integrated due to the control delay is canceled out by the change in the detected value. The input-to-output transfer function G(A) of the overshoot prevention compensation circuit is expressed by equation (2).
G(A)=KAS/S+〓A ……(2)
ただしKAは比例定数
Sはラプラス演算子
第7図にオーバーシユート防止補償付比例積分
増幅器を用いた場合の速度指令値niに対する各部
の応答を示す。斜線で示した部分がオーバーシユ
ート防止補償回路によつて発生される信号Naの
大きさである。この斜線部の面積と制御の遅れに
より積分される量(図示のAの面積)が等しくな
るように定数KA,ωAを調整することによつて速
度noのオーバーシユートを防止できる。この制
御増幅器は定常偏差もなくオーバーシユートも発
生せず非常にすぐれた特性を持つ。 G(A)=K A S/S+〓 A ...(2) where K A is a proportional constant S is Laplace operator Figure 7 shows the speed command value ni when using a proportional-integral amplifier with overshoot prevention compensation. The response of each part to is shown below. The shaded area is the magnitude of the signal Na generated by the overshoot prevention compensation circuit. Overshoot of the speed no can be prevented by adjusting the constants K A and ω A so that the area of this hatched portion and the amount integrated by the control delay (area of A in the figure) are equal. This control amplifier has very excellent characteristics with no steady-state deviation and no overshoot.
しかしオーバーシユート防止補償付比例積分増
幅器は調整しなければならない定数がKP,KI,
KA,ωAの4つあり、調整がやつかいである。 However, in a proportional-integral amplifier with overshoot prevention compensation, the constants that must be adjusted are K P , K I ,
There are four, K A and ω A , and adjustment is difficult.
また従来、これらの制御増幅器は演算増幅器を
用いたアナログ回路で構成されていたため、理論
的には定常偏差を生じない積分要素を持つ制御増
幅器でも演算増幅器の誤差に起因する定常偏差を
生じていた。 Furthermore, in the past, these control amplifiers were constructed from analog circuits using operational amplifiers, so even control amplifiers with integral elements that theoretically did not produce steady-state deviations produced steady-state deviations due to errors in the operational amplifiers. .
これに対して最近は、マイクロコンピユータな
どを使用してデジタル的にこれらの制御増幅を行
なつて精度の改善が行なわれ始めた。デジタル的
な積分は誤差のない積分が行なえ比例積分増幅器
の場合、定常偏差を全つたく無くすことができ
る。しかしオーバーシユート防止補償を付加して
微分演算を行なう場合、定常状態に近くなると微
分量は無限に小さくなり、デジタル演算では演算
の打切りを行なわざるを得ない。このためオーバ
ーシユート防止補償付比例積分増幅ではデジタル
演算を行なつても定常偏差を完全に無くすことが
できない。制御の高性能、高精度化のためデジタ
ル化に適した制御増幅器の開発が望まれていた。 Recently, on the other hand, attempts have been made to digitally control and amplify these signals using microcomputers and the like to improve accuracy. Digital integration can perform error-free integration, and in the case of a proportional-integral amplifier, steady-state deviation can be completely eliminated. However, when differential calculation is performed with overshoot prevention compensation added, the amount of differentiation becomes infinitely small as the steady state approaches, and digital calculation has no choice but to abort the calculation. Therefore, in proportional-integral amplification with overshoot prevention compensation, steady-state deviation cannot be completely eliminated even if digital calculations are performed. There was a desire to develop a control amplifier suitable for digitalization in order to achieve high performance and high precision control.
本発明は上記事情に鑑みてなされたもので、オ
ーバーシユート防止補償付比例積分増幅器を容易
にし、デジタル化した場合に定常偏差を完全に無
くす優れた特性の制御増幅器を得ることを目的と
する。
The present invention has been made in view of the above circumstances, and aims to facilitate the construction of a proportional-integral amplifier with overshoot prevention compensation and to obtain a control amplifier with excellent characteristics that completely eliminates steady-state deviation when digitalized. .
本発明は制御対象の出力に対する指令値と前記
制御対象の出力の検出値を入力して比較増幅し、
前記制御対象の入力を制御する制御増幅器に於
て、前記指令値と前記検出値との偏差値に比例し
た量に前記偏差値を積分した量を加えた比例積分
値を得る第1の演算手段と、前記比例積分値から
前記検出値に比例した補償量を減じた値を出力し
て前記制御対象の入力を制御する第2の演算手段
を設け調整が容易で優れた応答特性が得られる様
にした制御増幅器である。
The present invention inputs and compares and amplifies a command value for the output of a controlled object and a detected value of the output of the controlled object,
In the control amplifier that controls the input of the controlled object, a first calculation means for obtaining a proportional integral value obtained by adding an amount proportional to the deviation value between the command value and the detected value and an amount obtained by integrating the deviation value. and second calculation means for controlling the input of the controlled object by outputting a value obtained by subtracting a compensation amount proportional to the detected value from the proportional integral value so that adjustment is easy and excellent response characteristics are obtained. This is a control amplifier with a
第8図に本発明の実施例を示す。11,14は
減算器、12は比例積分増幅器、13は比例増幅
器であり、これらによつて制御増幅器10が構成
されている。指令値niとフイードバツク値noは減
算器11に入力され偏差(ni−no)が求められ
る。この偏差は比例積分増幅器12に入力され
る。一方、フイードバツク値noは比例増幅器1
3にも入力される。減算器14により比例積分増
幅器12の出力から比例増幅器13の出力が減算
されて制御増幅器10の出力としてのecが求めら
れる。
FIG. 8 shows an embodiment of the present invention. 11 and 14 are subtracters, 12 is a proportional-integral amplifier, and 13 is a proportional amplifier, and these constitute the control amplifier 10. The command value ni and the feedback value no are input to a subtracter 11 to obtain a deviation (ni-no). This deviation is input to the proportional-integral amplifier 12. On the other hand, the feedback value no is proportional amplifier 1
3 is also input. A subtracter 14 subtracts the output of the proportional amplifier 13 from the output of the proportional-integral amplifier 12 to obtain ec as the output of the control amplifier 10.
指令値niに対する制御増幅器出力ecの伝達関数
Gciは(3)式で示され、第6図に示した従来例と全
つたく同一である。 Transfer function of control amplifier output ec to command value ni
Gci is expressed by equation (3) and is completely the same as the conventional example shown in FIG.
Gci=KP+KI/S ……(3)
一方、フイードバツク値noに対する制御増幅
器出力ecの伝達関数Gcoは(4)式で示される。 Gci=K P +K I /S (3) On the other hand, the transfer function Gco of the control amplifier output ec with respect to the feedback value no is expressed by equation (4).
Gco=−(KP+KI/S+KB) ……(4)
第6図に示した従来例の場合のフイードバツク
値noに対する制御増幅器出力ecの伝達関数
Gco′は(5)式で示される。 Gco=-(K P +K I /S+K B ) ...(4) Transfer function of control amplifier output ec to feedback value no in the conventional example shown in Figure 6
Gco′ is expressed by equation (5).
Gco′=−(KP+KI/S)(1+KAS/S+ωA)……
(5)
しかしながら従来例の場合、一般に(KI/KP)
とωAをほぼ等しく選ぶと良い特性となることが
経験的に知られている。ωAに(KI/KP)を代入
すると(6)式となる。 Gco′=−(K P +K I /S) (1+K A S/S+ω A )……
(5) However, in the case of conventional examples, generally (K I /K P )
It is empirically known that choosing ω A and ω A to be approximately equal results in good characteristics. Substituting (K I /K P ) into ω A yields equation (6).
Gco′=−(KP+KI/S+KPKA) ……(6)
したがつてKBをKPKAと等しく選べは従来例と
同一の伝達関数となり、全つたく同一の特性の制
御増幅器とすることができ、調整が必要な定数は
従来例のKP,KI,KA,ωAの4つからKA,KI,
KBの3つに減少させることができる。 Gco′=−(K P +K I /S+K P K A ) ...(6) Therefore, if K B is chosen equal to K P K A , the transfer function will be the same as the conventional example, and all the characteristics will be the same. It can be used as a control amplifier, and the constants that need to be adjusted are K A , K I ,
KB can be reduced to three.
また、第8図から容易にわかるようにデジタル
演算において演算打切り誤差を生ずる微分演算を
必要とせず、デジタル化した場合には定常偏差を
完全になくしたオーバーシユート防止補償付比例
積分増幅が行なえる。 In addition, as can be easily seen from Figure 8, digital calculations do not require differential calculations that cause truncation errors, and when digitalized, proportional-integral amplification with overshoot prevention compensation can be performed that completely eliminates steady-state deviations. Ru.
第9図に演算増幅器を用いた場合の具体的な本
発明の構成を示す。15〜22は抵抗器、23は
コンデンサ、24〜26は演算増幅器である。抵
抗器15,17〜21の抵抗値をRとした時の定
数KP,KI,KBに対する抵抗器16,22の値を
KPR,R/KBコンデンサ23の値を1/KIRと
すれば同様の伝達関数が得られる。一般的に広く
使われている演算増幅器の基本的な構成を組合せ
たものなので詳しい説明は省略するが、抵抗器1
9,20、演算増幅器24で構成される部分は信
号の極性反転を行ない、抵抗器15,16,2
1、コンデンサ23、演算増幅器25で構成され
る部分は加算と比例積分増幅を行ない、抵抗器1
7,18,22、演算増幅器26で構成される部
分は加算を行なつている。演算増幅器の入力と出
力との間で信号の極性が反転されることに注意す
れば第8図に示した実施例と同一の伝達関数とな
ることがわかる。 FIG. 9 shows a specific configuration of the present invention when an operational amplifier is used. 15-22 are resistors, 23 is a capacitor, and 24-26 are operational amplifiers. When the resistance values of resistors 15, 17 to 21 are R, the values of resistors 16 and 22 for constants K P , K I , and K B are
A similar transfer function can be obtained by setting the value of the K P R, R/K B capacitor 23 to 1/K I R. Since it is a combination of the basic configuration of commonly used operational amplifiers, detailed explanation will be omitted, but resistor 1
9, 20, and the operational amplifier 24 inverts the polarity of the signal, and resistors 15, 16, 2
1, the part consisting of the capacitor 23 and the operational amplifier 25 performs addition and proportional-integral amplification, and the resistor 1
A portion consisting of 7, 18, 22 and an operational amplifier 26 performs addition. If it is noted that the polarity of the signal is inverted between the input and output of the operational amplifier, it can be seen that the transfer function is the same as that of the embodiment shown in FIG.
第10図に本発明の制御増幅をマイクロコンピ
ユータで実現したアルゴリズムを示すフローチヤ
ートの例を示す。ステツプ27で割込みが入ると
ステツプ28で指令値ni、フイードバツク値no、
定数KP,KI,KBを読み込む。この割込は所定の
時間(例えば1ms)ごとに実行する。次にステツ
プ29で指令値niとフイードバツク値noの偏差値
X1を引き算によつて求める。ステツプ30で偏
差値X1と定数KPを乗算して比例分X2を求める。
ステツプ31で偏差値X1を割込みによるサンプ
リング周期に応じた値((例えば1000)で割り算
してX3を求め、これにステツプ32で定数KIを
乗算して1回のサンプリング当りの積分量X4を
求める。ステツプ33で前回に積分された値X5
にX4を加えて新しい積分値X5が積分分として求
まる。ステツプ34で積分分X5と比例分X2を加
えて比例積分分X6を求める。次にステツプ35
でフイードバツク値noに定数KBを乗算してオー
バーシユート防止補償分X7を求める。ステツプ
36で比例積分分X6からオーバーシユート防止
補償分X7を減じてX8を求め、ステツプ37でこ
のX8を制御増幅出力ecとして出力する。ステツ
プ38で一連の割込みプログラムを終える。 FIG. 10 shows an example of a flowchart showing an algorithm for implementing the controlled amplification of the present invention using a microcomputer. When an interrupt occurs in step 27, the command value ni, feedback value no,
Read the constants K P , K I , and K B. This interrupt is executed at predetermined intervals (for example, 1 ms). Next, in step 29, the deviation value between the command value ni and the feedback value no.
Find X 1 by subtraction. In step 30, the deviation value X 1 is multiplied by the constant K P to obtain the proportional portion X 2 .
In step 31, the deviation value X 1 is divided by a value (for example, 1000) according to the sampling period due to the interrupt to obtain X 3 , and in step 32, this is multiplied by the constant K I to obtain the integral amount per sampling. Find X 4.In step 33, the previously integrated value X 5
By adding X 4 to , a new integral value X 5 is found as an integral. In step 34, the integral X5 and the proportional integral X2 are added to obtain the proportional integral X6 . Next step 35
Multiply the feedback value no by the constant K B to find the overshoot prevention compensation X7 . In step 36, the overshoot prevention compensation component X 7 is subtracted from the proportional integral component X 6 to obtain X 8 , and in step 37 this X 8 is outputted as the control amplification output ec. Step 38 ends the series of interrupt programs.
以上述べたように本発明によればフイードバツ
ク制御において調整箇所が少なくなり、調整が容
易となる。またデジタル化した場合、定常偏差を
完全になくすことができ、従来にない精度の高い
制御が行なえる。電動機の速度制御を例に説明し
たが、フイードバツク制御は広くあらゆる分野に
利用されており、本発明の効果は絶大である。
As described above, according to the present invention, the number of adjustment points in feedback control is reduced, making adjustment easier. Furthermore, when digitalized, steady-state deviations can be completely eliminated, allowing for control with unprecedented precision. Although the speed control of an electric motor has been explained as an example, feedback control is widely used in all fields, and the effects of the present invention are enormous.
第1図、第2図はフイードバツク制御を説明す
るためのブロツク図、第3図、第4図、第6図は
従来の制御増幅器の例、第5図、第7図は制御応
答を説明する図、第8図は本発明の制御増幅器の
一実施例、第9図は本発明の制御増幅器の具体的
な回路構成図、第10図は本発明をマイクロコン
ピユータで実施したアルゴリズムを示すフローチ
ヤートである。
1,10……制御増幅器、2……制御対象、3
……電力増幅器、4……電動機、5……速度検出
器、6,11,14……減算器、7,13……比
例増幅器、8,12……比例積分増幅器、9……
オーバーシユート防止補償回路、15〜22……
抵抗器、23……コンデンサ、24〜26……演
算増幅器。
Figures 1 and 2 are block diagrams for explaining feedback control, Figures 3, 4 and 6 are examples of conventional control amplifiers, and Figures 5 and 7 are for explaining control responses. 8 is an embodiment of the control amplifier of the present invention, FIG. 9 is a specific circuit configuration diagram of the control amplifier of the present invention, and FIG. 10 is a flowchart showing an algorithm implemented by a microcomputer of the present invention. It is. 1, 10... Control amplifier, 2... Controlled object, 3
... Power amplifier, 4 ... Electric motor, 5 ... Speed detector, 6, 11, 14 ... Subtractor, 7, 13 ... Proportional amplifier, 8, 12 ... Proportional-integral amplifier, 9 ...
Overshoot prevention compensation circuit, 15-22...
Resistor, 23... Capacitor, 24-26... Operational amplifier.
Claims (1)
象の出力の検出値を入力して比較増幅し前記制御
対象の入力を制御する制御増幅器に於て、前記指
令値と前記検出値との偏差値に比例した量に前記
偏差値を積分した量を加えた比例積分値を得る第
1の演算手段と、前記比例積分値から前記検出値
に比例した量を減じた値を出力して前記制御対象
の入力を制御する第2の演算手段を設けたことを
特徴とする制御増幅器。1 In a control amplifier that inputs a command value for the output of a controlled object and a detected value of the output of the controlled object, compares and amplifies the input, and controls the input of the controlled object, a deviation value between the command value and the detected value is a first calculating means for obtaining a proportional integral value obtained by adding an integral amount of the deviation value to a proportional amount; A control amplifier characterized in that a second calculation means for controlling an input is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20114482A JPS5991503A (en) | 1982-11-18 | 1982-11-18 | Control amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20114482A JPS5991503A (en) | 1982-11-18 | 1982-11-18 | Control amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991503A JPS5991503A (en) | 1984-05-26 |
JPS6322324B2 true JPS6322324B2 (en) | 1988-05-11 |
Family
ID=16436124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20114482A Granted JPS5991503A (en) | 1982-11-18 | 1982-11-18 | Control amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991503A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5413036B2 (en) * | 2009-08-04 | 2014-02-12 | 株式会社安川電機 | Motor control device and motor control system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5543647A (en) * | 1978-09-21 | 1980-03-27 | Toshiba Corp | Plant control system |
-
1982
- 1982-11-18 JP JP20114482A patent/JPS5991503A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5543647A (en) * | 1978-09-21 | 1980-03-27 | Toshiba Corp | Plant control system |
Also Published As
Publication number | Publication date |
---|---|
JPS5991503A (en) | 1984-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0362801B1 (en) | Digital control system | |
US7382150B2 (en) | Sensitivity switchable detection circuit and method | |
JPH0738128B2 (en) | Control device | |
US4498037A (en) | Velocity servo controller | |
JPH0325505A (en) | Multifunction controller | |
JPS6322324B2 (en) | ||
US5032777A (en) | Feedback controller | |
US4891588A (en) | Device for detecting rotation speed having feedback circuitry and improved frequency-response | |
JP2914477B2 (en) | Electric power steering device | |
JPH0738127B2 (en) | Robust controller | |
JPH0888990A (en) | Position controller for motor | |
JP2770461B2 (en) | Multi-function control device | |
JPH0118671B2 (en) | ||
JPH0797285B2 (en) | Process control equipment | |
JP3870028B2 (en) | Full closed position controller | |
JPH079602B2 (en) | Control device | |
JPH052405A (en) | Controller | |
JP2844289B2 (en) | IMC controller | |
JPH02695Y2 (en) | ||
JPH029362Y2 (en) | ||
JPS61128303A (en) | Proportional integrating device | |
JPH0556522B2 (en) | ||
JP2850076B2 (en) | Control device | |
JPH0713801B2 (en) | Control device | |
JP2522658B2 (en) | Automatic control method |