JPS599115A - Detection of descending behavior and heaped structure of charge in blast furnace - Google Patents

Detection of descending behavior and heaped structure of charge in blast furnace

Info

Publication number
JPS599115A
JPS599115A JP11661782A JP11661782A JPS599115A JP S599115 A JPS599115 A JP S599115A JP 11661782 A JP11661782 A JP 11661782A JP 11661782 A JP11661782 A JP 11661782A JP S599115 A JPS599115 A JP S599115A
Authority
JP
Japan
Prior art keywords
charge
pressure
furnace
layer
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11661782A
Other languages
Japanese (ja)
Other versions
JPH0210204B2 (en
Inventor
Hiroshi Itaya
板谷 宏
Matao Araya
荒谷 復夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11661782A priority Critical patent/JPS599115A/en
Publication of JPS599115A publication Critical patent/JPS599115A/en
Publication of JPH0210204B2 publication Critical patent/JPH0210204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To perform titled detection at the optional height level in a blast furnace without exerting the influence of the flowing-in of the charge near the furnace top and redistribution on the detection, by determining the fluctuation of the changing speed of pressure between the measuring points at the plural positions apart a distance almost speed to the thickness of a single kind of the charge in the heaped layer in the furnace. CONSTITUTION:The pressure gradient in the layer thickness direction of the charge in a furnace heaped alternately by the fractional charge of ores and coke depends largely on grain sizes and void volume if the flow rate of gas is specified, and if the grain sizes and void volume increase, the pressure gradient decrease. Since the average grain size and void volume of the coke are larger than those of the ores, the pressure gradient changes periodically at the pressure measuring point, and the time when the boundary position of both layers passes the measuring point can be exactly detected from the speed of abrupt change in pressure. If the pressure change is measured with measuring devices 14 on upper and lower sides apart by DELTAL in the height direction, 10, 11 in the figure are obtained, and in the latter, the pressure change delays by a certain time DELTAt. Since DELTAt is the time required for the descend DELTAL of the charge, the descending speed of the charge is v=DELTAL/DELTAt.

Description

【発明の詳細な説明】 本発明は、高炉内装入物の降下挙動ならびに堆積構造の
検知方法に関するものであり、とくに装入物層の高炉高
さ方向にわたる降下速度ならびに装入物地積構造につき
正確に検知する有利な方法について提案するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the descending behavior and deposition structure of charges in a blast furnace. This paper proposes an advantageous method for detecting

高炉操業において、溶銑温度、溶銑成分あるいは、燃料
比などは、炉下部に到達するまでの装入物の還元状態、
加熱状態、溶融状態などにより支配される。−セな1っ
ち、高炉の炉頂からllffl次装入されて層状堆積構
造をなす炉内の装入物は、炉内を上−Pl、+るガスと
は逆に降下していく間に、そのガスとの接触により加熱
、還元されるのであり、この意味で装入物の還元状態、
加熱状態、溶紗状暢は装入物が炉下部に到達するまでの
降下速度により多大tx彰響を受ける。したがって、溶
銑温度。
In blast furnace operation, hot metal temperature, hot metal composition, fuel ratio, etc. are determined by the reduction state of the charge until it reaches the lower part of the furnace.
Controlled by heating conditions, melting conditions, etc. The charge in the blast furnace, which is charged from the top of the blast furnace to form a layered stacked structure, descends in the furnace in the opposite direction to the gas flowing upwards. It is then heated and reduced by contact with the gas, and in this sense, the reduced state of the charge,
The heating state and the state of the melt are affected by a large amount of tx due to the rate of descent of the charge until it reaches the lower part of the furnace. Therefore, the hot metal temperature.

成分、炉熱等の檜業の安定性を確保するには、装入物の
降下速度を常に正確に把握し、これを適正に管理するこ
とが不可欠の条件である。
In order to ensure the stability of the cypress industry in terms of composition, furnace heat, etc., it is essential to always accurately grasp the rate of descent of the charge and to properly manage it.

従来、上述した装入物の降下速度を測定するのに1炉頂
部の装入物堆積層表面上に、該装入物層の勅キに追随す
る動きをなす錘りを接触させることにより、装入物の降
下速度を副べろ技術があった。
Conventionally, in order to measure the rate of descent of the charge described above, a weight that moves to follow the force of the charge layer is brought into contact with the surface of the charge deposited layer at the top of the furnace. There was a technique to measure the descending speed of the charge.

図中の1は、鍾りの移動計測定器、2は大ベル、8ばお
もりの1.s ’Fげワイヤ、4は錘り、5は鉄皮、6
は炉壁れんが、7は装入物(堆積)層表面である。W通
、高炉炉頂部での装入物堆積グロフィルは、m1図で示
すように、炉壁側1.:1情く炉中心側が低くなるよう
に開缶して堆(青しているため、錘り4は中心側に転軸
したり、装入物の炉中心(1111への流れ込みに追従
したりする。かかる従来技術の場合、上述のような不正
常な錘り4の動きに対しても装入物が炉内を降下したも
のとして11°測される。したll″−って、錘り4の
移動距離から装入物の降下i! tq *測定1′°る
従来の方法では、炉内での装入物の降下とは無関係に起
こる外乱〕1′−排除できないため測定誤差が大きいと
いう欠点があった。
In the figure, 1 is the movement meter of the plow, 2 is the large bell, and 1 is the 8-bar weight. s 'F wire, 4 is weight, 5 is iron skin, 6
7 is the furnace wall brick, and 7 is the surface of the charge (deposition) layer. As shown in the m1 diagram, the charge deposition globules at the top of the blast furnace furnace wall side 1. : 1 Open the can so that the center side of the furnace is lower (because it is blue, the weight 4 may rotate to the center side, or follow the flow of the charge into the center of the furnace (1111). In the case of this prior art, even if the weight 4 moves abnormally as described above, it is measured by 11° as if the charge had descended inside the furnace. In the conventional method of measuring the descent of the charge i! tq from the moving distance of There was a drawback.

しかも、かかる従来技術の場合、錘り4が装入物の堆積
表面上に位置することが必須の要件なので、装入物の降
F速度な検出できたとしてもそれは装入物の堆積表面近
傍についての挙動に限定されろ。従って高炉内炉高方向
における全体的な装入物の降下挙動を代表するものとは
いい得ない不備がある。
Moreover, in the case of such conventional technology, it is an essential requirement that the weight 4 be located on the deposition surface of the charge, so even if the falling F rate of the charge can be detected, it is not near the deposition surface of the charge. Be limited to behavior about. Therefore, there is a deficiency in that it cannot be said to be representative of the overall descending behavior of the burden in the furnace height direction within the blast furnace.

本発明の目的とするところは、上述した従来測定技術に
見られる欠点:即ち炉頂近傍における装入物の流れ込み
や、再分布の影響を受けず、しかも炉内の任意の高さレ
ベルにおける装入物の降下速度および堆積構造を極めて
容易に検出するのに好適な方法について梯案することに
ある。この発明の構成の要旨とするところは、 鉱石類とコークスとを分別装入十ろことにより、それら
が交互に堆積した状態となる炉内装入物層につき、その
降下挙動ならびに堆積構造な検知I−る方法において、 」二記装入物の単−挿のものが形成する一堆積層の平均
層厚に略等しい距離隔てた炉体の複数ケ所に測定点を設
けてそれぞれの位置で炉内圧力の変化を測定し、その圧
力の変化測定値から装入物種別毎の圧力変化速度を求め
、上記各1111定点間で測定される該圧力変化速度の
変動から装入物の降下速19”と装入物種別毎のj鰻j
墜0層厚比を検知することを%徴とする高炉内装入物の
降下挙動ならびに堆1′f#構造の検知方法にある。以
Fにその構成の詳1酬か説明する。
The purpose of the present invention is to eliminate the drawbacks of the conventional measurement techniques mentioned above, namely, to eliminate the effects of charge flow and redistribution near the top of the furnace, and to eliminate the effects of loading at any height level in the furnace. The object of the present invention is to develop a method suitable for extremely easily detecting the descending speed and sedimentary structure of objects. The gist of the configuration of this invention is to detect the descending behavior and the deposited structure of the charge layer in the furnace where ores and coke are alternately deposited by separately charging them. In this method, measurement points are provided at multiple locations on the furnace body spaced apart by a distance approximately equal to the average layer thickness of one deposited layer formed by a single charge, and the measurement points are measured at each location within the furnace. Measure the change in pressure, determine the rate of pressure change for each type of charge from the measured value of the change in pressure, and determine the rate of fall of the charge from the fluctuation in the pressure change rate measured between the above 1111 fixed points. and eel by charging type
The present invention provides a method for detecting the descending behavior of the contents in a blast furnace and the structure of the pile 1'f#, which uses detection of the falling 0 layer thickness ratio as a % characteristic. The details of its configuration will be explained below.

高炉では、鉱石類とコークスとは層状4t!造を形成゛
するように交互に分別装入されるが、これらの装入物は
原則的に酢うとそのままj@状槽構造維持した状態で炉
内を降ドして溶融滴下帯上部にまで;−1−’J”る。
In a blast furnace, ores and coke are layered 4 tons! These charges are alternately charged separately so as to form a structure, but in principle, these charges descend through the furnace while maintaining the @-shaped tank structure and reach the upper part of the molten dripping zone. ;-1-'J"ru.

一方、高炉のような充3ffI層における層1り方向の
圧力勾配dp’d lは、 ここでP:R:力(174清2) 17:炉内高さ方向の距1111F(Cm )ε:光塙
ハ1の窒口率(無次元) ■〕:充jj?!お7子の粒子径(a7)G:ガスのj
Q 41 m 4(f/am” ・sec )/l:ガ
スの粘度(S’/crn・sec )ρ:ガスの密度(
f/Cm’ ) U:ガスの空塔速度(σ) 2o二重力換算係#!i(171重) 上記(1)式から明らかなように、ガス(質量)流量が
一定の条件下では、粒子径りと空隙量εに大きく依存し
ており、粒子径D y’j′−大きくなると圧力勾配d
p/dtは減少し、空@率εが大きくなるど圧力勾配d
p/dtは減少する。
On the other hand, the pressure gradient dp'dl in the layer 1 direction in a full 3ffI layer like a blast furnace is, where P:R: Force (174Q2) 17: Distance in the furnace height direction 1111F (Cm) ε: Mitsunawa ha 1's niguchi rate (dimensionless) ■〕: Charge jj? ! Seventh child's particle diameter (a7) G: j of gas
Q 41 m4 (f/am” ・sec)/l: Viscosity of gas (S'/crn・sec) ρ: Density of gas (
f/Cm') U: Superficial velocity of gas (σ) 2o double force conversion coefficient #! i (171 weights) As is clear from the above equation (1), under the condition that the gas (mass) flow rate is constant, the particle diameter D y'j'- As it increases, the pressure gradient d
As p/dt decreases and the void ratio ε increases, the pressure gradient d
p/dt decreases.

要するに、高炉に装入される鉱石類とコークスの平均的
な粒子径りはそれぞれ0.02 m (鉱石)と0.0
5 m (コークス)で、コークスの方が粒子径は大き
く、両層の平均的な空隙量εもそれぞれ0・40と0.
45でコークス層の方が大ぎい。従って、上述の圧力勾
配dp/dlと粒子径D!dよび空隙量εの関係から鉱
石類の層とコークスノ僻を比較すると、鉱石類層におけ
る圧力勾配の方が、粒子径りおよび窒隙兆εが小さい分
だけコークス層における圧力勾配よりも大きくなること
に示している。
In short, the average particle diameters of ores and coke charged into the blast furnace are 0.02 m (ore) and 0.0 m, respectively.
5 m (coke), the particle size of coke is larger, and the average void volume ε of both layers is 0.40 and 0.40, respectively.
45, the coke layer is larger. Therefore, the above-mentioned pressure gradient dp/dl and particle diameter D! Comparing the ore layer and coke layer from the relationship between d and void volume ε, the pressure gradient in the ore layer is larger than the pressure gradient in the coke layer due to the smaller particle diameter and pore volume ε. Especially shown.

上述のことから、炉内の一定点で圧力を測定すれば、例
えば圧力勾配dp/dtの大きい鉱石類の層h’s 該
圧力測定点の位置を通過するときには大きな圧力変化が
現り、、−実圧力勾配dp’r3.1の小さなコ・−ク
ス層が4111定りか通過すると鎗には小さな圧力変化
が川、れるようKなる。ところで、高炉内では[Fカフ
1111定点の位置を圧力勾配dp/dtの異なる鉱石
・+jiのIy4とコークス層とが父q−に通過l−る
ので、測定される圧力変化は両層の11万過に対しF>
 シて大きな′4′ll:、と小さな変化とが交互に現
れろ。
From the above, if the pressure is measured at a certain point in the furnace, for example, a layer h's of ores with a large pressure gradient dp/dt, a large pressure change will occur when passing through the position of the pressure measurement point, - When a small cox layer with an actual pressure gradient dp'r of 3.1 passes through the 4111 level, a small pressure change will be felt in the spear. By the way, in the blast furnace, Iy4 and coke layer with different pressure gradients dp/dt pass through the fixed point of [F cuff 1111], so the measured pressure change is 11 in both layers. F>
The big '4'll:, and small changes appear alternately.

単2 tglは、装入物降下法I@’ 2 cm/mi
n、炉頂圧1000 f/c*”、ガスの質量速度0.
2 f 7cm” ・−5ea、鉱石1罵JEK 1−
2 m、コークス層0.8mの条件下における、ストッ
クライン下2.3mと8.f3tnの2ケ所の位置で測
定さり、る圧力変化から、(1)式にもとづき、層別年
の圧力勾配(圧力の時間変化)を理論的に計舅、した結
果について示すものであるが、(・」れの位置において
も鉱石□+、11やコークスの装入時における急激な用
力上、y?、を除くと、鉱石類の層の通過時に(・文太
き〕x圧力変化が現れ、コークス層の通過時には小さな
圧力変化が現れている。
AA tgl is the charge drop method I@' 2 cm/mi
n, furnace top pressure 1000 f/c*”, gas mass velocity 0.
2 f 7cm”・-5ea, ore 1 curse JEK 1-
2.3 m below the stock line and 8.2 m under the condition of 0.8 m of coke layer. The following shows the results of theoretically calculating the pressure gradient (temporal change in pressure) for each stratified year based on equation (1) from the pressure changes measured at two locations at f3tn. (・ Even at this position, due to the rapid utility at the time of charging ore □+, 11 and coke, except for y?, a (・bold) x pressure change appears when passing through the ore layer, A small pressure change appears when passing through the coke layer.

また、槙8し1は上記各1i4毎のi圧力勾配の81算
結果に本〉づ艙、鉱石類やコークス装入時の急激な°圧
力上昇を除いて、ストックライン下2.8mの位、置で
の圧力の時間変化(圧力勾配dp/dt)から求めた各
圧力変化速度持続の時間経過な示す図である。この図に
示されるように、圧力測定点に鉱石層が到達すると圧力
変化速度は9激に大きくなり、コークス層が到達すると
急激に小さく1.cるので、両層の境界位1dが圧力測
定点な通過した時刻を極めて正確に検知することができ
る。
In addition, Maki 8 and 1 are based on the 81 calculation results of the i pressure gradient for each 1 i 4 above, excluding the sudden pressure rise during ore and coke charging, at a position of 2.8 m below the stock line. , is a diagram showing the time course of the duration of each pressure change rate determined from the time change of pressure (pressure gradient dp/dt) at , . As shown in this figure, when the ore layer reaches the pressure measurement point, the pressure change rate increases dramatically, and when the coke layer arrives, it decreases rapidly. Therefore, the time when the boundary position 1d between both layers passes the pressure measurement point can be detected very accurately.

1F、8図において、toは炉内の圧力測定点の位置を
鉱石層が通過するのに要した時間であり、t、。
In Figures 1F and 8, to is the time required for the ore layer to pass the position of the pressure measurement point in the furnace, and t.

はコークス層h′−通過するのに要した時間である。is the time required to pass through the coke layer h'.

本発明は、正にこのような鉱石層の層とコークスIf4
との通過にともなう上記圧力勾配(以下は圧力変化速度
という)の周期的な変化を利用して装入物降下速度を検
出するようにした方法である。
The present invention utilizes exactly such ore layer and coke If4.
In this method, the rate of descent of the charge is detected using periodic changes in the pressure gradient (hereinafter referred to as pressure change rate) as it passes through.

さて、高炉の高さ方向に適当な間隔ΔLを隔てた2ケ所
の測定点を定めて圧力の変化測定し、圧力変化速度を求
めれば両方の位置で得られる圧力変化速度は、第8図の
ように周期的に変化し、この変化は第4図に示すように
下側の測定点において上側に対しイ遅れて現れる。図中
10は上側測宇点辿1定値、11はT−開側定点におけ
ろ測定値の変化である。
Now, if we measure the pressure change at two measurement points separated by an appropriate distance ΔL in the height direction of the blast furnace and find the pressure change rate, the pressure change rate obtained at both positions will be as shown in Figure 8. As shown in FIG. 4, this change appears at the lower measurement point with a delay from the upper measurement point. In the figure, numeral 10 indicates a constant value of the upper measuring point, and numeral 11 indicates a change in the measured value at the fixed point on the T-opening side.

さて、ある時刻t0に一ヒ部位置にセットした圧力4(
11定点で体入物堆4ji 層7’l’s鉱石類からコ
ークスへと変化することに伴って王力駕化速度の急激な
減少h′−あったとすると、この圧力変化速度を生じさ
せる鉱石類の層とコークスの層との境界は、上部位r耀
にセットした測定点をある時間遅れて通過し、とのド部
bI吋における圧力変化速度の急激な減少もその時間だ
け遅れて起る。ある着目する鉱石類の層とコークス層の
境界が上側の圧力測定点を通過し、FE力窯化速jvが
急激に減少した時刻なto、この境14r、が下側の測
定点シ辿過し圧力変化速度が急激に減少しだ時刻をt2
と−4−itば、Δj、=j、、−t□は寝入゛吻がΔ
Lの間隔シ降下−4“るに快した時間である。従って、
装入物の降下速度は(2)式により求めることができる
Now, at a certain time t0, the pressure 4 (
11 At a fixed point, if there is a rapid decrease in the rate of solidification h'- due to the change from ore to coke, then the rate of ore that causes this pressure change rate is The boundary between the coke layer and the coke layer passes through the measurement point set in the upper part R after a certain time delay, and the rapid decrease in the rate of pressure change in the lower part b I also occurs with a delay of that time. The boundary between the ore layer of interest and the coke layer passes through the upper pressure measurement point and the FE power kilnization speed jv sharply decreases. The time when the pressure change rate starts to decrease rapidly is t2.
If -4-it, Δj, = j, , -t□ falls asleep, and the proboscis is Δ
It is a comfortable time for the interval L to fall - 4. Therefore,
The descending speed of the charge can be determined using equation (2).

V−Δr、 /Δt。V-Δr, /Δt.

?rお、上下に陽てる圧力測定点間の間隔ΔLを平均的
装入物の層厚の範囲:すなわち鉱石なら鉱石だけの皐−
堆積層が形成する平均層厚を0.5〜i、o mとすれ
ば、上側の圧力測定点で急激な圧力変化速度の減少が現
れた時刻を基県としたとき、F側の測定点に現れる最初
の圧力変化速度の減少は鉱石−の層についての上側と対
応するものと言5ことができる。要するに、特定の装入
物層についての上Fの圧力測定点での対応する急激な圧
力変化速度の減少を判別するには、ΔLはその装入物層
の平均的な装入物ノー厚とすることが必要なとととなる
? r, the interval ΔL between the upper and lower pressure measurement points is the range of the average charge layer thickness: i.e., if it is ore, it is the thickness of only ore.
If the average layer thickness formed by the deposited layer is 0.5 to i, o m, then when the time at which a rapid decrease in pressure change rate appears at the upper pressure measurement point is taken as the base point, the F side measurement point It can be said that the initial decrease in the rate of pressure change that appears in the upper part of the ore layer corresponds to the upper part of the ore layer. In short, to determine the corresponding rapid pressure change rate decrease at the top F pressure measurement point for a particular charge layer, ΔL is equal to the average charge no thickness for that charge layer. It becomes necessary to do so.

第す図は、炉口径8.8mの操業中の高炉においてスト
ックライン下7mと8mの位置で炉壁を貫通して鋼鉄製
のパイプ12.18を炉壁れんが内! 面まで挿入し炉内圧力を測定する状況を示すものである
The figure shows a steel pipe 12.18 inserted into the furnace wall bricks by penetrating the furnace wall at positions 7m and 8m below the stock line in an operating blast furnace with a furnace diameter of 8.8m. This shows the situation in which the pressure inside the furnace is measured by inserting it up to the surface.

第6図は、第5図に示した方法で測定した上側の測定点
IBと下側の測定点1Bにおける圧力勾配から求めた圧
力変化速度の時間変化の1例である。図から明らかなよ
5忙、上側の測定点12である11キ刻t0で急激な圧
カ変化速f1の減少が現れた後、]、 yn ’F 1
則の測定点18には約8・5分遅れた時刻t2で膚激な
LE圧力変化速度減少が現れ、この染台装入物の降−ト
速度は(2)式により1 ・O/ 8−5中0.12 
+7t/minのように求められた。
FIG. 6 is an example of a time change in the pressure change rate determined from the pressure gradient at the upper measurement point IB and the lower measurement point 1B measured by the method shown in FIG. As is clear from the figure, after a sudden decrease in the pressure change speed f1 appears at the 11th interval t0, which is the upper measurement point 12, ], yn 'F 1
At measurement point 18 of the law, a drastic decrease in the rate of change in LE pressure appears at time t2, which is about 8.5 minutes late, and the unloading rate of this dye bed charge is 1 ・O/8 according to equation (2). -0.12 out of 5
+7t/min.

本発明によれば、上述のよ51f方法で、装入物の降F
件度テI!−正&fに検知できる。そのために、該l忰
下庫度■と第3図に示した鉱石類として識別されている
時間t。、コークスとして識別されている時+llt、
cとかCつ、それぞれ鉱石層厚lOとコークス層厚tc
はθ(の各式により求められる。
According to the present invention, in the 51f method as described above, the
Case degree te I! -Can be detected positively &f. Therefore, the time t identified as the ore shown in FIG. , when identified as coke+llt,
c and C, respectively, ore layer thickness lO and coke layer thickness tc
is determined by each equation of θ(.

/、0−■×toで8) /c−v X tcf41 さらに、−ヒ式から降下速度Vを検出しtx <でも、
toシt。を検出−むるだげで鉱石類の層厚とコークy
−I’d J’lノ比to/ lc &t f51式に
より求めることができる。
/, 0-■×to = 8) /c-v
to sit. Detection of ore thickness and coke y in Murudage
-I'd J'l ratio to/lc &t f It can be determined by formula 51.

to/lc = to/ to(51 上記のようにして、この発明によれば炉内装入物の堆積
面で生じる撹乱Wよる誤検出を伴うことlC<、正確か
つ容易に高炉内装入物の降下速度を検知できるばかりで
なく、鉱石類の層厚、コークス層の層厚および両層の層
厚比も極めて容易に検知できる。
to/lc = to/to (51 As described above, according to the present invention, it is possible to accurately and easily lower the blast furnace contents with erroneous detection caused by the disturbance W occurring on the deposition surface of the blast furnace contents. Not only the speed can be detected, but also the thickness of the ore layer, the thickness of the coke layer, and the ratio of the thicknesses of both layers can be detected very easily.

なお、本発明の詳細な説明では炉壁に2ケ所圧力測定孔
を設Uした場合について述べたが、圧力測定孔を高さ方
向に多段に設置すれば炉内高さ方向の任意の位置で装入
物の降下速度を検知できることは当然である。さらに、
0.5〜1m程度の間隔を隔てた2個の圧力Φ11定孔
を有し、かつ炉内を昇降可能な構造とした鋼鉄製のパイ
プを炉内に挿入してLE力を測定すれば、炉内の任意の
高さレベルで装入物降下速度を測定できることは明らか
である。
In the detailed explanation of the present invention, the case was described in which pressure measurement holes were installed at two locations on the furnace wall, but if the pressure measurement holes are installed in multiple stages in the height direction, they can be installed at any position in the height direction inside the furnace. Naturally, it is possible to detect the rate of descent of the charge. moreover,
If the LE force is measured by inserting a steel pipe into the furnace that has two pressure holes of Φ11 spaced apart by about 0.5 to 1 m and has a structure that allows it to be moved up and down inside the furnace, It is clear that the charge fall rate can be measured at any height level within the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高炉内の装入物堆積表面におもりを墨下げた
状態を示す断面図、 i2図は、理論的に計算したストックライン下の2.8
mと8・8mの位4での圧力変化を示すグラフ、 旭81ン1ば、理論的に計算したストックライン下Q 
2.3mの位16での圧力変化速度の経時変化を示ナグ
ラフ、 第4図は、高炉内で垂直方向にΔL隔てた2虚で測定さ
れる圧力変化から得られろ圧力変化速度の時間経過な示
すグラフ、 ηし5図は、ストックライン下7mと8mで炉内圧な測
定する状況を示す説明図、 PA fi図は、ストックライン下7mと8mで測定し
た圧力から求めた圧力変化速度の時間経過を示、。 −1グラフである。 1・・・“)4iりの移r+d+≠測定器、2・・・大
ベル、8・・・7・し曹1)ドげワイヤ、4・・・鯉り
、5・・・鉄皮、6・・・炉壁れんが、7・・・装入物
堆積表面、8・・・上側の測定点での圧力変化計n値、
(+・・・F側の測定点での圧力変化gt算値、10・
・・ト+)IliO測定点での圧力変化速度、11・・
・下111IIの測1を点での圧力変化速度、12・・
ストックラインF 7 mでの圧力測定用ノくイブ、 1B・・・ストックラインF 8 mでの千力測定用バ
イゾ、14・・・圧力1則定器、 15・・・ストックライン下7mでの圧力測定から求め
た圧力変化速度、 16・・・ストックライン下13 mでのt+力測定か
ら求めた圧力変化速度。 特許出願人  川崎製鉄株式会社 第1図 第2図 時間(今) 第8図 第71図 □時間 第5図
Figure 1 is a cross-sectional view showing the state in which the weight is lowered on the surface of the charge pile in the blast furnace, and Figure i2 is 2.8 below the theoretically calculated stock line.
Graph showing the pressure change at the 4th place of m and 8.8m, Asahi 81n1, theoretically calculated stock line lower Q
Figure 4 shows the time course of the pressure change rate at the 2.3 m mark. Figure 5 is an explanatory diagram showing the situation in which the furnace pressure is measured at 7 m and 8 m below the stock line, and PA fi diagram shows the rate of pressure change determined from the pressure measured at 7 m and 8 m below the stock line. Shows the passage of time. -1 graph. 1...") 4i transfer r + d + ≠ measuring device, 2... large bell, 8... 7, Shiso 1) doge wire, 4... carp, 5... iron skin, 6... Furnace wall brick, 7... Charge deposition surface, 8... Pressure change meter n value at upper measurement point,
(+... Calculated value of pressure change gt at measurement point on F side, 10.
...G+) Pressure change rate at the IliO measurement point, 11...
・Pressure change rate at point 1 of 111II below, 12...
Knob for measuring pressure at stock line F 7 m, 1B...Visor for measuring force at stock line F 8 m, 14...Pressure 1 regulator, 15...Knob for measuring pressure at 7 m below stock line Rate of pressure change determined from pressure measurement, 16... Rate of pressure change determined from t+ force measurement at 13 m below the stock line. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Time (current) Figure 8 Figure 71 □ Time Figure 5

Claims (1)

【特許請求の範囲】[Claims] L 鉱石勇白とコークスとを分別装入するこkにより、
そ牙1らゾ)−父琵に堆積した状態とブfる炉内装入゛
物層につ争、その降F挙動ならびに堆]lll溝遣枦倹
知才る方法において、上記装入を吻の屯−錘のものが形
成する一堆])°を層の平吻Ii厚に略等しい距離隔て
た炉体の複数ケ所に湘l )、1:点を設けてそれぞれ
の位置で・い内圧力の変化シ測定し、その圧力の変化測
定冥から装入′吻棹別得のjJE力変化速度を求め、上
h「;各泪11定点間で測定される該圧力変化速度のf
l tH++から装入物の降F速度と装入物種別毎の層
厚、ハ青厚比か検知することな特徴とする高炉内装人物
の降F挙動ブえらひに堆積構造の検知方法。
L By separately charging ore and coke,
1) - Conflicts between the state of deposits in the furnace and the layer of materials in the furnace, its falling F behavior and deposition] 1) Set up a point at each location on the furnace body separated by a distance approximately equal to the thickness of the layer. Measure the change in pressure, calculate the force change rate at the charging point from the pressure change measurement, and calculate the pressure change rate f measured between each fixed point.
A method for detecting a deposition structure based on the F-fall behavior of a person inside a blast furnace, which is characterized by detecting the F-fall rate of the charge, the layer thickness for each type of charge, and the blue thickness ratio from tH++.
JP11661782A 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace Granted JPS599115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11661782A JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11661782A JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Publications (2)

Publication Number Publication Date
JPS599115A true JPS599115A (en) 1984-01-18
JPH0210204B2 JPH0210204B2 (en) 1990-03-07

Family

ID=14691610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11661782A Granted JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Country Status (1)

Country Link
JP (1) JPS599115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208407A (en) * 1984-03-31 1985-10-21 Nippon Kokan Kk <Nkk> Detection of layer of charge in furnace
US4730999A (en) * 1985-08-05 1988-03-15 Hitachi, Ltd. Negative pressure supply apparatus for automobiles
CN107299169A (en) * 2017-08-07 2017-10-27 新兴铸管股份有限公司 The computational methods of blast furnace short term damping-down material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208407A (en) * 1984-03-31 1985-10-21 Nippon Kokan Kk <Nkk> Detection of layer of charge in furnace
JPH0380842B2 (en) * 1984-03-31 1991-12-26 Nippon Kokan Kk
US4730999A (en) * 1985-08-05 1988-03-15 Hitachi, Ltd. Negative pressure supply apparatus for automobiles
CN107299169A (en) * 2017-08-07 2017-10-27 新兴铸管股份有限公司 The computational methods of blast furnace short term damping-down material
CN107299169B (en) * 2017-08-07 2019-04-02 新兴铸管股份有限公司 The calculation method of blast furnace short term damping-down material

Also Published As

Publication number Publication date
JPH0210204B2 (en) 1990-03-07

Similar Documents

Publication Publication Date Title
JPH08295910A (en) Operation of blast furnace
JPS599115A (en) Detection of descending behavior and heaped structure of charge in blast furnace
Hinkley et al. An investigation of pre-ignition air flow in ferrous sintering
JP2015028209A (en) Method for estimating gas flow velocity and reduced load of blast furnace lumpy zone
Ono et al. Experimental investigations on monitoring and control of induction heating process for semi-solid alloys using the heating coil as sensor
JPS58727B2 (en) Estimation method of cohesive zone shape in blast furnace
JPH01290709A (en) Operation of blast furnace
US5971286A (en) Method for the determination of the gas flux distribution in a blast furnace
JPS62235404A (en) Detection of behavior of charge in vertical type furnace
WO1997012064A9 (en) A method for the determination of the gas flux distribution in a blast furnace
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JP2678767B2 (en) Blast furnace operation method
JP7111277B1 (en) METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
JPS62202006A (en) Method for measuring heat flow rate ratio in blast furnace
JPS6116405B2 (en)
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JPH0417607A (en) Method for operating blast furnace
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JPS5831007A (en) Detection of abnormality in descending of charging material in blast furnace
JPH05222416A (en) Control method for distribution of charged material in blast furnace
JPH02182813A (en) Method for operating blast furnace
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace
JPS6135965Y2 (en)