JPS5989473A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS5989473A
JPS5989473A JP57200679A JP20067982A JPS5989473A JP S5989473 A JPS5989473 A JP S5989473A JP 57200679 A JP57200679 A JP 57200679A JP 20067982 A JP20067982 A JP 20067982A JP S5989473 A JPS5989473 A JP S5989473A
Authority
JP
Japan
Prior art keywords
electrodes
amorphous silicon
film
conversion element
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200679A
Other languages
Japanese (ja)
Other versions
JPS6260819B2 (en
Inventor
Masaharu Ono
大野 雅晴
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Kunikazu Ozawa
小沢 邦一
Yasuhiro Goto
泰宏 後藤
Hiroki Nakase
中瀬 弘已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57200679A priority Critical patent/JPS5989473A/en
Publication of JPS5989473A publication Critical patent/JPS5989473A/en
Publication of JPS6260819B2 publication Critical patent/JPS6260819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve sensitivity, and to mass-produce the converters by simultaneously forming a plurality of minute photo-EMF element patterns on one substrate while simultaneously obtaining a differential type electric coupling. CONSTITUTION:A plurality of lower electrodes 5a, 5b are formed to the insulating substrate 5, and an amorphous silicon thin-film 6 is formed on the electrodes. A plurality of upper electrodes 7a, 7b are formed on the thin-film 6. At least one side of the electrodes 5a, 5b and the electrodes 7a, 7b are formed in transparent electrodes. A plurality of photosensors are formed by the thin-film 6, the electrodes 5a, 5b and the electrodes 7a, 7b. Electrode patterns are formed so that the polarity of the adjacent photosensors is connected reversely in succession. When a shielding plate 3 is moved laterally, beams are projected alternately to the electrodes 7a, 7b, and photo-EMF is generated alternately in two photo-EMF elements.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光電式エンコーダ等に応用する非晶質薄膜光
電変換素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an amorphous thin film photoelectric conversion element applied to photoelectric encoders and the like.

従来例の構成とその問題点 第1図は従来例の光ダイオード4を用いる光電式エンコ
ーダの構成図である。発光ダイオード、白熱ランプ等の
光源1に対向して受光素子である光ダイオード4を配置
し、その間に適当なピッチで開孔部2が連続するじゃへ
い板3を配置する。
Structure of a conventional example and its problems FIG. 1 is a block diagram of a photoelectric encoder using a photodiode 4 of a conventional example. A photodiode 4 as a light receiving element is arranged opposite to a light source 1 such as a light emitting diode or an incandescent lamp, and a baffle plate 3 having continuous openings 2 at an appropriate pitch is arranged therebetween.

光ダイオード4は単結晶シリコンでPMN接合ダイオー
ドを形成し、PN接合に逆バイアスがかがるようリード
線4J 4bに電圧を印加しである。
The photodiode 4 is a PMN junction diode made of single crystal silicon, and a voltage is applied to the lead wire 4J4b so that a reverse bias is applied to the PN junction.

しゃへい板3が図で横に移動すると断続光がフォトダイ
オード4のP N接合に入射し発生したキャリアにより
第2図の様な光電流の信号がリード線4a、4bに発生
する。即ち、しゃへい板3の移動量に応じた数のパルス
が発生してアナログ的な変位を数値化することができる
。この従来例の欠点は、発生する光電流が小さく、脈流
であシ感度が低く、ノイズの影響を受けやすい。
When the shielding plate 3 moves laterally in the figure, intermittent light enters the PN junction of the photodiode 4, and carriers generated generate photocurrent signals in the lead wires 4a and 4b as shown in FIG. That is, the number of pulses corresponding to the amount of movement of the shielding plate 3 is generated, and the analog displacement can be quantified. The drawbacks of this conventional example are that the generated photocurrent is small, the sensitivity is low due to pulsating current, and it is susceptible to noise.

!た光ダイオード4の形状が大きくたとえば外径は約3
■φ、受光部は約1■φであり、変位に対する分解能が
悪い・更に光ダイオードの素子の厚みも2〜3■ありエ
ンコーダ全体の厚みを薄くすることができない。しゃへ
い板3と光源1および光ダイオード4との間隔はそれぞ
れ0.5〜1配ぐらいである。
! The shape of the photodiode 4 is large, for example, the outer diameter is about 3 mm.
■φ, the light receiving part is about 1■φ, and the resolution for displacement is poor.Furthermore, the thickness of the photodiode element is 2 to 3 mm, making it impossible to reduce the thickness of the entire encoder. The distance between the shielding plate 3, the light source 1, and the photodiode 4 is about 0.5 to 1 space, respectively.

発明の目的 本発明は、小型で感、賢の非常に高いエンコーダ用光電
変換素子を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a photoelectric conversion element for an encoder that is small, highly sensitive, and highly efficient.

発明の構成 本発明は、一枚の基板上に複数個の微小な光起電力素子
器のパターンを同時に形成すると共に差動型の電気的結
合も同時に得られる非晶質シリコン薄膜を用いた光電変
換素子である。
Structure of the Invention The present invention provides a photovoltaic device using an amorphous silicon thin film that can simultaneously form a plurality of microscopic photovoltaic device patterns on a single substrate and also provide differential electrical coupling. It is a conversion element.

実施例の説明 第3図が実施例である。ガラス、セラミック、耐熱高分
子フィルム等の絶縁性基板5の上に2つの下部電極5a
、5bを形成する。形成方法は、ニッケル、ニッケルク
ロム合金、クロム、アルミニウム、チタン、ITO(工
nxSn1−xO3)、5n02等を電子ビーム蒸着に
よシ真空蒸着したシスバッタリング装置で蒸着して形成
する。次にブロズマCVD装置を用いてシランガス中0
.1〜4Torrの圧力でグロー放電をおこし150〜
300℃に加熱した基板4の上に非晶質シリコン半導体
薄膜6を形成する。この非晶質シリコンは未結合のダン
グリングボンドがシラン(SiH4)の分解によυ発生
するH原子で補償されバンドギャップ中の局在準位が著
しく減少している。従って放電する時に不純物元素を含
むガスを混入すればP型あるいはN型の半導体に不純物
制御することができる。そこで、ジボラン(82H6)
 を0.2〜2係含むシランガス中でまず100〜50
0AのP型非晶質シリコン層を、次に不純物を含まない
3000〜5000Aの1を非晶質シリコン層を、最後
にホスフィン(PH3)を0.2〜2%含む7ランガス
中で50〜5000AのN型非晶質シリコン層を形成し
、PiN構造の非晶質シリコン半導体薄膜6を形成する
。更に下部電極と同じ様な方法で上部電極7a、7bを
形成する。第3図の実施例の場合は、受光面となる上部
電極7a、’ybは少なくとも透明電極にする必要があ
りITOやネサ(SnOz)を用いる。第4図は第3図
に示す光電変換素子の実施例の断面図である。第3図で
一枚の絶縁性基板5の上に2つの光起電力素子全同時に
形成し、透明な上部電極7aは隣接する光起電力素子の
下部電極5bに電気的に接触し、透明な上部電極7bは
やはり隣接する光起電力素子の下部電極5aに電気的に
接触するパターン形成となっている。従って第5図の回
路図に示すように2つの光起電力素子を直列に接続した
形になっている。第3図で透明な上部電極7aと7bの
間隔は、開孔部2のピッチの半分になっているため、し
やへい板3が横に移動すると上部電極7aと7bに交代
に光が入射し2つの光起電力素子に交代に光起電力が発
生する。そこでリード線s h、 s bには第8図の
点線に示す様な交流の光電流が流れる。2つの光起電力
素子はいわば太陽電池と同じであるから従来例の様なバ
イアス電源は必要としない。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows an embodiment. Two lower electrodes 5a are placed on an insulating substrate 5 made of glass, ceramic, heat-resistant polymer film, etc.
, 5b. The formation method is to deposit nickel, nickel-chromium alloy, chromium, aluminum, titanium, ITO (NxSn1-xO3), 5N02, etc. using electron beam evaporation using a vacuum evaporation cis-buttering device. Next, using Brozma CVD equipment,
.. Glow discharge is generated at a pressure of 1 to 4 Torr and 150 to
An amorphous silicon semiconductor thin film 6 is formed on a substrate 4 heated to 300°C. In this amorphous silicon, unbonded dangling bonds are compensated by H atoms generated by decomposition of silane (SiH4), and the localized levels in the band gap are significantly reduced. Therefore, if a gas containing an impurity element is mixed during discharge, the impurities can be controlled to make the semiconductor a P-type or N-type semiconductor. Therefore, diborane (82H6)
First, in a silane gas containing 0.2 to 2 parts of
0A P-type amorphous silicon layer, then 3000~5000A 1 amorphous silicon layer without impurities, and finally 50~50A in 7 run gas containing 0.2~2% phosphine (PH3). A 5000A N-type amorphous silicon layer is formed to form an amorphous silicon semiconductor thin film 6 having a PiN structure. Further, upper electrodes 7a and 7b are formed in the same manner as the lower electrode. In the case of the embodiment shown in FIG. 3, the upper electrodes 7a and 'yb serving as the light-receiving surface must be at least transparent electrodes, and are made of ITO or SnOz. FIG. 4 is a sectional view of the embodiment of the photoelectric conversion element shown in FIG. 3. In FIG. 3, two photovoltaic elements are formed on one insulating substrate 5 at the same time, a transparent upper electrode 7a is in electrical contact with a lower electrode 5b of an adjacent photovoltaic element, and a transparent The upper electrode 7b is also patterned to electrically contact the lower electrode 5a of the adjacent photovoltaic element. Therefore, as shown in the circuit diagram of FIG. 5, two photovoltaic elements are connected in series. In FIG. 3, the distance between the transparent upper electrodes 7a and 7b is half the pitch of the openings 2, so when the shield plate 3 moves laterally, light alternately enters the upper electrodes 7a and 7b. Then, photovoltaic force is generated alternately in the two photovoltaic elements. Therefore, an alternating current photocurrent as shown by the dotted line in FIG. 8 flows through the lead wires s h and s b. Since the two photovoltaic elements are, so to speak, the same as solar cells, there is no need for a bias power source as in the conventional example.

上記説明で明らかな様に2個以上の多数の光起電力素子
を一枚の絶縁性基板上に形成するのは非常に容易であシ
、その実施例が第6図である。一枚の絶縁性基板9の上
にくし型の共通な下部電極10.11(i7設はプラズ
マ+4D装置で共通膜となる非晶質シリコン薄膜12を
設け、更に透明な上部電極13,14.15i隣接する
光起電力素子の共通な下部電極1oに電気的に接触させ
、透明な上部電極16.17.18’iやはシ隣接する
光起電力素子の共通な下部電極11に電気的に接触させ
る。第6図の素子を電気回路図にしたのが第7図である
。それぞれ1つおきの光起電力素子同志は並列に接続さ
れ光のON、OFFも同時であるから光電流は積分され
、リード線19.20には第8図の実線の様な感度の大
きな交流の光電流が流れる。
As is clear from the above description, it is very easy to form two or more photovoltaic elements on a single insulating substrate, and an example thereof is shown in FIG. A comb-shaped common lower electrode 10, 11 (for the i7 setup, an amorphous silicon thin film 12, which becomes a common film in the plasma+4D device) is provided on a single insulating substrate 9, and transparent upper electrodes 13, 14, . 15i electrically contacts the common lower electrode 1o of adjacent photovoltaic elements, and the transparent upper electrode 16, 17, 18'i electrically contacts the common lower electrode 11 of adjacent photovoltaic elements. Figure 7 is an electrical circuit diagram of the elements in Figure 6.Since every other photovoltaic element is connected in parallel and the light is turned on and off at the same time, the photocurrent is After being integrated, an alternating current photocurrent with high sensitivity as shown by the solid line in FIG. 8 flows through the lead wires 19 and 20.

第6図の上部電極13〜18は、全面に蒸着した透明電
極をフォトエツチングによυ)くターン形成すれば巾5
0μの微細なパターンにすることができ、同じようにじ
ゃへい板3の開孔部2をフォトエツチングで巾5oμに
すれば・しやへい板3が0.1■移動するごとに1ノく
ルスの信号を発生する非常に分解能の高いエンコーダが
容易に実現する。しゃへい板3を円板にして開孔部2を
その円周上に配置し、これと対向する様に円形の絶縁基
板上の外周部に0.1w〜50μのピッチで光起電力素
子を形成し、回転による変位を検出するエンコーグをつ
くることも可能である。第6図の光電変換素子がたとえ
ば大きくて5簡0としても、100+++m  の基板
サイズで非晶質シリコン薄膜の形成や電極のフォトエツ
チングを行なえば、400個の素子が1枚の基板から得
られ量産的であり。
The upper electrodes 13 to 18 in FIG.
It is possible to create a fine pattern of 0μ, and if the openings 2 of the barrier plate 3 are photo-etched in the same way to a width of 5μ, the pattern will be 1 hole for every 0.1μ movement of the barrier plate 3. A very high-resolution encoder that generates a pulse signal can be easily realized. The shielding plate 3 is made into a disk, and the openings 2 are arranged on its circumference, and photovoltaic elements are formed at a pitch of 0.1w to 50μ on the outer periphery of a circular insulating substrate so as to face it. However, it is also possible to create an encoder that detects displacement due to rotation. Even if the photoelectric conversion element shown in Fig. 6 is large, for example, 5.0 mm, 400 elements can be obtained from one substrate by forming an amorphous silicon thin film and photoetching the electrodes on a substrate size of 100 +++ m2. It is mass produced.

安価である。フォトエツチングであるから素子配置の寸
法精度も高い、               4簡4
図で絶縁性基板5を透明なガラスにし下部電極5a、5
bを透明電極にすれば、基板側から光が入射するように
じゃへい板3に対向させることも可能である。また第9
図の実施例の様に、ステンレス、アルミニウム等の金属
板25の上に薄いSiO2,SiNの様な絶縁膜21を
設けて基板とし、基板の加工性を改良したり電磁誘導の
しゃへいに用いることもできる・ なお、上記実施例においては、複数の電磁に対して連続
した非晶質ンリコン薄膜を形成したが、電極毎に分離し
た非晶質シリコン薄膜を用いてもよい。
It's cheap. Since it is photo-etched, the dimensional accuracy of element placement is also high.
In the figure, the insulating substrate 5 is made of transparent glass and the lower electrodes 5a, 5
If b is a transparent electrode, it is also possible to make it face the baffle plate 3 so that light enters from the substrate side. Also the 9th
As in the embodiment shown in the figure, a thin insulating film 21 such as SiO2 or SiN is provided on a metal plate 25 made of stainless steel or aluminum to form a substrate, and this is used to improve the workability of the substrate or to shield electromagnetic induction. In the above embodiment, a continuous amorphous silicon thin film was formed for a plurality of electromagnets, but separate amorphous silicon thin films may be used for each electrode.

発明の効果 以上の様に、本発明によれば、複数の光起電力素子が差
動型で結合されるため感度が高く、非晶質シリコンであ
るため量産的で低価格であり小型であり、フォトエツチ
ングによるパターン形成ができるため分解能の高いすぐ
れたエンコーダ周光電変換素子が得られる。
Effects of the Invention As described above, according to the present invention, multiple photovoltaic elements are coupled in a differential type, so sensitivity is high, and since it is made of amorphous silicon, mass production is possible, low cost, and small size. Since a pattern can be formed by photoetching, an excellent encoder-related photoelectric conversion element with high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の光ダイオードを用いるエンコーダの構
成図、第2図は第1図における光ダイオードの光電流を
示す図、第3図は本発明の一実施例による光電変換素子
を用いたエンコーダの構成図、第4図は第3図における
光電変換素子の断面図、第5図は第3図の電気回路図、
第6図は本発明の一実施例による光電変換素子の上面図
、第7図は第6図の電気回路図、第8図は第7図におけ
る端子19.20に発生する光電流を示す図、第9図は
本発明の異なる実施例の光電変換素子の断面図である。 5・・・・・・絶縁板、5iL、5b・・・・・・下部
電極、6・・・・・・非晶質シリコン薄膜、7a、 7
b・・・・・・上部電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名46
3 第2図 特聞 第5図 第 7 図 0 幻’o−f’3b   ”’
Figure 1 is a block diagram of an encoder using a conventional photodiode, Figure 2 is a diagram showing the photocurrent of the photodiode in Figure 1, and Figure 3 is an encoder using a photoelectric conversion element according to an embodiment of the present invention. A configuration diagram of the encoder, FIG. 4 is a cross-sectional view of the photoelectric conversion element in FIG. 3, and FIG. 5 is an electric circuit diagram of FIG. 3.
6 is a top view of a photoelectric conversion element according to an embodiment of the present invention, FIG. 7 is an electric circuit diagram of FIG. 6, and FIG. 8 is a diagram showing photocurrent generated at terminals 19 and 20 in FIG. 7. , FIG. 9 is a sectional view of a photoelectric conversion element according to a different embodiment of the present invention. 5... Insulating plate, 5iL, 5b... Lower electrode, 6... Amorphous silicon thin film, 7a, 7
b... Upper electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person46
3 Figure 2 Special Edition Figure 5 Figure 7 Figure 0 Phantom 'o-f'3b '''

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基板上に複数の下部電極を設けてこの上に非晶質
シリコン薄膜を形成し、その上に前記下部電極に対向し
て複数の上部電極を設け、前記上部電極と下部電極の少
なくとも一方は透明電極とし、前記非晶質シリコン薄膜
とこれをはさむ下部電極と上部電極で複数の光起電力素
子を形成し、隣接する光起電力素子の極性が順に逆接続
となるよう電極パターンを形成した光電変換素子。
A plurality of lower electrodes are provided on an insulating substrate, an amorphous silicon thin film is formed thereon, a plurality of upper electrodes are provided thereon facing the lower electrodes, and at least one of the upper electrodes and the lower electrodes. is a transparent electrode, a plurality of photovoltaic elements are formed by the amorphous silicon thin film and a lower electrode and an upper electrode sandwiching it, and an electrode pattern is formed so that the polarities of adjacent photovoltaic elements are connected in reverse order. photoelectric conversion element.
JP57200679A 1982-11-15 1982-11-15 Photoelectric conversion element Granted JPS5989473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200679A JPS5989473A (en) 1982-11-15 1982-11-15 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200679A JPS5989473A (en) 1982-11-15 1982-11-15 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS5989473A true JPS5989473A (en) 1984-05-23
JPS6260819B2 JPS6260819B2 (en) 1987-12-18

Family

ID=16428440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200679A Granted JPS5989473A (en) 1982-11-15 1982-11-15 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS5989473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002549B2 (en) * 2001-01-18 2006-02-21 Mccahon Stephen William Optically based machine input control device
US7176542B2 (en) * 2004-04-22 2007-02-13 Hrl Lab Llc Photo induced-EMF sensor shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002549B2 (en) * 2001-01-18 2006-02-21 Mccahon Stephen William Optically based machine input control device
US7176542B2 (en) * 2004-04-22 2007-02-13 Hrl Lab Llc Photo induced-EMF sensor shield

Also Published As

Publication number Publication date
JPS6260819B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
US4570332A (en) Method of forming contact to thin film semiconductor device
JPS5821827B2 (en) photovoltaic device
JPS5989473A (en) Photoelectric conversion element
KR900003842B1 (en) Photoelectric conversion device
JPH0456351U (en)
JPS58196060A (en) Thin film semiconductor device
JPS6266684A (en) Manufacture of photovoltaic device
JPS63289969A (en) Amorphous solar battery
JPS6313358B2 (en)
JPS6276786A (en) Manufacture of photovoltaic device
JPS6260820B2 (en)
KR970004494B1 (en) A method for manufacture for image sensor
KR960006198B1 (en) Contact image sensor
JPS63213978A (en) Amorphous solar cell
JP4397091B2 (en) Electronic device and solar cell module
JP2664377B2 (en) Manufacturing method of light receiving device
JPH03276768A (en) Photovoltaic element
JPH0294576A (en) Phototransistor
JPS62193172A (en) Manufacture of photodetector array
JPS6267866A (en) Photoelectric conversion element and manufacture thereof
JPS63274185A (en) Thin-film photovoltaic device
JPS59141277A (en) Photodetector
JPS60250217A (en) Photoelectric convertor
JPS5848973A (en) Manufacture of photovoltaic device
JPH01289178A (en) Semiconductor position sensor