JPS5988718A - Progressive focusing spectacle lens considering vergence of eye - Google Patents

Progressive focusing spectacle lens considering vergence of eye

Info

Publication number
JPS5988718A
JPS5988718A JP57198633A JP19863382A JPS5988718A JP S5988718 A JPS5988718 A JP S5988718A JP 57198633 A JP57198633 A JP 57198633A JP 19863382 A JP19863382 A JP 19863382A JP S5988718 A JPS5988718 A JP S5988718A
Authority
JP
Japan
Prior art keywords
meridian
lens
point
umbilical
umbilicus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57198633A
Other languages
Japanese (ja)
Other versions
JPS6247284B2 (en
Inventor
Akira Kitani
明 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Lens Corp
Original Assignee
Hoya Corp
Hoya Lens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Lens Corp filed Critical Hoya Corp
Priority to JP57198633A priority Critical patent/JPS5988718A/en
Priority to FR8303156A priority patent/FR2536180A1/en
Priority to GB08305240A priority patent/GB2130391B/en
Priority to DE19833307009 priority patent/DE3307009A1/en
Priority to BE0/210222A priority patent/BE896041A/en
Priority to NLAANVRAGE8300742,A priority patent/NL184389C/en
Priority to SE8301087A priority patent/SE8301087L/en
Priority to IT67228/83A priority patent/IT1158813B/en
Publication of JPS5988718A publication Critical patent/JPS5988718A/en
Publication of JPS6247284B2 publication Critical patent/JPS6247284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Abstract

PURPOSE:To obtain a comfortable spectacle lens which gives almost the same effect as the naked eye gives, by making the arrangement of the umbilicus-like meridian and the additional refracting power along the meridian to satisfy a prescribed condition. CONSTITUTION:The geometric center of the right eye lens (or left eye lens) Q of farsighted glasses, the meridian passing through a point O, the umbilicus-like merdian passing through the point O, and a point which becomes the maximum additional refracting point on the umbilicus meridian M-M' are represented by O, L-L', M-M', and N, respectively, and the right side (horizontal direction) of the point O (origin) is set as H-coordinate axis and down side (vertical direction) is set as V-coordinate axis. Moreover, the additional refracting power along the umbilicus-like meridian M-M' is represented by D and the displacement to the nose side when compared with a pair of spectacles is represented by H. Then a condition H=AXD+B is made to be satisfied by this lens. The A and B are constants and, for example, 2.5 and 0.0 are respectively adopted to the constants A and B. When the condition is satisfied, a comfortable lens which gives nearly the same effect as the naked eye is obtained.

Description

【発明の詳細な説明】 本発明はIt民鏝用レンズに係り、特に/)Jll ?
l力が累進的に変化している老視用眼鏡レンズの改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lens for IT folk trowels, and particularly to /) Jll?
This invention relates to an improvement in a spectacle lens for presbyopia in which the l power changes progressively.

老視とは眼球内にある水晶体に弾力が欠乏したために近
方視に必要な調節作用を営み得ない状態であるから凸レ
ンズを装用して調節力の不足を補えは、魯び近力視を楽
に行なうことが出来る。
Presbyopia is a condition in which the crystalline lens in the eyeball lacks elasticity, making it unable to perform the accommodative action necessary for near vision.Presbyopia is a condition in which the lens in the eyeball lacks elasticity, making it unable to perform the accommodative action necessary for near vision. It can be done easily.

ところで一般に近方視は眼鏡枠内の下部を通して行なう
のが常態であるから、通常の遠方視用の眼鏡枠内の下部
に前述の凸レンズを配置すれは、1つの眼鏡で遠近両刀
の視力福正を行なうことが出来る。
By the way, near vision is generally done through the lower part of the eyeglass frame, so if you place the aforementioned convex lens in the lower part of the normal far vision eyeglass frame, you can achieve both near and far vision with one pair of glasses. can be done.

この様な遠近両用眼鏡レンズとして最も単純なものに二
重焦点レンズがある。遠方視用の凸レンズの部分は小玉
と叶ばれ、その形状、配置、制用等に関して様々な種類
がある。
The simplest type of bifocal lens is a bifocal lens. The part of the convex lens for far vision is a small ball, and there are various types in terms of shape, arrangement, use, etc.

しかし、この種のレンズに共通した欠点は、遠方視から
近方祝に移る際、像が急激に拡大変化し、違和感を伴な
うことにある。この急激な変化を和らけて、徐々に度数
を変化させた表面設計を行うことになまり、遠近の違和
感を無くし、同時にその遠、近の境界領域において、中
間踏動の視!l!)をも得られる様にしたレンズとして
、所謂、累進焦点レンズがある。
However, a common drawback of this type of lens is that when moving from distance vision to near vision, the image suddenly changes in magnification, causing a sense of discomfort. By softening this sudden change and designing a surface that gradually changes the power, we eliminate the sense of discomfort between distance and near, and at the same time, in the boundary area between far and near, we can see intermediate steps! l! ) is a so-called progressive focus lens.

このレンズは二N熱点レンズの様に、外見上、近用部分
の境界線が目立つこともなく、老視用眼鏡と察知されに
くいところから、美容上の効果においても優れている。
Unlike the 2N thermal point lens, this lens does not have a noticeable boundary line in the near vision area and is difficult to detect as glasses for presbyopia, so it has excellent cosmetic effects.

この累進焦点レンズの%徴はレンズ表面上のほぼ中央の
上方から下方にかけて非点収差が殆んど苓に等しく、且
つその屈折力が所定法−則に従い、累進的に変化してい
る「へそ状子午線」と呼はれる「へそ軟点」の連なりが
存在していることであり、ここで言う「へそ軟点」とは
2つの主曲率半径が等しい点のことである。
The % characteristic of this progressive focus lens is that the astigmatism is almost equal to that of the lens from the upper part to the lower part of the center on the lens surface, and the refractive power changes progressively according to a predetermined law. There exists a series of ``belly button soft points'' called ``shaped meridians,'' and the ``belly button soft points'' referred to here are points where the two principal radii of curvature are equal.

この主曲率半径とは曲面の性質を表現する際に用いる数
学上の用語であり、次の様な怠味を持つ。
This principal radius of curvature is a mathematical term used to express the properties of a curved surface, and it has the following laziness.

第1図に於いて、 Sは曲面を表わしPは曲面S上の一点である。In Figure 1, S represents a curved surface, and P is a point on the curved surface S.

ノは曲面S上の廣Pに於げる法線、ν1」ち、点Pを通
り、点Pに於いて曲in+ Sを垂面に其〈直線である
is a normal line to the width P on the curved surface S, ν1'', which passes through the point P, and at the point P, the curve in+ S is a straight line.

ここで、性腺iを含む平面と曲面Sとの交わる曲線を凹
面曲線と呼ぶとき、その断面曲線は点Pを通り、無数に
想定しうる。各々の断面曲線の点Pに於ける曲率半径の
うち、最大のものと最/J\のものとの2つを点Pに加
ける主曲率半径とbう。
Here, when the curve where the plane containing the gonads i intersects with the curved surface S is called a concave curve, its cross-sectional curve passes through the point P and can be assumed to have an infinite number of possible shapes. Among the radii of curvature at the point P of each cross-sectional curve, the two, the maximum and the maximum /J\, are the principal radii of curvature added to the point P.

この2つの主曲率半径が等しいとき、点Pを1へそ軟点
」と呼ぶ。従って、球面とは曲面上の任意の点が[へそ
軟点Jとなる唯一の曲面であり、この場合、曲面上の任
怠の曲線が前述の「へそ状子午線」となりうる。
When these two principal radii of curvature are equal, the point P is called a umbilicus soft point. Therefore, a spherical surface is the only curved surface where any point on the curved surface becomes a navel soft point J, and in this case, the idle curve on the curved surface can become the above-mentioned "navel-like meridian."

さて、へそ軟点である点Pの近傍は$j 都市な球面で
あると考えることが出来るため、点Pに於ける非点収差
は零に等しいと百える。ここで1−う非点収差とは前述
の2つの主曲率半径を屈折力で置き換えたときの相互の
差のことであり、曲率半径をジオプターに単位とした屈
折力に換算することは ここにおいて、D:屈折力(単位ジオプター)R;曲率
半径(単位 m) N;レンズの屈折率(単位なしン である。
Now, since the vicinity of point P, which is the navel soft point, can be considered to be a $j urban spherical surface, the astigmatism at point P is considered to be equal to zero. Here, 1- Astigmatism is the difference between the two principal radii of curvature mentioned above when they are replaced by refractive power, and here it is important to convert the radius of curvature to refractive power in diopters. , D: Refractive power (unit: diopter) R: Radius of curvature (unit: m) N: Refractive index of lens (unit: m).

さて、前述の説明に於いて「へそ状子午線」はレンズ表
面上のはソ中夫の上方から下方にかけて存在するとした
Now, in the above explanation, it was assumed that the ``umbilicus-shaped meridian'' exists on the lens surface from above to below Sochu.

前述の如く、「へそ状子午線」に沿っての非点収差は殆
んど零に辱しく、累進レンズ表面上に於いて最も良好な
光学的特性を備えており、当然の事ながら、最も使用頻
度の高い位置に配置されるべきである。
As mentioned above, the astigmatism along the ``umbilicus meridian'' is almost zero, and it has the best optical properties on the surface of a progressive lens, and is naturally the most commonly used. It should be placed in a frequently used position.

本発明はこの「へそ状子午線」の配置とそれに対応した
「へそ状子午線」に沿っての付加屈折力との関連に於い
て、従来には無かった全く新しい規則性を持たせろこと
により、より裸眼状態に近い快適な眼鏡レンズを提供す
ることを目的とする。
The present invention provides a completely new regularity that did not exist in the past in relation to the arrangement of this "umbilicus-shaped meridian" and the corresponding additional refractive power along the "umbilicus-shaped meridian". The purpose is to provide a comfortable eyeglass lens that is close to the condition seen with the naked eye.

さて、この「へそ状子午線」の1llj 鏡レンズ表面
上に於ける望ましい配置として、眼鏡装用者が正面前力
の無限遠方を見ている状態力・ら、正面前力のや\下刃
に位置する近力な見ている状態へと組体に眼を転する際
、視#:J1の通過する眼鏡レンズ表面上の位置と一致
させた塾舎を考える。
Now, the desirable position of this "umbilicus-shaped meridian" on the surface of the mirror lens is that the eyeglass wearer is looking at the infinite distance of the frontal force, and the frontal force is located at the lower edge of the frontal force. When you turn your eyes to the near-field viewing state, consider a school building that matches the position on the surface of the spectacle lens through which vision #: J1 passes.

第2図に於いて、鮨、01はそ4ぞれ右u1−.、左胆
の眼球(ロ)転中心点、O,、OLに、それぞれ、右眼
、左眼角膜加点、工は右眼の正面前方無限遠点(紙面の
都合上、方向のみを矢印で示す。)Tは両眼視に於ける
正面前方無限遠点にある祝標位ガ′ハPはTORと眼鏡
レンズ表面との交点、FはPから■○□に下した垂線の
足、GはTからIJLORに下した垂線の足とすると、
TORとTGとは平行であるから<GTOR−<POR
Fとなり、この角をθとおく。
In Figure 2, sushi and 01 are respectively on the right u1-. , the center of rotation of the left eyeball (B), O,, OL, the cornea of the right eye and the left eye, respectively. ) T is the target point at infinity in front of the front in binocular vision P is the intersection of TOR and the surface of the spectacle lens, F is the leg of the perpendicular line drawn from P to ■○□, G is the Assuming the foot of the perpendicular line drawn from T to IJLOR,
Since TOR and TG are parallel, <GTOR-<POR
F, and let this angle be θ.

さて、右眼が■を見ている状態からT3見ている状態に
目を転じたとき、眼球の4IIII8軽作用により眼鏡
レンズ表面上に於ける′a線通過位置の変位量は百とな
る。ここで、眼球の調節力をD8、眼縫の連用屈折力Y
D、、眼鏡の点PK於ける付加屈折力なりpとすると、
眼球から視標Tまでの距離は可であるから (屈折力の単位はジオプター、長さの単位はm1以下同
様) 一般にTo□−< >) 0RORと考えられるから上
の式は1/r−って、眼鏡の点Pに於ける付加屈折力を
Dとすると、 UR となる、ここで、7、π−1Doはいずハもほぼ定数で
あると考えら4.ろので、PF = Hとおき、Aを比
例定数、Bを定数として H;AxD+Bと表わせることが解る。
Now, when the right eye changes from the state where it is looking at ■ to the state where it is looking at T3, the amount of displacement of the 'a-line passing position on the spectacle lens surface becomes 100 due to the 4III8 light effect of the eyeball. Here, the accommodation power of the eyeball is D8, and the continuous refractive power of the eye stitch is Y.
D., If the add refractive power at the point PK of the glasses is p, then
Since the distance from the eyeball to the optotype T is acceptable (the unit of refractive power is diopter, the unit of length is m1 or less), generally To Therefore, if the additional refractive power at the point P of the glasses is D, then UR is obtained.Here, considering that 7 and π-1Do are almost constants, 4. Therefore, it can be seen that by setting PF = H, A is a proportionality constant, and B is a constant, it can be expressed as H;AxD+B.

川」ち、前述の「へそ状子午線」の配置と付加屈折力の
分布として、「へそ状子午線」に沿っての付加屈折力を
り、通用部に比べての真個への変位量を■とし、Aを比
例定数、Bを定数としてHにAXD+Bなる■1係を満
たすことが最も望ましいと言えるのである。
As for the arrangement of the ``umbilical meridian'' mentioned above and the distribution of the additional refractive power, let us calculate the additional refractive power along the ``umbilical meridian'' and the amount of displacement to the true piece compared to the common part. It can be said that it is most desirable that A be a proportional constant and B be a constant so that H satisfies the coefficient 1 of AXD+B.

上記は右眼について述べたが左眼についても同様である
The above description is about the right eye, but the same applies to the left eye.

第6図及び下記第1表は本発明の一実施例を示すもので
ある。
FIG. 6 and Table 1 below show one embodiment of the present invention.

第6図に於いて、Qは凸面側から見た右眼用レンズを示
し、点0は幾イ0」中心点。L −L’は点Oを通る子
午線、M −M’は応Oを辿るへそ状子午線、点NはM
 −M’に於ける最大付加屈折力となる点、IHoを原
点として向かって右方な1(座標軸(水平方向変位量〕
、下方をV座標軸(垂直方向変位量〕、としたとき、点
NのH座標、■座標をそれぞれHmaxlVmaxと′
fる。第3図の右側のグラフはへそ状子午線M −M’
に沿っての付加屈折力を表わし、点Oに対応する点Q′
を原点として、向かって右方なり座標軸(付加屈折力)
、下方をV座標軸(重置方向変位量)としたとき、点N
に対応する点N′のD座標をDlllaxとする。Dm
aXは一般的に加入度数と呼ばれ、本実施例では1.0
0ジオシタ−とした。
In Fig. 6, Q indicates the right eye lens viewed from the convex side, and point 0 is the central point of the lens. L - L' is the meridian that passes through point O, M - M' is the umbilical meridian that follows O, and point N is M
1 (coordinate axis (horizontal displacement amount)
, when the lower side is the V coordinate axis (vertical displacement), the H and ■ coordinates of point N are HmaxlVmax and '
Fru. The graph on the right side of Figure 3 is the umbilical meridian M - M'
represents the additional refractive power along the point Q′ corresponding to point O
From the origin, the coordinate axis is to the right (additional refractive power)
, when the lower side is the V coordinate axis (displacement in the overlapping direction), point N
Let Dllax be the D coordinate of point N' corresponding to . Dm
aX is generally called the addition power, and in this example, it is 1.0.
0 geositer.

又、V   =12.OB、HI]]a!=2.5wL
としたとaX き、2.01B毎のV座標に対応するM −M’上のD
座標及びH座標を下記第1衣に掲ける。
Also, V = 12. OB, HI]]a! =2.5wL
Then aX, D on M - M' corresponding to V coordinate every 2.01B
The coordinates and H coordinates are listed in the first column below.

第1表により明らかな如く、この実施例では前述のH品
AXD+BK対し、A = 2.5、B = 0.0を
採用している。。
As is clear from Table 1, in this example, A = 2.5 and B = 0.0 are used for the above-mentioned H product AXD+BK. .

又、左眼用レンズは右眼用レンズに対し、鏡面対称、即
ち錦に写した如く、上下方向が同じで、左石方向を反対
にした杼な屈折表面の配置となっている。
In addition, the left-eye lens has mirror symmetry with respect to the right-eye lens, that is, the refractive surfaces are arranged in a similar manner, with the upper and lower directions being the same and the left stone direction being opposite, as if reflected in a brocade pattern.

尚、本実施例では本発明を適用するM −1?’上の区
間どして付加屈拓力の分布が0.Oから加入歴数に至る
までの全区間としたが、部分的に採用することも可能で
ある。
In addition, in this example, M −1? to which the present invention is applied? 'In the upper section, the distribution of additional bending force is 0. Although the entire range from O to the number of subscribers has been adopted, it is also possible to use only a portion of the range.

従って、加入肚数の少なくとも80%以上の屈折力の変
化を有するM −M’上の区間に対して本発明を適用し
た眼艮レンズは本発明の特許請求の範囲に包含さ九ろも
のとする。
Therefore, an eyelid lens to which the present invention is applied to a section on M-M' having a change in refractive power of at least 80% or more of the number of additions is included within the scope of the claims of the present invention. do.

又、本文中で用いた「へそ状点」や、「へそ状子午線」
の定義はあくまで数学上の定義であり、工業製品である
ところの眼鏡レンズの表面上に児全に現出し得ないこと
は当然である。従って、製造や測定に於ける不75′7
抗力による誤差ビも甘め、1 0.25ジオプタ一以内の非点収差があっても本発明で
いう「へそ状子午線」に該当し、本発明の特許請求の範
囲に包含されろものとする。
Also, the "umbilical point" and "umbilical meridian" used in the text
This definition is just a mathematical definition, and it goes without saying that it cannot completely appear on the surface of eyeglass lenses, which are industrial products. Therefore, defects in manufacturing and measurement may occur.
Even if there is an astigmatism of less than 10.25 diopters, the error bias due to drag force is considered to be within the scope of the claims of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はへそ状点及び主曲率半径を示す説明図、第2図
は眼鏡レンズ上に於けるへそ状子午線の望ずしい配置と
付加屈折力の分布を説明するための視標と眼球及び眼鏡
レンズの相対的な位置関係を示す説明図、および第6図
は本発明の実施例に従う眼鏡レンズの正面図及びへそ状
子午線の配置と伺加屈折力の分布を概略的に示′j′説
明図で456゜代理人浅村 皓 外4名 2
Fig. 1 is an explanatory diagram showing the umbilical point and the principal radius of curvature, and Fig. 2 is an illustration of the optotype, eyeball, and FIG. 6 is an explanatory diagram showing the relative positional relationship of spectacle lenses, and FIG. 6 is a front view of a spectacle lens according to an embodiment of the present invention, and schematically shows the arrangement of the umbilical meridian and the distribution of added refractive power. 456° in the explanatory diagram Representative Asamura Kōgai 4 people 2

Claims (1)

【特許請求の範囲】[Claims] (1)  眼鏡用レンズにおける2つの屈折表面のうち
の一つに関与して該レンズの上下方向な装用時の上下方
向に合わせ、該屈折表面を該屈折表面にほぼ垂直な方向
から眺めるとき、該屈折表面内のほぼ上下方向に「へそ
状子午線」と定義する一本の疑似的な子午+WM−M’
を含み、該へそ状子午線M−MI上の任意の点に於ける
一組の主曲率半径は互にはソ等しく、そのため、該屈折
表面内に於ける骸へそ状子午線M−M′に沿っての非点
収差は殆んと零に等しく、又、該屈折表面内に於いて該
へそ状子午線M −M’に沿っての屈折力の分布は上方
から下方にかげて所定の法則に従い、徐々に増加してい
る区間を有し、且つ該区間に於ける屈折力の変化の仕方
は該区間内に於いて一律ではなく、更に該へそ状子午a
 M −M’は該屈折表面を装用時に於ける典、側の部
分と耳側の部分との2つの横方向部分に分割しており、
該屈折表面内の上部に於いて、該へそ状子午線M −M
’と一致又は交差又は接し、上下方向に伸びる一本の子
午線L −L’を想定したとき、該屈折表面内の下部に
於いては該へそ状子午線M −M’は該子午線L −L
’より其側に変位しており、上部から下部に至る範囲に
於いては該へそ状子午線M−M’は該子午線L −L’
に対して、上方から下方にかけて徐々に鼻側に変位して
いる様な該へそ状子午線M −M’を有する該屈折表面
に於いて、該へそ状子午線M −M’上に於ける屈折力
の変化量が、該レンズの有する用足の加入度数の少なく
とも80%以上を有する該へそ状子午線M−M’上の区
間に於いて、該へそ状子午線M−M’上の任意の点に於
ける付加屈折力をDとし、該任意の点の該子午線L −
L’からの変位tをHとし、Aを比例定数、Bを定数と
したとき H: AXD+B なる関係なはy満たしている該へそ状子午線M−M′を
有することを特徴とする眼の輻樅を考慮した累進焦点眼
鏡用レンズ、 (2、特許請求の範囲第1項のレンズに於いて、へそ状
子午!M−M’に沿っての非点収差が零を越えて0,2
5ジオプタ一以内であることを特徴とする累進焦点眼鏡
用レンズ。
(1) When the refractive surface is viewed from a direction substantially perpendicular to the refractive surface when one of the two refractive surfaces of the spectacle lens is aligned with the vertical direction of the lens when worn, One pseudo meridian +WM-M' defined as the "umbilicus-shaped meridian" in the vertical direction within the refractive surface
, and the principal radii of curvature at any point on the umbilical meridian M-MI are equal to each other, so that along the umbilical meridian M-M' in the refractive surface, The astigmatism at all points is almost equal to zero, and the distribution of refractive power along the umbilical meridian M-M' within the refractive surface follows a predetermined law from top to bottom, It has a gradually increasing section, and the way the refractive power changes in the section is not uniform, and furthermore, the umbilical meridian a
M-M' divides the refractive surface into two lateral parts, a side part and a temporal part when worn,
At the top within the refractive surface, the umbilical meridian M - M
Assuming a single meridian L-L' that coincides with, intersects with, or touches ' and extends vertically, in the lower part of the refractive surface, the umbilical meridian M-M' is the same as the meridian L-L.
', and in the range from the upper part to the lower part, the umbilical meridian M-M' is the meridian L-L'.
On the other hand, in the refractive surface having the umbilicus-shaped meridian M-M' that gradually shifts toward the nasal side from above to below, the refractive power on the umbilicus-shaped meridian M-M' at any point on the umbilical meridian M-M' in a section on the umbilical meridian M-M' in which the amount of change is at least 80% or more of the addition power of the working foot of the lens. Let the additional refractive power at the point be D, and the meridian L − of the arbitrary point
When the displacement t from L' is H, A is a proportionality constant, and B is a constant, H: AXD + B. A lens for progressive focus glasses that takes into account fir, (2. In the lens of claim 1, the astigmatism along the umbilical meridian! M-M' exceeds zero and is 0.2
A lens for progressive focus glasses, characterized in that it has a diameter of 5 diopters or less.
JP57198633A 1982-11-12 1982-11-12 Progressive focusing spectacle lens considering vergence of eye Granted JPS5988718A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP57198633A JPS5988718A (en) 1982-11-12 1982-11-12 Progressive focusing spectacle lens considering vergence of eye
FR8303156A FR2536180A1 (en) 1982-11-12 1983-02-25 OPHTHALMIC LENS WITH PROGRESSIVELY VARIABLE FOCAL POWER, DETERMINED IN ACCORDANCE WITH CONVERGENCE
GB08305240A GB2130391B (en) 1982-11-12 1983-02-25 Ophthalmic lens having a progressively variable focal power determined taking convergence of eyes into account
DE19833307009 DE3307009A1 (en) 1982-11-12 1983-02-28 EYE LENS WITH CHANGING POWERS
BE0/210222A BE896041A (en) 1982-11-12 1983-02-28 PROGRESSIVELY VARIABLE FOCAL POWER OPHTHALMIC LENS DETERMINED TAKING ACCOUNT OF EYE CONVERGENCE
NLAANVRAGE8300742,A NL184389C (en) 1982-11-12 1983-02-28 Eye correction lenses with a progressively varying focal length, taking into account eye convergence.
SE8301087A SE8301087L (en) 1982-11-12 1983-02-28 Ophthalmic lens
IT67228/83A IT1158813B (en) 1982-11-12 1983-02-28 OPHTHALMIC LENS WITH VARIABLE POWER IN A PROGRESSIVE DETERMINED TAKING INTO ACCOUNT OF THE CONVERGENCE OF THE EYES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198633A JPS5988718A (en) 1982-11-12 1982-11-12 Progressive focusing spectacle lens considering vergence of eye

Publications (2)

Publication Number Publication Date
JPS5988718A true JPS5988718A (en) 1984-05-22
JPS6247284B2 JPS6247284B2 (en) 1987-10-07

Family

ID=16394443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198633A Granted JPS5988718A (en) 1982-11-12 1982-11-12 Progressive focusing spectacle lens considering vergence of eye

Country Status (8)

Country Link
JP (1) JPS5988718A (en)
BE (1) BE896041A (en)
DE (1) DE3307009A1 (en)
FR (1) FR2536180A1 (en)
GB (1) GB2130391B (en)
IT (1) IT1158813B (en)
NL (1) NL184389C (en)
SE (1) SE8301087L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435524A (en) * 1987-07-31 1989-02-06 Hoya Corp Progressive multifocus lens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588672B1 (en) * 1985-10-16 1989-01-13 Essilor Int MULTIFOCAL AND PROGRESSIVE OPHTHALMIC LENS
US4838675A (en) * 1987-06-19 1989-06-13 Sola International Holdings, Ltd. Method for improving progressive lens designs and resulting article
FR2683643B1 (en) * 1991-11-12 1994-01-14 Essilor Internal Cie Gle Optique PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS.
FR2683642B1 (en) * 1991-11-12 1994-01-14 Essilor Internal Cie Gle Optique PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS.
FR2699294B1 (en) * 1992-12-11 1995-02-10 Essilor Int Progressive multifocal ophthalmic lens.
FR2874709B1 (en) * 2004-08-27 2006-11-24 Essilor Int METHOD FOR DETERMINING A PAIR OF PROGRESSIVE OPHTHALMIC LENSES
CN106796359B (en) 2014-03-31 2019-08-13 豪雅镜片泰国有限公司 The design method and manufacturing method and progressive refractive power glasses lens manufacture system of progressive refractive power glasses lens
WO2015150432A1 (en) * 2014-04-03 2015-10-08 Essilor International (Compagnie Generale D'optique) Method for producing a customized progressive ophthalmic lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046348A (en) * 1973-08-16 1975-04-25
JPS5710113A (en) * 1980-05-02 1982-01-19 Zeiss Stiftung Multiple focus spectacle lens
JPS5799613A (en) * 1980-12-12 1982-06-21 Seiko Epson Corp Progressive multifocus lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1509090A (en) * 1966-11-29 1968-01-12 Lunetiers Cottet Poichet Soc D Improvements to ophthalmic lenses with progressively variable focal power
US4274717A (en) * 1979-05-18 1981-06-23 Younger Manufacturing Company Ophthalmic progressive power lens and method of making same
EP0027339A3 (en) * 1979-10-11 1981-05-06 U.K. Wiseman Limited Progressive power ophthalmic lenses
JPS57210320A (en) * 1981-06-19 1982-12-23 Hoya Corp Progressive focus lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046348A (en) * 1973-08-16 1975-04-25
JPS5710113A (en) * 1980-05-02 1982-01-19 Zeiss Stiftung Multiple focus spectacle lens
JPS5799613A (en) * 1980-12-12 1982-06-21 Seiko Epson Corp Progressive multifocus lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435524A (en) * 1987-07-31 1989-02-06 Hoya Corp Progressive multifocus lens

Also Published As

Publication number Publication date
DE3307009A1 (en) 1984-05-17
IT1158813B (en) 1987-02-25
BE896041A (en) 1983-06-16
FR2536180A1 (en) 1984-05-18
IT8367228A0 (en) 1983-02-28
GB2130391B (en) 1986-11-26
FR2536180B1 (en) 1985-04-05
NL184389B (en) 1989-02-01
NL8300742A (en) 1984-06-01
GB2130391A (en) 1984-05-31
NL184389C (en) 1989-07-03
JPS6247284B2 (en) 1987-10-07
SE8301087D0 (en) 1983-02-28
GB8305240D0 (en) 1983-03-30
SE8301087L (en) 1984-05-13

Similar Documents

Publication Publication Date Title
US5812238A (en) Progressive multifocal ophthalmic lens pair
JPH0690368B2 (en) Progressive multifocal lens and glasses
JPH0239767B2 (en)
WO1997011401A1 (en) Gradient-index multifocal lens
JPH06214199A (en) Progressive multifocal lens for ophthalmology
JP2018500607A (en) Eyeglass eye lens to be put into eyeglass frame
CA2250616C (en) Ophthalmic lens
JP3080295B2 (en) Progressive multifocal spectacle lens
JP2010250347A (en) Progressive spectacle lens with two non-spherical surfaces, more particularly progressive surfaces, and method of calculating the same
US5777716A (en) Progressive power presbyopia-correcting ophthalmic lenses
US10416475B2 (en) Eyeglasses with one-piece shield and method for designing said shield
JPH0520729B2 (en)
JP2576054B2 (en) Progressive multifocal lens
JPS5988718A (en) Progressive focusing spectacle lens considering vergence of eye
JP3690427B2 (en) Progressive multifocal lens and spectacle lens
EP0627647B1 (en) Progressive multifocal lens
US4288149A (en) Resin ophthalmic lenses having a prismatic segment
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
JP3788083B2 (en) Progressive multifocal lens, spectacles and manufacturing method
JPH07294859A (en) Progressive multi-focus lens
JP4170093B2 (en) Progressive eyeglass lenses for far and intermediate object distances
JP3853849B2 (en) Eyeglass lenses
JP3013396B2 (en) Eyeglass lens
JP2006527383A (en) Molding mold for near-focal compound lenses
US20100060852A1 (en) Single vision spectacle lens