JP3899659B2 - Progressive multifocal lens and manufacturing method thereof - Google Patents

Progressive multifocal lens and manufacturing method thereof Download PDF

Info

Publication number
JP3899659B2
JP3899659B2 JP09648598A JP9648598A JP3899659B2 JP 3899659 B2 JP3899659 B2 JP 3899659B2 JP 09648598 A JP09648598 A JP 09648598A JP 9648598 A JP9648598 A JP 9648598A JP 3899659 B2 JP3899659 B2 JP 3899659B2
Authority
JP
Japan
Prior art keywords
prism
refractive power
distance
reference point
horizontal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09648598A
Other languages
Japanese (ja)
Other versions
JPH11295670A (en
Inventor
一寿 加藤
朗 小松
浩行 向山
唯之 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP09648598A priority Critical patent/JP3899659B2/en
Publication of JPH11295670A publication Critical patent/JPH11295670A/en
Application granted granted Critical
Publication of JP3899659B2 publication Critical patent/JP3899659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/14Mirrors; Prisms

Description

【0001】
【発明の属する技術分野】
本発明は、遠用部と近用部とで異なるプリズム作用を有する累進多焦点レンズおよびその製造方法に関するものである。
【0002】
【従来の技術】
累進多焦点レンズは遠くを見るための遠用屈折力を有する遠用部と、手元を見るための近用屈折力を有する近用部と、前記遠用部と近用部との間に有って屈折力が連続的に変化する中間部とを有する。遠用屈折力と近用屈折力との差を加入屈折力と呼び、一般的には0.50D(ディオプトリ)〜4.00Dの屈折力範囲で0.25D毎に予め用意されている。従って、眼鏡装用者の老視の程度に合わせて適切な加入屈折力を選択することができる。このように、遠用部屈折力と近用部屈折力とは実使用上問題の無い範囲で自由に選択ができるようになっている。
【0003】
一般に、眼鏡装用者の処方の中には、上記の遠用部屈折力や近用部屈折力といった焦点作用に関係した屈折力の他に、視線の方向を変化させる作用を有するプリズム屈折力が存在する。累進多焦点レンズを製造する場合は遠用部のプリズム屈折力を決めると、近用部のプリズム屈折力は累進屈折面の形状や遠用部屈折力および加入屈折力によって決まってしまい、近用部のプリズム屈折力を自由に選択又は指定することはできなかった。
【0004】
【発明が解決しようとする課題】
しかしながら、遠用部のプリズム屈折力と近用部のプリズム屈折力は本来別々に処方されるのが望ましいことは言うまでもない。左右眼のプリズムが正しく処方されない場合には、物が二重に見えたり遠近感が異なって見えたりするので、眼鏡を長時間掛けることが苦痛になる。特に老視者は調節力の減少に伴い輻輳力も働きにくくなるため、近見時には基底内方のプリズムで補正しないと両眼視が困難な場合もある。
【0005】
本発明の累進多焦点レンズは、遠用部のプリズム屈折力の水平成分と、近用部のプリズム屈折力の水平成分とを別々に指定できるようにすることで、遠方視時および近方視時のどちらにおいても快適に両眼視を行うことができ、長時間の装用を可能にする眼鏡レンズを提供する。
【0008】
【課題を解決するための手段】
本発明の累進多焦点レンズは、比較的遠くを見るための遠用部領域と、比較的近くを見るための近用部領域と、前記遠用部領域と前記近用部領域との間にあって屈折力が連続的に変化する中間部領域とを有する累進多焦点レンズであって、前記中間部領域内の主注視線上のプリズム屈折力の水平成分が、前記遠用部領域内に設定された遠用部プリズム測定基準点におけるプリズム屈折力の水平成分の値から、前記近用部領域内に設定された近用部プリズム測定基準点におけるプリズム屈折力の水平成分の値へと連続的に変化し、且つ、前記中間部領域内の主注視線上のプリズム屈折力の水平成分が、前記主注視線上の屈折力の変化の規則と同じ規則で変化することを特徴とする。
【0012】
【発明の実施の形態】
図1は累進多焦点レンズの概略図である。レンズ1の上部に遠用部領域11があり、レンズ下部に近用部領域13がある。中間部領域12は遠用部領域11と近用部領域13との間にある。遠用部領域11の下端に遠用部プリズム測定基準点21があり、近用部領域13の上端に近用部プリズム測定基準点22が存在する。本発明の累進多焦点レンズでは遠用部プリズム測定基準点21および近用部プリズム測定基準点22はそれぞれ遠用部設計基準点および近用部設計基準点に対応している。遠用部プリズム測定基準点21と近用部プリズム測定基準点22とを結ぶ線分は中間部主注視線23であり、眼鏡装用者の視線がもっとも頻繁に通過する仮定された設計上の仮想線である。遠用部プリズム測定基準点21を通るレンズの水平断面A−A’を図2に示す。また、近用部プリズム測定基準点22を通る水平断面B−B’を図3に示す。図2,図3において31はレンズの物体側屈折面を、32はレンズの眼球側屈折面をそれぞれ示す。
【0013】
図2において、遠用部プリズム測定基準点21を通り、眼球側屈折面32に垂直な線分と眼球側屈折面32との交点を41とする。遠用部プリズム測定基準点21における物体側屈折面31の接線51と、交点41を通る眼球側屈折面32の接線52との成す角をαとすると、遠用部プリズム測定基準点21におけるプリズム屈折力の水平成分P1は以下の式で表される。
P1=100・tan((n−1)・α) (1)
ここで、nはレンズ基材の屈折率である。
【0014】
図3において、近用部プリズム測定基準点22を通り、眼球側屈折面32に垂直な線分と眼球側屈折面32との交点を42とする。近用部プリズム測定基準点22における物体側屈折面31の接線53と、交点42を通る眼球側屈折面32の接線54との成す角をβとすると、近用部プリズム測定基準点22におけるプリズム屈折力の水平成分P2は以下の式で表される。
【0015】
P2=100・tan((n−1)・β) (2)
従来の一般的な累進多焦点レンズでは、あらかじめ物体側屈折面31の形状が決まっており、また眼球側屈折面32は眼鏡レンズ装用者の処方度数のうち球面屈折力および乱視屈折力により形状が決まってしまうため、前記成す角αとβとを独立して設定することができなかった。すなわち、遠用部プリズム屈折力の水平成分P1が指定されて角度αが決まると自動的に角βが決まってしまい、近用部プリズム屈折力P2も必然的に決まっていた。
【0016】
本発明の累進多焦点レンズでは、前記角αと角βとをそれぞれ独立して設定できるようにしたので、遠用部プリズム屈折力P1と近用部プリズム屈折力P2とを別々に処方できるようになり、輻輳力が弱まった老視者でも快適に近くのものが見えるようになった。
【0017】
以下では、本発明をより具体的に説明する。図1における中間部主注視線23上のプリズム屈折力の水平成分の変化を図4に示す。横軸は遠用部プリズム測定基準点からの距離を示し、縦軸はプリズム屈折力を示す。中間部プリズム屈折力の水平成分は、遠用部プリズム測定基準点のプリズム水平成分P1から、近用部プリズム測定基準点のプリズム水平成分P2まで滑らかに変化している。また、中間部主注視線23に沿った平均屈折力の変化を図5に示す。図4と図5を比較すると、中間部主注視線23に沿ったプリズム屈折力の水平成分は平均屈折力の変化と同じ割合で変化していることがわかる。なお、図5でA1およびA2はそれぞれ遠用部プリズム測定基準点21および近用部プリズム測定基準点22における平均屈折力を表す。このように、プリズム屈折力の変化を平均屈折力の変化と同じように滑らかに変化させたので、遠用部から近用部まで像の飛びが無い滑らかな視野を有する累進多焦点レンズを提供することができた。
【0018】
【発明の効果】
遠用部領域におけるプリズム屈折力の水平成分と、近用部領域におけるプリズム屈折力の水平成分とを別々に指定および加工ができるため、老視者が近方視するときの輻輳量の減少を補うことができ、長時間近方視を続けても疲れない累進多焦点レンズを提供できる。さらに、中間部主注視線上のプリズム屈折力水平成分が遠用部領域から近用部領域に向かうにつれ滑らかに変化するため、像の飛びのない滑らかな視野を提供できる。
【図面の簡単な説明】
【図1】 本発明の累進多焦点レンズの概念図。
【図2】 遠用部プリズム測定基準点を通る水平断面図。
【図3】 近用部プリズム測定基準点を通る水平断面図。
【図4】 中間部主注視線上のプリズム水平線分の変化図。
【図5】 中間部主注視線上の平均屈折力の変化図。
【符号の説明】
11 遠用部領域
12 中間部領域
13 近用部領域
21 遠用部プリズム測定基準点(遠用部設計基準点)
22 近用部プリズム測定基準点(近用部設計基準点)
23 中間部主注視線
31 レンズの物体側屈折面
32 レンズの眼球側屈折面
41 遠用部の眼球側屈折面の交点
42 近用部の眼球側屈折面の交点
51 遠用部の物体側屈折面の接線
52 遠用部の眼球側屈折面の接線
53 近用部の物体側屈折面の接線
54 近用部の眼球側屈折面の接線
A,A’ 遠用部水平断面位置
B,B’ 近用部水平断面位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a progressive multifocal lens having a prism action different between a distance portion and a near portion and a manufacturing method thereof.
[0002]
[Prior art]
The progressive multifocal lens has a distance portion having a distance power for viewing a distance, a near portion having a near power for looking at a hand, and a distance portion between the distance portion and the near portion. And an intermediate portion where the refractive power continuously changes. The difference between the refractive power for the distance and the refractive power for the near distance is called the addition refractive power, and is generally prepared in advance every 0.25D in the refractive power range of 0.50D (diopter) to 4.00D. Therefore, an appropriate addition power can be selected according to the degree of presbyopia of the spectacle wearer. In this way, the distance portion refractive power and the near portion refractive power can be freely selected within a range where there is no problem in practical use.
[0003]
In general, in the prescription for spectacle wearers, in addition to the refractive power related to the focal action such as the distance power and the near power, the prism refractive power having the function of changing the direction of the line of sight is included. Exists. When manufacturing a progressive multifocal lens, if the refractive power of the distance portion is determined, the refractive power of the near portion is determined by the shape of the progressive refracting surface and the refractive power and addition power of the distance portion. It was not possible to freely select or specify the refractive power of the prism.
[0004]
[Problems to be solved by the invention]
However, it is needless to say that it is desirable that the prism refractive power of the distance portion and the prism refractive power of the near portion are originally prescribed separately. If the right and left eye prisms are not prescribed correctly, it will be painful to wear glasses for a long time because objects appear double or look different. Especially for presbyopia, the convergence force becomes difficult to work with a decrease in the adjustment power, and therefore binocular vision may be difficult if near vision is not corrected by the prism in the base.
[0005]
The progressive multifocal lens of the present invention allows the horizontal component of the prism refractive power in the distance portion and the horizontal component of the prism refractive power in the near portion to be specified separately, so that the distance and near vision can be specified separately. Provided is a spectacle lens that can perform binocular viewing comfortably at any time and can be worn for a long time.
[0008]
[Means for Solving the Problems]
The progressive multifocal lens of the present invention is located between a distance portion region for viewing relatively far, a near portion region for viewing relatively close, and the distance portion region and the near portion region. A progressive multifocal lens having an intermediate region in which the refractive power continuously changes, wherein the horizontal component of the prism refractive power on the main line of sight in the intermediate region is set in the distance portion region Continuously changes from the value of the horizontal component of the prism refractive power at the distance prism measurement reference point to the value of the horizontal component of the prism refractive power at the near-field prism measurement reference point set in the near-use region. In addition, the horizontal component of the prism refractive power on the main gazing line in the intermediate region changes according to the same rule as the rule of change of the refracting power on the main gazing line.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view of a progressive multifocal lens. There is a distance portion area 11 at the top of the lens 1 and a near portion area 13 at the bottom of the lens. The intermediate area 12 is between the distance area 11 and the near area 13. A distance prism measurement reference point 21 exists at the lower end of the distance area 11, and a near prism measurement reference point 22 exists at the upper end of the near area 13. In the progressive multifocal lens of the present invention, the distance portion prism measurement reference point 21 and the near portion prism measurement reference point 22 correspond to the distance portion design reference point and the near portion design reference point, respectively. The line segment connecting the distance prism measurement reference point 21 and the near prism measurement reference point 22 is the intermediate main line of sight 23, and the hypothetical design hypothesis on which the eyeglass wearer's line of sight passes most frequently. Is a line. A horizontal cross section AA ′ of the lens passing through the distance prism measurement reference point 21 is shown in FIG. Further, FIG. 3 shows a horizontal section BB ′ passing through the near portion prism measurement reference point 22. 2 and 3, reference numeral 31 denotes an object side refractive surface of the lens, and 32 denotes an eyeball side refractive surface of the lens.
[0013]
In FIG. 2, let 41 be the intersection of a line segment passing through the distance portion prism measurement reference point 21 and perpendicular to the eyeball side refractive surface 32 and the eyeball side refractive surface 32. If the angle formed between the tangent line 51 of the object-side refractive surface 31 at the distance portion prism measurement reference point 21 and the tangent line 52 of the eyeball-side refractive surface 32 passing through the intersection point 41 is α, the prism at the distance portion prism measurement reference point 21 The horizontal component P1 of refractive power is expressed by the following equation.
P1 = 100 · tan ((n−1) · α) (1)
Here, n is the refractive index of the lens substrate.
[0014]
In FIG. 3, the intersection of the line segment perpendicular to the eyeball side refracting surface 32 and the eyeball side refracting surface 32 passing through the near part prism measurement reference point 22 is defined as 42. If the angle formed by the tangent line 53 of the object side refractive surface 31 at the near portion prism measurement reference point 22 and the tangent line 54 of the eyeball side refractive surface 32 passing through the intersection 42 is β, the prism at the near portion prism measurement reference point 22 The horizontal component P2 of refractive power is expressed by the following equation.
[0015]
P2 = 100 · tan ((n−1) · β) (2)
In a conventional general progressive multifocal lens, the shape of the object-side refractive surface 31 is determined in advance, and the eyeball-side refractive surface 32 is shaped by the spherical refractive power and astigmatic refractive power of the prescription power of the spectacle lens wearer. Therefore, the formed angles α and β cannot be set independently. That is, when the horizontal component P1 of the distance portion prism refractive power is specified and the angle α is determined, the angle β is automatically determined, and the near portion prism refractive power P2 is inevitably determined.
[0016]
In the progressive multifocal lens according to the present invention, the angle α and the angle β can be set independently, so that the distance prism refractive power P1 and the distance prism refractive power P2 can be prescribed separately. As a result, even presbyopia with weakened convergence can comfortably see nearby objects.
[0017]
Hereinafter, the present invention will be described more specifically. FIG. 4 shows changes in the horizontal component of the prism refractive power on the intermediate main line of sight 23 in FIG. The horizontal axis indicates the distance from the distance portion prism measurement reference point, and the vertical axis indicates the prism refractive power. The horizontal component of the intermediate portion prism refractive power smoothly changes from the prism horizontal component P1 at the distance portion prism measurement reference point to the prism horizontal component P2 at the near portion prism measurement reference point. Further, FIG. 5 shows a change in average refractive power along the intermediate main gazing line 23. Comparing FIG. 4 and FIG. 5, it can be seen that the horizontal component of the prism refractive power along the intermediate main line of sight 23 changes at the same rate as the change in average refractive power. In FIG. 5, A1 and A2 represent the average refractive powers at the distance portion prism measurement reference point 21 and the near portion prism measurement reference point 22, respectively. In this way, since the change in prism refractive power is smoothly changed in the same way as the change in average refractive power, a progressive multifocal lens having a smooth field of view with no image jump from the distance portion to the near portion is provided. We were able to.
[0018]
【The invention's effect】
The horizontal component of the refractive power of the prism in the distance area and the horizontal component of the prism power in the near area can be specified and processed separately, reducing the amount of convergence when presbyopia is near-sighted. It is possible to provide a progressive multifocal lens that can be compensated and that does not get tired even if the near vision is continued for a long time. Furthermore, since the horizontal component of the prism refractive power on the intermediate main line of sight changes smoothly from the distance area to the near area, it is possible to provide a smooth field of view without image skipping.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a progressive multifocal lens of the present invention.
FIG. 2 is a horizontal sectional view passing through a distance portion prism measurement reference point.
FIG. 3 is a horizontal cross-sectional view passing through a near-part prism measurement reference point.
FIG. 4 is a change diagram of a prism horizontal line segment on an intermediate main gaze line.
FIG. 5 is a diagram showing a change in average refractive power on an intermediate main line of sight.
[Explanation of symbols]
11 Distance section area 12 Middle section area 13 Near section area 21 Distance section prism measurement reference point (Distance design reference point)
22 Near part prism measurement reference point (Near part design reference point)
23 Intermediary main gaze line 31 Lens object side refractive surface 32 Lens eyeball side refractive surface 41 Intersection point of eyeball side refractive surface of distance portion 42 Point of intersection 51 of eyeball side refractive surface of distance portion Object side refraction of distance portion Surface tangent line 52 Distance-side eyeball-side refractive surface tangent line 53 Near-side object-side refractive surface tangent line 54 Near-field-side eyeball-side refractive surface tangent line A, A ′ Distance-portion horizontal section position B, B ′ Near-section horizontal cross-section position

Claims (1)

比較的遠くを見るための遠用部領域と、比較的近くを見るための近用部領域と、前記遠用部領域と前記近用部領域との間にあって屈折力が連続的に変化する中間部領域とを有する累進多焦点レンズであって、
前記中間部領域内の主注視線上のプリズム屈折力の水平成分が、前記遠用部領域内に設定された遠用部プリズム測定基準点におけるプリズム屈折力の水平成分の値から、前記近用部領域内に設定された近用部プリズム測定基準点におけるプリズム屈折力の水平成分の値へと連続的に変化し、
且つ、前記中間部領域内の主注視線上のプリズム屈折力の水平成分が、前記主注視線上の屈折力の変化の規則と同じ規則で変化することを特徴とする累進多焦点レンズ。
A distance portion region for viewing relatively far away, a near portion region for viewing relatively near, and an intermediate portion in which the refractive power continuously changes between the distance portion region and the near portion region. A progressive multifocal lens having a partial area,
The near component is obtained from the value of the horizontal component of the prism refractive power at the distance prism measurement reference point set in the distance portion region, as the horizontal component of the prism refractive power on the main line of sight in the intermediate region. It changes continuously to the value of the horizontal component of the prism refractive power at the near-field prism measurement reference point set in the area,
In addition, the horizontal component of the refractive power of the prism on the main gazing line in the intermediate region changes according to the same rule as the rule of change of the refracting power on the main gazing line.
JP09648598A 1998-04-08 1998-04-08 Progressive multifocal lens and manufacturing method thereof Expired - Lifetime JP3899659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09648598A JP3899659B2 (en) 1998-04-08 1998-04-08 Progressive multifocal lens and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09648598A JP3899659B2 (en) 1998-04-08 1998-04-08 Progressive multifocal lens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11295670A JPH11295670A (en) 1999-10-29
JP3899659B2 true JP3899659B2 (en) 2007-03-28

Family

ID=14166378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09648598A Expired - Lifetime JP3899659B2 (en) 1998-04-08 1998-04-08 Progressive multifocal lens and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3899659B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495005B2 (en) 2014-12-26 2019-04-03 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd A pair of eyeglass lenses for both eyes, a manufacturing method thereof, a supply system, and a supply program
JP6495006B2 (en) 2014-12-26 2019-04-03 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd A pair of eyeglass lenses for both eyes, a manufacturing method thereof, a supply system, and a supply program
CN107111158A (en) 2014-12-26 2017-08-29 豪雅镜片泰国有限公司 Eyeglass, its manufacture method, feed system and supply program
JP6598695B2 (en) * 2016-01-26 2019-10-30 伊藤光学工業株式会社 Eyeglass lenses
DE102017000777A1 (en) 2017-01-27 2018-08-02 Rodenstock Gmbh Method for considering different prismatic corrections in the distance and near
US10921614B2 (en) * 2017-12-31 2021-02-16 Neurolens, Inc. Low-convergence negative power spectacles
JP2019139120A (en) * 2018-02-14 2019-08-22 東海光学株式会社 Bifocal lens and method of manufacturing bifocal lens

Also Published As

Publication number Publication date
JPH11295670A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US8434865B2 (en) Multifocal lens having a progressive optical power region and a discontinuity
JPH0690368B2 (en) Progressive multifocal lens and glasses
JP5496798B2 (en) Progressive eyeglass lens having two aspheric surfaces, in particular a progressive surface, and method for calculating the eyeglass lens
KR20070100902A (en) Multi-focal ophthalmic lens with base in prism
US7914145B2 (en) Progressive power lens and manufacturing method therefor
WO1997038343A1 (en) Progressive lens elements and methods for designing and using same
AU2008332369A1 (en) Pair of progressive power lens and method for designing same
JP2007241276A (en) Method for the determination of progressive focus ophthalmic lens
US5446508A (en) Progressive power lens
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
EP0702257B1 (en) Progressive power presbyopia-correcting ophthalmic lenses
JPH1031198A (en) Multi-focus spectacle lens
JP2004502963A (en) Progressive spectacle lens with low shaking movement
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
EP0627647B1 (en) Progressive multifocal lens
CN111065960A (en) Progressive multifocal lens and method for manufacturing same
JP3788083B2 (en) Progressive multifocal lens, spectacles and manufacturing method
JP7090155B2 (en) Progressive power lens design method, manufacturing method and progressive power lens
JPH07294859A (en) Progressive multi-focus lens
JP6126772B2 (en) Progressive power lens
CA1244687A (en) Contact lens
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP2003532156A (en) Progressive eyeglass lenses with slightly different binocular characteristics during eye movement
US7159980B2 (en) Progressive refractive power lens and production method therefor
JP2001033738A (en) Progressive multifocus lens and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term