JP6598695B2 - Eyeglass lenses - Google Patents

Eyeglass lenses Download PDF

Info

Publication number
JP6598695B2
JP6598695B2 JP2016012707A JP2016012707A JP6598695B2 JP 6598695 B2 JP6598695 B2 JP 6598695B2 JP 2016012707 A JP2016012707 A JP 2016012707A JP 2016012707 A JP2016012707 A JP 2016012707A JP 6598695 B2 JP6598695 B2 JP 6598695B2
Authority
JP
Japan
Prior art keywords
refractive power
lens
power surface
boundary line
coupling portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016012707A
Other languages
Japanese (ja)
Other versions
JP2017134172A (en
Inventor
泰史 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Original Assignee
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd filed Critical Itoh Optical Industrial Co Ltd
Priority to JP2016012707A priority Critical patent/JP6598695B2/en
Publication of JP2017134172A publication Critical patent/JP2017134172A/en
Application granted granted Critical
Publication of JP6598695B2 publication Critical patent/JP6598695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、眼鏡レンズに関し、特にレンズの上部と下部とで異なるプリズム成分が設定された眼鏡レンズに関する。   The present invention relates to a spectacle lens, and more particularly to a spectacle lens in which different prism components are set at the upper and lower portions of the lens.

人は、近方視の際、眼前の一点に視線を集中させるため両眼を内側に内転させる。このような機能を「輻輳」という。輻輳の機能が十分でない場合、近方に視線を移動させることが難しくなる。   In near vision, a person inverts both eyes inward to concentrate the line of sight on one point in front of the eye. Such a function is called “congestion”. If the function of congestion is not sufficient, it becomes difficult to move the line of sight closer.

このような輻輳不全を補助するための眼鏡レンズとして、例えば下記特許文献1及び特許文献2等に記載されたものがある。図8はその一例を示したものである。図8に示す眼鏡レンズ100は、本体レンズ102の外面(前面)側の一部(近用領域)に、鼻側(同図における左側)に基底方向があるプリズム成分を有する補助レンズ104が形成されている。
このような眼鏡レンズを装用すれば、近方視の際の視線を補助レンズ104のプリズム効果により無理なく鼻側に屈曲させることができるため、輻輳力が十分でない場合、あるいは斜位や斜視がある場合に有効である。
As a spectacle lens for assisting such congestion failure, for example, there are those described in Patent Document 1 and Patent Document 2 below. FIG. 8 shows an example. In the spectacle lens 100 shown in FIG. 8, an auxiliary lens 104 having a prism component having a base direction on the nose side (left side in the figure) is formed on a part (near-use area) on the outer surface (front surface) side of the main body lens 102. Has been.
By wearing such a spectacle lens, the line of sight in near vision can be bent flexibly to the nose due to the prism effect of the auxiliary lens 104. Effective in some cases.

しかしながら図8に示す眼鏡レンズ100のように、レンズ前面に補助レンズ104を追加した場合、補助レンズ104と本体レンズ102との境界部106で段差が生じ、他人から見られた時の装用者の外観が損なわれる問題が生じる。
特に補助レンズ104のプリズム量を大きくした場合には境界部106での段差が大きくなり、また補助レンズ104自体を大きくした場合には境界部106の周長が長くなり、何れの場合も境界部106が目立ってしまい、補助レンズ104によるプリズム効果と見栄えの両立が難しい。
However, when the auxiliary lens 104 is added to the front surface of the lens as in the spectacle lens 100 shown in FIG. 8, a step is generated at the boundary portion 106 between the auxiliary lens 104 and the main body lens 102, and the wearer's eyes when viewed from others are displayed. The problem that an external appearance is impaired arises.
In particular, when the prism amount of the auxiliary lens 104 is increased, the level difference at the boundary portion 106 is increased, and when the auxiliary lens 104 itself is increased, the peripheral length of the boundary portion 106 is increased. 106 becomes conspicuous, and it is difficult to achieve both the prism effect by the auxiliary lens 104 and the appearance.

特開平5−303063号公報Japanese Patent Laid-Open No. 5-303063 特開2011−107298号公報JP 2011-107298 A 特許第5442658号公報Japanese Patent No. 5442658 特許第4996006号公報Japanese Patent No. 4996006

本発明は以上のような事情を背景とし、レンズの上部と下部とで異なるプリズム成分が設定され且つレンズの上部と下部との間に明確な境界線が現れない眼鏡レンズを提供することを目的としてなされたものである。   The present invention is based on the above circumstances, and an object thereof is to provide a spectacle lens in which different prism components are set in the upper and lower portions of the lens and a clear boundary line does not appear between the upper and lower portions of the lens. It was made as.

而して請求項1は、内面の面形状に基づいて上部と下部とで異なるプリズム成分が設定された眼鏡レンズであって、前記内面に形成された上部屈折力面と下部屈折力面とは、点状の1つの結合部でのみ接し、前記結合部における前記上部屈折力面と前記下部屈折力面の上下方向の傾きは、同一とされ、且つ前記上部屈折力面と前記下部屈折力面、前記結合部の1点でねじられた関係にあって、前記上部屈折力面及び/又は前記下部屈折力面が、レンズ外面との厚みが鼻側もしくは耳側の何れか一方で厚く、他方で薄くなるように構成されて、前記上部及び/又は前記下部に所定のプリズム成分が設定されるとともに、前記上部屈折力面と前記下部屈折力面の間は、前記上部屈折力面と前記下部屈折力面を滑らかに連結する曲面状の補間面とされていることを特徴とする。 Thus, claim 1 is a spectacle lens in which different prism components are set in the upper part and the lower part based on the surface shape of the inner surface, and the upper refractive power surface and the lower refractive power surface formed on the inner surface are , point-like contact only one coupling portion, the vertical direction of inclination of the upper power surface in the coupling portion and the lower power plane is the same, and the lower power side and the upper power plane but, in the relationship that has been twisted at one point of the coupling portion, the upper power plane and / or the lower power surface, the thickness of the lens outer surface is thick in either the nasal or temporal side, On the other hand, it is configured to be thin , a predetermined prism component is set in the upper part and / or the lower part, and the upper refractive power surface and the lower refractive power surface are between the upper refractive power surface and the lower refractive power surface. A curved interpolation surface that smoothly connects the lower refractive power surfaces. It is characterized by being.

請求項2は、請求項1において、前記上部屈折力面と前記補間面との境界線が、背面視において、前記結合部から左斜め上方に延びる直線状の左側上部境界線と、前記結合部から右斜め上方に延びる直線状の右側上部境界線とから構成され、前記下部屈折力面と前記補間面との境界線が、背面視において、前記結合部から左斜め下方に延びる直線状の左側下部境界線と、前記結合部から右斜め下方に延びる直線状の右側下部境界線とから構成されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the boundary line between the upper refracting power surface and the interpolation surface is a straight left upper boundary line extending obliquely leftward from the coupling portion in the rear view, and the coupling portion. A straight right upper boundary line extending diagonally upward to the right, and a boundary line between the lower refractive power surface and the interpolation surface extending straight diagonally to the left from the coupling portion in a rear view. It is comprised from the lower boundary line and the linear right lower boundary line extended diagonally right below from the said connection part, It is characterized by the above-mentioned.

請求項3は、請求項1,2の何れかにおいて、前記内面が、前記上部屈折力面と前記下部屈折力面とで互いに面屈折力が異なる二重焦点面とされていることを特徴とする。   A third aspect of the present invention is characterized in that, in any one of the first and second aspects, the inner surface is a double focal plane having different surface refractive powers on the upper refractive power surface and the lower refractive power surface. To do.

請求項4は、請求項1,2の何れかにおいて、外面が、上側に遠方の物体を見るために使用する遠用領域を、下側に近方の物体を見るために使用する近用領域を、前記遠用領域と前記近用領域との間に連続的に度数が変化する累進領域を備えた累進屈折面とされ、前記結合部が、前後方向において前記累進領域の途中位置と重なるように設けられていることを特徴とする。   [Claim 4] In any one of claims 1 and 2, the outer surface has a distance area used for viewing a distant object on the upper side and a near area used for viewing a near object on the lower side. Is a progressive refracting surface having a progressive area in which the power continuously changes between the distance area and the near area, so that the coupling portion overlaps the intermediate position of the progressive area in the front-rear direction. It is provided in.

請求項5は、請求項4において、前記内面が、前記上部屈折力面と前記下部屈折力面とで互いに面屈折力が異なる二重焦点面とされていることを特徴とする。   A fifth aspect of the present invention is characterized in that, in the fourth aspect, the inner surface is a double focal plane having different surface refractive powers on the upper refractive power surface and the lower refractive power surface.

以上のように本発明によれば、レンズの上部と下部とで異なるプリズム成分が設定されており、装用者が遠方視のため視線を上部に移動させた際、又は近方視のため視線を下部に移動させた際、それぞれのプリズム効果により視線を目的の方向に矯正することができる。   As described above, according to the present invention, different prism components are set for the upper and lower parts of the lens, and when the wearer moves the line of sight for far vision, or for near vision, When moved to the lower part, the line of sight can be corrected in the intended direction by the respective prism effects.

本発明ではまた、結合部の上方と下方とにそれぞれプリズム成分の異なる領域が設けられており、視線を上下方向に大きく移動させた場合でも、所定のプリズム効果を得ることができる。   In the present invention, regions having different prism components are provided above and below the coupling portion, respectively, and a predetermined prism effect can be obtained even when the line of sight is greatly moved in the vertical direction.

また、従来のようにレンズの外面側に補助レンズを形成した場合には、補助レンズとレンズ本体との境界部で段差が生じ、他人から見られた時の装用者の外観が損なわれる問題が生じるが、本発明ではレンズ内面の面形状に基づいてプリズム成分が設定されているためレンズ外面側に境界線は生じない。また、内面の上部屈折力面と下部屈折力面とは、点状の1つの結合部でのみ接し、結合部における上部屈折力面と下部屈折力面の上下方向の傾きは同一とされて、上部屈折力面と下部屈折力面の間は滑らかな補間面とされているので、上部屈折力面と下部屈折力面との間に明確な境界線は現れず、装用者の外観が損なわれることを良好に防止することができる。
また境界線や段差があることにより装用者自身が感じる違和感も、解消又は軽減することができる。
In addition, when an auxiliary lens is formed on the outer surface side of the lens as in the prior art, a step is produced at the boundary between the auxiliary lens and the lens body, and the appearance of the wearer when viewed by another person is impaired. However, in the present invention, since the prism component is set based on the surface shape of the lens inner surface, no boundary line is generated on the lens outer surface side. Further, the upper refractive power surface and the lower refractive power surface of the inner surface are in contact with only one point-like coupling portion, and the vertical inclination of the upper refractive power surface and the lower refractive power surface in the coupling portion is the same, Since a smooth interpolation surface is provided between the upper refractive power surface and the lower refractive power surface, a clear boundary line does not appear between the upper refractive power surface and the lower refractive power surface, and the appearance of the wearer is impaired. This can be prevented well.
Moreover, the discomfort felt by the wearer himself / herself due to the boundary lines and steps can be eliminated or reduced.

本発明ではまた、上部屈折力面と補間面との境界線を、結合部から左斜め上方に延びる直線状の左側上部境界線と、結合部から右斜め上方に延びる直線状の右側上部境界線で構成し、下部屈折力面と補間面との境界線を、結合部から左斜め下方に延びる直線状の左側下部境界線と、結合部から右斜め下方に延びる直線状の右側下部境界線とで構成しておくことができる(請求項2)。
このようにした場合、結合部を通って左右方向に延びる軸に対する、左側上部境界線、右側上部境界線、左側下部境界線、及び、右側下部境界線の角度によって補間面の大きさが決定される。例えばレンズ下部に大きなプリズム量を設定した場合にはレンズ上部とレンズ下部とで厚みの違いが大きくなるが、設計段階において上記角度を広げて補間面を大きく設定することより、上部屈折力面と下部屈折力面との間に明確な境界線が現れるのを防止することができる。
In the present invention, the boundary line between the upper refractive power surface and the interpolation surface is divided into a straight left upper boundary line extending diagonally to the left from the coupling portion and a linear right upper boundary line extending diagonally upward to the right from the coupling portion. A boundary line between the lower refractive power surface and the interpolation surface, a straight left lower boundary line extending diagonally to the left from the coupling part, and a linear right lower boundary line extending diagonally downward to the right from the coupling part. (Claim 2).
In this case, the size of the interpolation plane is determined by the angle of the left upper boundary line, the right upper boundary line, the left lower boundary line, and the right lower boundary line with respect to the axis extending in the left-right direction through the coupling portion. The For example, when a large amount of prism is set at the lower part of the lens, the difference in thickness between the upper part of the lens and the lower part of the lens becomes large, but by increasing the angle and setting the interpolation surface larger at the design stage, It is possible to prevent a clear boundary line from appearing between the lower refractive power surface.

本発明では、レンズ内面を、上部屈折力面と下部屈折力面とで互いに面屈折力が異なる二重焦点面とすることで、遠用部(上部)と近用部(下部)において、度数とともにプリズム成分が異なる二重焦点レンズを提供することができる(請求項3)。
かかる請求項3においても上部屈折力面と下部屈折力面の間は滑らかな補間面とされているので、遠用部と近用部との間に明確な境界線は現れず、装用者の外観を損ねることを防止することができる。
In the present invention, the lens inner surface is a double focal plane having different surface refractive powers on the upper refractive power surface and the lower refractive power surface, so that the distance in the distance portion (upper portion) and the near portion (lower portion) can be reduced. In addition, a bifocal lens having different prism components can be provided.
Also in the third aspect, since a smooth interpolation surface is provided between the upper refractive power surface and the lower refractive power surface, a clear boundary line does not appear between the distance portion and the near portion, and the wearer's It is possible to prevent the appearance from being damaged.

本発明ではまた、外面を、遠方の物体を見るために使用する遠用領域と、近方の物体を見るために使用する近用領域と、これら遠用領域と近用領域との間で連続的に度数が変化する累進領域とを備えた累進屈折面とし、結合部を、前後方向において累進領域の途中位置と重なるように設けることで、遠用部と近用部において、度数とともにプリズム成分が異なる累進屈折力レンズを提供することができる(請求項4)。   In the present invention, the outer surface is continuously used between a distance area used for viewing a distant object, a near area used for viewing a near object, and the distance area and the near area. A progressive refracting surface having a progressive region with a variable power, and by providing a coupling portion so as to overlap with the intermediate position of the progressive region in the front-rear direction, the prism component together with the power in the distance portion and the near portion It is possible to provide progressive power lenses having different (claim 4).

累進屈折力レンズは、二重焦点レンズに対して中間部(累進領域)にて中間距離のものを視認することができることを特徴としたものであるが、累進屈折面の面形状を変化されてレンズの上部又は下部に特定のプリズム成分を付加すると中間部全体にねじれが生じて中間部の明視領域が収差でつぶれてしまう。
これに対し請求項4では、レンズ外面を累進屈折面とする一方、レンズ内面の結合部の1点で上部屈折力面又は下部屈折力面をねじることでレンズの上部又は下部のみに特定のプリズム成分を付加することができるため中間部での収差の発生を最小限に抑えることができる。
A progressive-power lens is characterized by being able to visually recognize an intermediate distance lens at a middle portion (progressive region) with respect to a bifocal lens, but the surface shape of the progressive-power surface is changed. When a specific prism component is added to the upper part or the lower part of the lens, the entire intermediate part is twisted, and the clear vision region of the intermediate part is crushed by the aberration.
On the other hand, in claim 4, the lens outer surface is a progressive refractive surface, while the upper refractive surface or the lower refractive surface is twisted at one point of the coupling portion of the inner surface of the lens so that only a specific prism is formed on the upper or lower portion of the lens. Since components can be added, the occurrence of aberrations at the intermediate portion can be minimized.

尚、累進屈折力レンズを構成する際には、外面を累進屈折面とする一方、レンズ内面を、上部屈折力面と下部屈折力面とで互いに面屈折力が異なる二重焦点面とし、全体として予定している加入度の一部を二重焦点面側に設定することができる。(請求項5)。
このようにすることで、累進領域の途中に位置する結合部のポイントで度数変化を大きくすることができる。これにより、従来の累進屈折力レンズに比して少ない眼球運動・回旋量で、遠用・近用の切替えが可能となり、疲労が軽減される。
尚、中間部における明視領域を確保するため、外面の累進屈折面における加入度を、内面の二重焦点面における加入度よりも大きくしておくのが望ましい。
When constructing a progressive addition lens, the outer surface is a progressive addition surface, while the inner surface of the lens is a double focal plane having different surface refractive powers on the upper and lower refractive surfaces. A part of the addition planned as can be set on the double focal plane side. (Claim 5).
By doing in this way, a frequency change can be enlarged by the point of the coupling part located in the middle of the progressive area. This makes it possible to switch between far-distance and near-distance with less eye movement / rotation amount than a conventional progressive-power lens, thereby reducing fatigue.
In order to secure a clear vision region in the intermediate portion, it is desirable that the addition on the progressive surface of the outer surface be larger than the addition on the double focal plane on the inner surface.

以上のような本発明によれば、レンズの上部と下部とで異なるプリズム成分が設定され且つレンズの上部と下部との間に明確な境界線が現れない眼鏡レンズを提供することができる。   According to the present invention as described above, it is possible to provide a spectacle lens in which different prism components are set in the upper part and the lower part of the lens and no clear boundary line appears between the upper part and the lower part of the lens.

本発明の一実施形態の眼鏡レンズを示した図である。It is the figure which showed the spectacle lens of one Embodiment of this invention. (A)同実施形態の眼鏡レンズの上部断面図である。(B)同実施形態の眼鏡レンズの下部断面図である。(A) It is upper part sectional drawing of the spectacle lens of the embodiment. (B) It is a lower section of the spectacle lens of the embodiment. 同実施形態の眼鏡レンズでの補間面生成方法の説明図である。It is explanatory drawing of the interpolation surface production | generation method in the spectacle lens of the embodiment. 同実施形態の眼鏡レンズの効果を説明するための図である。It is a figure for demonstrating the effect of the spectacles lens of the embodiment. 本発明の他の実施形態の眼鏡レンズを示した図である。It is the figure which showed the spectacle lens of other embodiment of this invention. 同実施形態の眼鏡レンズにおける明視領域を比較例とともに示した図である。It is the figure which showed the clear vision area | region in the spectacle lens of the embodiment with the comparative example. 全体加入度を2.00Dとした場合の実施例と従来の累進屈折力レンズである比較例の度数変化を示した図である。It is the figure which showed the power change of the Example when the total addition power is 2.00D, and the comparative example which is a conventional progressive-power lens. 従来の補助レンズ付き眼鏡レンズの一例を示した図である。It is the figure which showed an example of the conventional spectacle lens with an auxiliary lens.

以下、本発明の一実施形態を図面に基づいて説明する。なお、以下の説明においては、当該レンズを用いた眼鏡を装用したときの装用者にとっての前後、左右、上下を、それぞれ、当該レンズにおける前後、左右、上下とする。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the front / rear, left / right, and upper / lower for the wearer when wearing spectacles using the lens are referred to as the front / rear, left / right, and upper / lower, respectively, of the lens.

図1において眼鏡レンズ10(以下、単にレンズとする場合がある)は、単焦点レンズの下部に、近方視の際の視線の移動を補助するプリズム成分を設定したものである。
レンズ10はレンズ前面が球面形状をなしており、レンズ内面(後面)の上側に上部屈折力面11が、下側に下部屈折力面12が形成されている。
In FIG. 1, a spectacle lens 10 (hereinafter sometimes referred to simply as a lens) has a prism component that assists the movement of the line of sight in near vision at the bottom of a single focus lens.
The front surface of the lens 10 has a spherical shape, and an upper refractive surface 11 is formed on the upper side of the lens inner surface (rear surface), and a lower refractive surface 12 is formed on the lower side.

レンズ内面の上部屈折力面11と下部屈折力面12とは、点状の1つの結合部13でのみ接して、結合部13における上部屈折力面11と下部屈折力面12の上下方向の傾きは、同一とされている。
上部屈折力面11と下部屈折力面12との間は、上部屈折力面11と下部屈折力面12とを滑らかに連結する曲面状の補間面16(図1(B)の斜線部分参照)とされている。
補間面16は、非点収差を生じる面であり、以下、レンズ10において、レンズ内面が補間面16である部分を非点収差部26、上部屈折力面11である部分を上部21、下部屈折力面12である部分を下部22とする。
The upper refracting power surface 11 and the lower refracting power surface 12 on the inner surface of the lens are in contact with each other at only one dotted coupling portion 13, and the upper and lower refractive power surfaces 11 and 12 are inclined in the vertical direction at the coupling portion 13. Are the same.
Between the upper refractive power surface 11 and the lower refractive power surface 12, a curved interpolation surface 16 that smoothly connects the upper refractive power surface 11 and the lower refractive power surface 12 (see the hatched portion in FIG. 1B). It is said that.
The interpolation surface 16 is a surface that causes astigmatism. Hereinafter, in the lens 10, the portion where the lens inner surface is the interpolation surface 16 is the astigmatism portion 26, the portion where the upper refractive power surface 11 is the upper portion 21, and the lower refraction. A portion that is the force surface 12 is a lower portion 22.

図2(A)はレンズ10の上部21でのレンズ断面形状を、また図2(B)は下部22でのレンズ断面形状を示した図である。
本例ではレンズ10の上部21に特定のプリズム成分を設定せず、レンズ10の下部22のみに鼻側に基底方向があるプリズム成分を設定している。このため、図2(A)で示すように上部21ではレンズ内面の上部屈折力面11が、前後方向を示すZ軸に対して対称に形成される一方、図2(B)で示すようにレンズ10の下部22では下部屈折力面12とレンズ前面との厚みが鼻側(図中左側)で厚く、耳側(図中右側)で薄くなるように、下部屈折力面12全体が前後方向に傾斜している。
このため本例では、上部屈折力面11と下部屈折力面12の面形状を比べると、左右方向の縁部近傍で前後方向の位置が互いに異なっているが、前述のように上部屈折力面11と下部屈折力面12との間は、補間面16により滑らかに連結されているため、上部屈折力面11と下部屈折力面12との間に明確な境界線は生じない。
2A shows a lens cross-sectional shape at the upper portion 21 of the lens 10, and FIG. 2B shows a lens cross-sectional shape at the lower portion 22.
In this example, a specific prism component is not set in the upper portion 21 of the lens 10, and a prism component having a base direction on the nose side is set only in the lower portion 22 of the lens 10. For this reason, as shown in FIG. 2A, the upper refractive surface 11 of the lens inner surface is formed symmetrically with respect to the Z axis indicating the front-rear direction in the upper portion 21, while as shown in FIG. In the lower portion 22 of the lens 10, the entire lower refractive power surface 12 is anteroposteriorly so that the thickness of the lower refractive surface 12 and the front surface of the lens is thick on the nose side (left side in the figure) and thin on the ear side (right side in the figure). It is inclined to.
Therefore, in this example, when the surface shapes of the upper refractive power surface 11 and the lower refractive power surface 12 are compared, the positions in the front-rear direction are different from each other in the vicinity of the edge in the left-right direction. 11 and the lower refractive power surface 12 are smoothly connected by the interpolation surface 16, so that no clear boundary line is generated between the upper refractive power surface 11 and the lower refractive power surface 12.

次にレンズ10の設計方法について説明する。与えられた処方度数等により、上部屈折力面11、下部屈折力面12及び補間面16を決定する手法については、上記特許文献3に詳説されているため、ここでは詳説しないが、まず、装用者の処方度数に基づいて、レンズ外面の屈折力面及びレンズ内面の上部屈折力面11、下部屈折力面12を決定する。   Next, a method for designing the lens 10 will be described. The method for determining the upper refractive power surface 11, the lower refractive power surface 12, and the interpolation surface 16 based on a given prescription power is described in detail in the above-mentioned Patent Document 3, and is not described in detail here. The refractive power surface of the lens outer surface and the upper refractive power surface 11 and the lower refractive power surface 12 of the lens inner surface are determined based on the prescription power of the person.

次に図1(B)に示すように、結合部13を幾何学中心OからY軸方向にδだけ下がった位置に定め、結合部13における上部屈折力面11と下部屈折力面12のZ座標値及びY軸方向の傾きを算出し、それぞれの差を求める。そして、それらの差がなくなるように、下部屈折力面12をZ軸方向に移動し、かつ、上部屈折力面11に対して傾ける。
加えて本例では、レンズ10の下部22にて近方視の際の視線の移動を補助するプリズム成分が得られるように、レンズ内面の結合部13の1点で下部屈折力面12をねじってレンズ外面との厚みが鼻側で厚く、耳側で薄くなるようにする。
尚、本例では図1で示すようにレンズ10の幾何学中心Oを通って左右方向に延びる軸をX軸、幾何学中心Oを通って上下方向に延びる軸をY軸、幾何学中心Oを通ってX軸及びY軸に直交する軸をZ軸とする。
Next, as shown in FIG. 1B, the coupling portion 13 is set at a position lower than the geometric center O by δ in the Y-axis direction, and Z of the upper refractive power surface 11 and the lower refractive power surface 12 in the coupling portion 13 is determined. The coordinate value and the inclination in the Y-axis direction are calculated, and the respective differences are obtained. Then, the lower refractive power surface 12 is moved in the Z-axis direction and tilted with respect to the upper refractive power surface 11 so as to eliminate the difference therebetween.
In addition, in this example, the lower refractive power surface 12 is twisted at one point of the coupling portion 13 on the inner surface of the lens so that a prism component that assists the movement of the line of sight in near vision is obtained at the lower portion 22 of the lens 10. The outer surface of the lens should be thicker on the nose side and thinner on the ear side.
In this example, as shown in FIG. 1, the axis extending in the left-right direction through the geometric center O of the lens 10 is the X axis, the axis extending in the vertical direction through the geometric center O is the Y axis, and the geometric center O. An axis that passes through and is orthogonal to the X axis and the Y axis is taken as the Z axis.

そして、図1(B)に示すように、背面視において、左側上部境界線14L、右側上部境界線14R(一括して言及するときは、「上部境界線14」と表記する)を、結合部13から、結合部13を通ってX軸に平行な軸Aに対しそれぞれ所定の角度θ1をなして、左斜め上方、右斜め上方に向かって延びる直線とする。また、左側下部境界線15L、右側下部境界線15R(一括して言及するときは、「下部境界線15」と表記する。)を、結合部13から軸Aに対しそれぞれ所定の角度θ2をなして、左斜め下方、右斜め下方に向かって延びる直線とする。尚、ここでは、角度θ1及びθ2を、一括して「内面角度」という。 Then, as shown in FIG. 1B, in the rear view, the left upper boundary line 14L and the right upper boundary line 14R (when collectively referred to as “upper boundary line 14”) 13, straight lines extending obliquely upward to the left and obliquely upward to the right are formed at a predetermined angle θ 1 with respect to the axis A parallel to the X axis through the coupling portion 13. Further, the left lower boundary line 15L and the right lower boundary line 15R (referred to as “lower boundary line 15” when collectively referred to) are set at a predetermined angle θ 2 from the coupling portion 13 to the axis A. Therefore, it is a straight line extending diagonally downward to the left and diagonally downward to the right. Here, the angles θ 1 and θ 2 are collectively referred to as “inner surface angle”.

次に、図3で示すように上部境界線14上の第1の点P1、及び、第1の点P1とX座標が同一でY座標が若干(ここでは1mm)大きい第2の点P0、第1の点P1とX座標が同一の下部境界線15上の第3の点P2、及び、第3の点P2とX座標が同一でY座標が若干(ここでは1mm)小さい第4の点P3について、それぞれのZ座標を算出する。なお、Y座標は上方に向かって大きくなるものとする。そして、これら4点を通る曲線を、N−スプライン補間法により求め、当該曲線の第1の点P1と第3の点P2の間の部分を補間ラインとし、X軸方向の間隔を所定の短い間隔(ここでは、1mm)として、それぞれ補間ラインを生成して、それらの補間ラインを連結した面を、補間面16とした。 Next, as shown in FIG. 3, the first point P 1 on the upper boundary line 14 and the second point having the same X coordinate as the first point P 1 and a slightly larger Y coordinate (1 mm in this case). P 0 , the third point P 2 on the lower boundary 15 where the first point P 1 and the X coordinate are the same, and the third point P 2 and the X coordinate are the same and the Y coordinate is slightly (here 1 mm) ) Calculate the respective Z coordinates for the small fourth point P 3 . It is assumed that the Y coordinate increases upward. Then, a curve passing through these four points is obtained by the N-spline interpolation method, a portion between the first point P 1 and the third point P 2 of the curve is set as an interpolation line, and an interval in the X-axis direction is predetermined. Interpolation lines are generated with a short interval of 1 mm (here, 1 mm), and a plane obtained by connecting these interpolation lines is defined as an interpolation plane 16.

次にレンズ10の製造方法について説明する。まず、上モールドと下モールドとで囲まれる空間内に液状の熱硬化性合成樹脂を充填し、加熱して固化することにより、レンズ10の前駆体となるセミフィニッシュ品を得る。上モールドの下面は、得たい外面の屈折力面に対応した凹形状とされており、セミフィニッシュ品の段階で、セミフィニッシュ品の上面に、外面の屈折面が形成される。下モールドは、上面が上に凸となる球面形状とされているため、セミフィニッシュ品の下面は凹状の球面状となる。   Next, a method for manufacturing the lens 10 will be described. First, a space surrounded by the upper mold and the lower mold is filled with a liquid thermosetting synthetic resin and heated to solidify, thereby obtaining a semi-finished product that becomes a precursor of the lens 10. The lower surface of the upper mold has a concave shape corresponding to the refracting power surface of the outer surface to be obtained, and an outer refracting surface is formed on the upper surface of the semi-finished product at the stage of the semi-finished product. Since the lower mold has a spherical shape whose upper surface is convex upward, the lower surface of the semi-finished product has a concave spherical shape.

次に、セミフィニッシュ品の下面を、上記のように設計した上部屈折力面11、下部屈折力面12及び補間面16となるように、切削加工することにより、レンズ10の内面を形成する。この時の切削加工にて形成された内面の面形状に基づいて処方度数とともに所定のプリズム成分がレンズ10の下部22に付与される。   Next, the inner surface of the lens 10 is formed by cutting the lower surface of the semi-finished product so as to become the upper refractive power surface 11, the lower refractive power surface 12, and the interpolation surface 16 designed as described above. A predetermined prism component is given to the lower part 22 of the lens 10 together with the prescription power based on the surface shape of the inner surface formed by the cutting process at this time.

このようにして設計・製造された本実施形態のレンズ10は、レンズ10の下部22にのみ鼻側に基底方向があるプリズム成分が設定されている。このため図4(A)で示すように装用者が遠方視のため視線をレンズ10の上方に移動させた際、レンズ10の上部21と通して視線は通常通り正面前方に向けられ遠方の物体を視認することができる。一方、図4(B)で示すように装用者が近方視のため視線を下方に移動させた際、プリズム成分が設定されたレンズ10の下部22と通して視線の方向が内向きに屈曲するため、無理に両眼を内側に内転させなくても近方の物体を視認することができる。   In the lens 10 of this embodiment designed and manufactured in this way, a prism component having a base direction on the nose side is set only at the lower portion 22 of the lens 10. For this reason, as shown in FIG. 4 (A), when the wearer moves his / her line of sight above the lens 10 for far vision, the line of sight is directed to the front of the front through the upper part 21 of the lens 10 as usual, and a far object Can be visually recognized. On the other hand, as shown in FIG. 4B, when the wearer moves the line of sight downward for near vision, the direction of the line of sight is bent inward through the lower part 22 of the lens 10 in which the prism component is set. Therefore, it is possible to visually recognize a near object without forcing both eyes inward.

また本実施形態では、レンズの下部22全面に所定のプリズム成分が、レンズ下縁に至るまで設けられているため、視線を下方向に大きく移動させた場合でも、所定のプリズム効果を得ることができる。   In the present embodiment, since a predetermined prism component is provided on the entire surface of the lower part 22 of the lens up to the lower edge of the lens, a predetermined prism effect can be obtained even when the line of sight is greatly moved downward. it can.

また本実施形態では、レンズ内面の面形状に基づいてプリズム成分が設定されているためレンズ外面側に境界線は生じない。また、レンズ内面の上部屈折力面11と下部屈折力面12とは、点状の1つの結合部13でのみ接し、結合部13における上部屈折力面11と下部屈折力面12の上下方向の傾きは同一とされて、上部屈折力面11と下部屈折力面12の間は滑らかな補間面16とされているので、上部屈折力面11と下部屈折力面12との間に明確な境界線は現れず、装用者の外観を損ねることを良好に防止することができる。   In this embodiment, since the prism component is set based on the surface shape of the lens inner surface, no boundary line is generated on the lens outer surface side. Further, the upper refractive power surface 11 and the lower refractive power surface 12 on the inner surface of the lens are in contact with only one point-like coupling portion 13, and the upper refractive power surface 11 and the lower refractive power surface 12 in the coupling portion 13 in the vertical direction. Since the inclination is the same and the smooth interpolating surface 16 is provided between the upper refractive power surface 11 and the lower refractive power surface 12, a clear boundary is formed between the upper refractive power surface 11 and the lower refractive power surface 12. The line does not appear, and it is possible to satisfactorily prevent the appearance of the wearer from being damaged.

また本実施形態では、上部屈折力面11と補間面16との境界線が、結合部13から左斜め上方に延びる直線状の左側上部境界線14Lと、結合部13から右斜め上方に延びる直線状の右側上部境界線14Rとから構成され、更に下部屈折力面12と補間面16との境界線が、結合部13から左斜め下方に延びる直線状の左側下部境界線15Lと、結合部13から右斜め下方に延びる直線状の右側下部境界線15Rとから構成されており、本実施形態によれば、結合部13を通って左右方向に延びる軸Aに対する、左側上部境界線14L、右側上部境界線14R、左側下部境界線15L、及び、右側下部境界線15Rの傾き(内面角度θ1,θ2)によって補間面16の大きさが決定される。
例えばレンズ10の下部22のみに大きなプリズム量を設定した場合には、レンズの上部21と下部22とで厚みの違いが大きくなるが、設計段階において内面角度θ1,θ2を大きくして補間面16を広く設定することより、上部屈折力面11と下部屈折力面12との間に明確な境界線が現れるのを防止することができる。
Further, in the present embodiment, the boundary line between the upper refractive power surface 11 and the interpolation surface 16 includes a straight left upper boundary line 14L extending diagonally left upward from the coupling portion 13 and a straight line extending diagonally right upward from the coupling portion 13. A right-side upper boundary line 14R, and a boundary line between the lower refractive power surface 12 and the interpolation surface 16 is a straight left-side lower boundary line 15L extending obliquely downward to the left from the coupling portion 13; The left upper boundary line 14L and the upper right side with respect to the axis A extending in the left-right direction through the coupling portion 13 are configured with a straight right lower boundary line 15R extending diagonally downward to the right. The size of the interpolation surface 16 is determined by the inclinations (inner surface angles θ 1 , θ 2 ) of the boundary line 14R, the left lower boundary line 15L, and the right lower boundary line 15R.
For example, when a large prism amount is set only for the lower portion 22 of the lens 10, the difference in thickness between the upper portion 21 and the lower portion 22 of the lens increases, but interpolation is performed by increasing the inner surface angles θ 1 and θ 2 at the design stage. By setting the surface 16 wide, it is possible to prevent a clear boundary line from appearing between the upper refractive power surface 11 and the lower refractive power surface 12.

尚、本実施形態は単焦点レンズの下部にプリズム成分を設定したものであったが、上部屈折力面11と下部屈折力面12とで互いに面屈折力を異ならせ、レンズの内面を二重焦点面とすれば、遠用部(上部21)と近用部(下部22)において、度数とともにプリズム量が異なる二重焦点レンズを提供することができる。   In this embodiment, the prism component is set at the lower part of the single focus lens. However, the upper refractive power surface 11 and the lower refractive power surface 12 have different surface refractive powers, and the inner surface of the lens is doubled. If the focal plane is used, it is possible to provide a bifocal lens having different prism amounts as well as power in the distance portion (upper portion 21) and the near portion (lower portion 22).

図5は本発明の他の実施形態の眼鏡レンズを示した図である。
同実施形態に係る眼鏡レンズ30は、累進屈折力レンズの下部に、近方視の際の視線の移動を補助するプリズム成分を設定したものである。
このレンズ30は上側に遠方の物体を見るために使用する遠用部31を、下側に近方の物体を見るために使用する近用部32を、遠用部31と近用部32との間に度数が変化する中間部33を備えた構成とされている。
FIG. 5 is a view showing a spectacle lens according to another embodiment of the present invention.
In the spectacle lens 30 according to the embodiment, a prism component that assists the movement of the line of sight in near vision is set below the progressive addition lens.
This lens 30 has a distance portion 31 used for viewing a distant object on the upper side, a near portion 32 used for viewing a near object on the lower side, a distance portion 31 and a near portion 32 It is set as the structure provided with the intermediate part 33 from which a frequency changes between.

レンズ30の外面(前面)35は、上側に遠方の物体を見るために使用する遠用領域41を、下側に近方の物体を見るために使用する近用領域42を、遠用領域41と近用領域42との間に連続的に度数が変化する累進領域43を備え、近用領域42を鼻側に内寄せすることにより、中心線の左右で非対称とされた累進屈折面とされている。   The outer surface (front surface) 35 of the lens 30 has a distance area 41 used for viewing a distant object on the upper side, and a near area 42 used for viewing a near object on the lower side. And the near region 42 are provided with a progressive region 43 whose power continuously changes, and by making the near region 42 inward on the nose side, a progressive refractive surface that is asymmetrical on the left and right of the center line is obtained. ing.

具体的には、外面35は、上記特許文献4記載の累進屈折面、すなわち、直交座標系において、Z=F(X,Y)として与えられるZを連続的に結び付けた下記式[数1]で表される面としたとき、n=8〜20(好ましくは、n=11〜15)の範囲から選択されるn次のべき乗関数であって、Xの奇数次項とYの奇数次項とを含むべき乗関数で構成された面とされている。より具体的には、べき乗関数の次数はn=13とされている。   Specifically, the outer surface 35 is a progressive refracting surface described in Patent Document 4 described above, that is, in the orthogonal coordinate system, Z given as Z = F (X, Y) is continuously connected by the following formula [Equation 1] Is an n-th power function selected from the range of n = 8 to 20 (preferably n = 11 to 15), and an odd-order term of X and an odd-order term of Y The surface is composed of power functions to be included. More specifically, the order of the power function is n = 13.

Figure 0006598695
Figure 0006598695

なお、与えられた加入度数等の条件を満たすように、係数Aabを変えながら外面35の式を繰り返し設定することにより、最終的に与えられた条件を満たす係数Aabが決まり、外面35が決まることとなる。   It should be noted that by repeatedly setting the expression of the outer surface 35 while changing the coefficient Aab so as to satisfy the given power addition condition, the coefficient Aab that finally satisfies the given condition is determined, and the outer surface 35 is determined. It becomes.

また、レンズ30の内面(後面)36は、図5(B)で示すように上側に上部屈折力面51を、下側に下部屈折力面52が形成されている。この例では上部屈折力面51と下部屈折力面52とで互いに面屈折力が異なっており、レンズの内面36が二重焦点面とされている。
更に本例では、レンズ30の上部(即ち内面36が上部屈折力面51である部分)に特定のプリズム成分を設定せず、レンズ10の下部(即ち内面36が下部屈折力面52である部分)のみに鼻側に基底方向があるプリズム成分を設定している。このため、前述の図2(B)で示した下部屈折力面12と同様に、レンズ前面35との厚みが鼻側で厚く、耳側(図中右側)で薄くなるように、下部屈折力面52全体が前後方向に傾斜している。
Further, as shown in FIG. 5B, the inner surface (rear surface) 36 of the lens 30 is formed with an upper refractive power surface 51 on the upper side and a lower refractive power surface 52 on the lower side. In this example, the upper refractive power surface 51 and the lower refractive power surface 52 have different surface refractive powers, and the inner surface 36 of the lens is a double focal plane.
Further, in this example, a specific prism component is not set on the upper portion of the lens 30 (that is, the portion where the inner surface 36 is the upper refractive power surface 51), and the lower portion of the lens 10 (that is, the portion where the inner surface 36 is the lower refractive power surface 52). ) Only has a prism component with a base direction on the nose side. Therefore, similarly to the lower refractive power surface 12 shown in FIG. 2B, the lower refractive power is set so that the thickness with the lens front surface 35 is thicker on the nose side and thinner on the ear side (right side in the figure). The entire surface 52 is inclined in the front-rear direction.

図5(B)に示すように、上部屈折力面51と下部屈折力面52とは、点状の1つの結合部53でのみ接し、結合部53における上部屈折力面51と下部屈折力面52の上下方向の傾きは、同一とされ、上部屈折力面51と下部屈折力面52との間は、上部屈折力面51と下部屈折力面52とを滑らかに連結する曲面状の補間面54(図5(B)の斜線部分参照)とされている。   As shown in FIG. 5B, the upper refracting power surface 51 and the lower refracting power surface 52 are in contact with only one point-like coupling portion 53, and the upper refracting power surface 51 and the lower refracting power surface in the linking portion 53 are in contact with each other. The vertical inclination of 52 is the same, and between the upper refractive power surface 51 and the lower refractive power surface 52, a curved interpolation surface that smoothly connects the upper refractive power surface 51 and the lower refractive power surface 52. 54 (see the hatched portion in FIG. 5B).

与えられた処方度数等により、上部屈折力面51、下部屈折力面52及び補間面54を決定する手法については、前述の第1の実施形態と同様である。
但し、結合部53が前後方向において外面35の累進領域43の途中位置に重なるように、結合部53は幾何学中心OからY軸方向にδだけ下がった位置に定めておく。例えば幾何学中心Oから下方に12mmの累進帯長が設定されたレンズにおいて、図5(B)のδが7mmとなる位置に結合部53を設けておく。
そして結合部53における上部屈折力面51と下部屈折力面52のZ座標値及びY軸方向の傾きを算出し、それぞれの差を求める。そして、それらの差がなくなるように、下部屈折力面52をZ軸方向に移動し、かつ、上部屈折力面51に対して傾ける。
加えて本例では、レンズ30の下部にて近方視の際の視線の移動を補助するプリズム成分が得られるように、レンズ内面の結合部53の1点で下部屈折力面52をねじってレンズ外面35との厚みが鼻側で厚く、耳側で薄くなるようにする。
そして上部屈折力面51と下部屈折力面52との間は前述の第1の実施形態と同様の手法を用いて補間面54にて連結する。
The method for determining the upper refractive power surface 51, the lower refractive power surface 52, and the interpolation surface 54 based on the given prescription power is the same as in the first embodiment.
However, the connecting portion 53 is set at a position lower than the geometric center O by δ in the Y-axis direction so that the connecting portion 53 overlaps the middle position of the progressive region 43 of the outer surface 35 in the front-rear direction. For example, in a lens in which a progressive zone length of 12 mm is set downward from the geometric center O, a coupling portion 53 is provided at a position where δ in FIG.
Then, the Z coordinate value and the inclination in the Y-axis direction of the upper refracting power surface 51 and the lower refracting power surface 52 in the coupling portion 53 are calculated, and the respective differences are obtained. Then, the lower refractive power surface 52 is moved in the Z-axis direction and tilted with respect to the upper refractive power surface 51 so as to eliminate the difference therebetween.
In addition, in this example, the lower refractive power surface 52 is twisted at one point of the coupling portion 53 on the inner surface of the lens so that a prism component that assists the movement of the line of sight in near vision is obtained at the lower portion of the lens 30. The thickness with the lens outer surface 35 is made thick on the nose side and thin on the ear side.
The upper refracting power surface 51 and the lower refracting power surface 52 are connected by an interpolation surface 54 using the same method as in the first embodiment.

尚、レンズ30では、外面35の累進屈折面における加入度(以下、「外面加入度」という。)は、内面36の二重焦点面における加入度(以下、「内面加入度」という。)よりも大きくされている。全体として得たい加入度(以下、「全体加入度」という。)から外面加入度を引いたものが、内面加入度となる。内面加入度を抑制した方が、非点収差領域が縮小されて、中間部33の明視領域が拡大されるからである。   In the lens 30, the addition on the progressive refraction surface of the outer surface 35 (hereinafter referred to as “outer surface addition”) is greater than the addition on the double focal plane of the inner surface 36 (hereinafter referred to as “inner surface addition”). Has also been enlarged. The inside addition is obtained by subtracting the outside addition from the addition desired to be obtained as a whole (hereinafter referred to as “total addition”). This is because the astigmatism region is reduced and the clear vision region of the intermediate portion 33 is enlarged when the inner surface addition is suppressed.

さらに、レンズ30では、内面加入度を0.75D以下とした。内面加入度を0.75Dより大きくした場合には、非点収差領域の縮小効果が小さく、中間部33の見え方が不良となる虞が大きくなるからである。1.00Dから4.25Dまで0.25D間隔に設定した全体加入度に対する、外面加入度及び内面加入度の例を、表1に示す。但し、例えば、全体加入度を1.25Dとする場合に、外面加入度を1.00D、内面加入度を0.25Dとしたり、全体加入度を2.00Dとする場合に、外面加入度を1.50D、内面加入度を0.50Dとしたりする等、表1に示すもの以外の加入度設定としてもよい。表1では、外面加入度は内面加入度よりも0.25D以上大きくなっているが、これは、加入度が0.25D刻みで設定されているからである。   Furthermore, in the lens 30, the inner surface addition power is set to 0.75D or less. This is because when the addition to the inner surface is greater than 0.75D, the reduction effect of the astigmatism region is small, and the appearance of the intermediate portion 33 is likely to be poor. Table 1 shows an example of the outer surface addition and the inner surface addition with respect to the total addition set at 0.25D intervals from 1.00D to 4.25D. However, for example, when the total addition is 1.25D, the external addition is 1.00D, the internal addition is 0.25D, or when the total addition is 2.00D, the external addition is It is good also as addition power settings other than what is shown in Table 1, such as 1.50D and internal surface addition power 0.50D. In Table 1, the outer surface addition is 0.25D or more larger than the inner surface addition because the addition is set in increments of 0.25D.

Figure 0006598695
Figure 0006598695

またレンズ30を製造する際には、レンズ30の前駆体となるセミフィニッシュ品を得る段階で、セミフィニッシュ品の上面に、外面35の累進屈折面が形成される。尚、上モールドは、累進屈折面の加入度0.75Dから3.50Dまで0.25D間隔に対応する12種類が、ベースカーブの種類毎に用意されている。下モールドは、上面が上に凸となる球面状の1種類とされているため、セミフィニッシュ品の下面は凹状の球面状となる。   Further, when the lens 30 is manufactured, a progressive refraction surface of the outer surface 35 is formed on the upper surface of the semi-finished product at the stage of obtaining a semi-finished product that is a precursor of the lens 30. In addition, 12 types of upper molds corresponding to 0.25D intervals from 0.75D to 3.50D addition of the progressive refractive surface are prepared for each type of base curve. Since the lower mold is one kind of spherical shape whose upper surface is convex upward, the lower surface of the semi-finished product has a concave spherical shape.

次に、セミフィニッシュ品の下面を、上記のように設計した上部屈折力面51、下部屈折力面52及び補間面54からなる二重焦点面となるように、切削加工することにより、レンズ30の内面36を形成する。この時の切削加工にて形成された内面の面形状に基づいて処方度数とともに所定のプリズム成分がレンズ30の下部に付与される。   Next, the lower surface of the semi-finished product is cut so that it becomes a double focal plane composed of the upper refractive power surface 51, the lower refractive power surface 52, and the interpolation surface 54 designed as described above, thereby the lens 30. The inner surface 36 is formed. A predetermined prism component is given to the lower portion of the lens 30 together with the prescription power based on the surface shape of the inner surface formed by the cutting process at this time.

以上、説明したように、レンズ30は、外面35が累進屈折面とされ、内面36は、上部屈折力面51と下部屈折力面52との間に明確な境界線が現れないいわばシームレスな二重焦点面とされている。したがって、外面35にも内面36にも明確な境界線が現れず、装用者の外観を損ねる虞が低減される。   As described above, in the lens 30, the outer surface 35 is a progressive refractive surface, and the inner surface 36 has a seamless boundary line between the upper refractive power surface 51 and the lower refractive power surface 52. It is regarded as a heavy focal plane. Therefore, a clear boundary line does not appear on either the outer surface 35 or the inner surface 36, and the possibility of impairing the appearance of the wearer is reduced.

図6は累進屈折力レンズの下部のみに特定のプリズム成分を付加した場合の明視領域の変化を模式的に示した図である。同図において白地部分は明視領域である。
図6(A)は、累進屈折面が形成された従来の累進屈折力レンズにおける明視領域を示している。この場合において、レンズの面形状を変化させてレンズの下部のみに特定のプリズム成分を付加すると中間部33全体にねじれが生じて図6(C)で示すように中間部33の明視領域が収差でつぶれてしまう。
これに対し本実施形態では、レンズ内面の結合部53の1点で下部屈折力面52をねじることでレンズの下部のみに特定のプリズム成分を付加することができるため図6(B)で示すように中間部33での収差の発生を最小限に抑えることが可能である。
FIG. 6 is a diagram schematically showing changes in the clear vision region when a specific prism component is added only to the lower part of the progressive-power lens. In the figure, the white background portion is a clear vision region.
FIG. 6A shows a clear vision region in a conventional progressive power lens in which a progressive refractive surface is formed. In this case, if the surface shape of the lens is changed to add a specific prism component only to the lower portion of the lens, the entire intermediate portion 33 is twisted, and the clear vision region of the intermediate portion 33 becomes larger as shown in FIG. It collapses due to aberrations.
On the other hand, in the present embodiment, a specific prism component can be added only to the lower part of the lens by twisting the lower refractive surface 52 at one point of the coupling part 53 on the inner surface of the lens, so that it is shown in FIG. Thus, it is possible to minimize the occurrence of aberration in the intermediate portion 33.

図7は、全体加入度を2.00Dとした場合の実施例と、従来の累進屈折力レンズである比較例のレンズ縦方向中心線での度数変化を示した図である。
この実施例(実線)は累進帯長12mmの累進屈折力レンズで、全体加入度2.00Dに対し累進屈折面における加入度を1.25D、二重焦点面における加入度を0.75Dとしたもので、比較例(破線)は累進屈折面だけで加入度2.00Dとしたものである。
同図で示すようにこの実施例では、累進領域が始まる幾何学中心O近傍において度数変化が緩やかで正面視がしやすい。また幾何学中心Oから7mm下方の結合部53の位置に相当するポイントの下方では、加入度が比較例よりも大きくなっている。すなわち、近用部32が上方に拡大されている。従って、実施例では比較例に比して少ない眼球運動・回旋量で、遠用・近用の切替えが可能である。
FIG. 7 is a diagram showing the power change at the center line in the longitudinal direction of the lens when the total addition power is 2.00 D and the comparative example which is a conventional progressive-power lens.
This embodiment (solid line) is a progressive addition lens having a progressive zone length of 12 mm, and the addition power on the progressive addition surface is 1.25D and the addition power on the bifocal plane is 0.75D with respect to the total addition power 2.00D. In the comparative example (broken line), the addition power is 2.00 D with only the progressive refractive surface.
As shown in the figure, in this embodiment, the frequency change is gentle in the vicinity of the geometric center O where the progressive region begins, and the front view is easy. Further, the addition power is larger than that of the comparative example below the point corresponding to the position of the coupling portion 53 that is 7 mm below the geometric center O. That is, the near portion 32 is enlarged upward. Therefore, in the embodiment, it is possible to switch between the distance use and the near use with less eye movement / rotation amount than in the comparative example.

尚、上記実施形態は、近方視の際の移動を補助する目的でレンズの下部にのみ鼻側に基底方向があるプリズム成分を設定した例であったが、これとは逆に遠方を見る際、眼球が外側(耳側)に戻り難い、即ち開散力が弱い場合には遠方視の際の移動を補助する目的で、レンズの上部にのみ耳側に基底方向があるプリズム成分を設定することも可能である。
また乱視度数が処方された場合は、レンズの内面に乱視度数成分を付加することが可能である等、本発明は、その趣旨を逸脱しない範囲において様々変更を加えた形態で実施可能である。
The above embodiment is an example in which a prism component having a base direction on the nose side is set only at the lower part of the lens for the purpose of assisting movement in near vision. When the eyeball is difficult to return to the outside (ear side), that is, when the divergence is weak, a prism component with the base direction on the ear side is set only at the top of the lens for the purpose of assisting movement during distance vision It is also possible to do.
In addition, when the astigmatism power is prescribed, the present invention can be implemented in various forms without departing from the gist of the present invention, such as adding an astigmatism power component to the inner surface of the lens.

10,30 眼鏡レンズ
11,51 上部屈折力面
12,52 下部屈折力面
13,53 結合部
14L,14R 上部境界線
15L,15R 下部境界線
16,54 補間面
21 上部
22 下部
35 外面
36 内面
41 遠用領域
42 近用領域
43 累進領域
10, 30 Eyeglass lens 11, 51 Upper refractive surface 12, 52 Lower refractive surface 13, 53 Coupling portion 14L, 14R Upper boundary line 15L, 15R Lower boundary line 16, 54 Interpolation surface 21 Upper portion 22 Lower portion 35 Outer surface 36 Inner surface 41 Far area 42 Near area 43 Progressive area

Claims (5)

内面の面形状に基づいて上部と下部とで異なるプリズム成分が設定された眼鏡レンズであって、
前記内面に形成された上部屈折力面と下部屈折力面とは、点状の1つの結合部でのみ接し、前記結合部における前記上部屈折力面と前記下部屈折力面の上下方向の傾きは、同一とされ、且つ前記上部屈折力面と前記下部屈折力面、前記結合部の1点でねじられた関係にあって、前記上部屈折力面及び/又は前記下部屈折力面が、レンズ外面との厚みが鼻側もしくは耳側の何れか一方で厚く、他方で薄くなるように構成されて、前記上部及び/又は前記下部に所定のプリズム成分が設定されるとともに、
前記上部屈折力面と前記下部屈折力面の間は、前記上部屈折力面と前記下部屈折力面を滑らかに連結する曲面状の補間面とされていることを特徴とする眼鏡レンズ。
A spectacle lens in which different prism components are set in the upper part and the lower part based on the surface shape of the inner surface,
The upper refracting power surface and the lower refracting power surface formed on the inner surface are in contact with only one point-like coupling portion, and the vertical inclination of the upper refracting power surface and the lower refracting power surface at the coupling portion is The upper refractive power surface and the lower refractive power surface are twisted at one point of the coupling portion, and the upper refractive power surface and / or the lower refractive power surface is a lens. The outer surface is configured to be thicker on either the nose side or the ear side and thinner on the other side, and a predetermined prism component is set on the upper part and / or the lower part,
The spectacle lens, wherein a curved interpolation surface that smoothly connects the upper refractive power surface and the lower refractive power surface is formed between the upper refractive power surface and the lower refractive power surface.
前記上部屈折力面と前記補間面との境界線が、背面視において、前記結合部から左斜め上方に延びる直線状の左側上部境界線と、前記結合部から右斜め上方に延びる直線状の右側上部境界線とから構成され、
前記下部屈折力面と前記補間面との境界線が、背面視において、前記結合部から左斜め下方に延びる直線状の左側下部境界線と、前記結合部から右斜め下方に延びる直線状の右側下部境界線とから構成されていることを特徴とする請求項1に記載の眼鏡レンズ。
A boundary line between the upper refracting power surface and the interpolation surface is a straight left upper boundary line extending diagonally to the left from the coupling part and a linear right side extending diagonally upward to the right from the coupling part in rear view. It consists of an upper border and
A boundary line between the lower refractive power surface and the interpolation surface is a straight left lower boundary line extending diagonally to the left from the coupling portion and a straight right side extending diagonally downward to the right from the coupling portion in rear view. The spectacle lens according to claim 1, comprising a lower boundary line.
前記内面が、前記上部屈折力面と前記下部屈折力面とで互いに面屈折力が異なる二重焦点面とされていることを特徴とする請求項1,2の何れかに記載の眼鏡レンズ。   The spectacle lens according to claim 1, wherein the inner surface is a bifocal surface having different surface refractive powers on the upper refractive power surface and the lower refractive power surface. 外面が、上側に遠方の物体を見るために使用する遠用領域を、下側に近方の物体を見るために使用する近用領域を、前記遠用領域と前記近用領域との間に連続的に度数が変化する累進領域を備えた累進屈折面とされ、
前記結合部が、前後方向において前記累進領域の途中位置と重なるように設けられていることを特徴とする請求項1,2の何れかに記載の眼鏡レンズ。
The distance between the distance area and the near area is a distance area that is used to see a distant object on the upper side and a near area that is used to see a near object on the lower side. It is a progressive refracting surface with a progressive region whose power changes continuously,
The spectacle lens according to claim 1, wherein the coupling portion is provided so as to overlap with a midway position of the progressive region in the front-rear direction.
前記内面が、前記上部屈折力面と前記下部屈折力面とで互いに面屈折力が異なる二重焦点面とされていることを特徴とする請求項4に記載の眼鏡レンズ。   The spectacle lens according to claim 4, wherein the inner surface is a bifocal surface having different surface refractive powers on the upper refractive power surface and the lower refractive power surface.
JP2016012707A 2016-01-26 2016-01-26 Eyeglass lenses Active JP6598695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012707A JP6598695B2 (en) 2016-01-26 2016-01-26 Eyeglass lenses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012707A JP6598695B2 (en) 2016-01-26 2016-01-26 Eyeglass lenses

Publications (2)

Publication Number Publication Date
JP2017134172A JP2017134172A (en) 2017-08-03
JP6598695B2 true JP6598695B2 (en) 2019-10-30

Family

ID=59504366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012707A Active JP6598695B2 (en) 2016-01-26 2016-01-26 Eyeglass lenses

Country Status (1)

Country Link
JP (1) JP6598695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045545A (en) * 2017-08-30 2019-03-22 東海光学株式会社 Bifocal lens and method for manufacturing the same
JP2019139120A (en) * 2018-02-14 2019-08-22 東海光学株式会社 Bifocal lens and method of manufacturing bifocal lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594848B1 (en) * 1990-12-27 2006-03-15 Seiko Epson Corporation Progressive lens
JP3899659B2 (en) * 1998-04-08 2007-03-28 セイコーエプソン株式会社 Progressive multifocal lens and manufacturing method thereof
US7104647B2 (en) * 2005-02-03 2006-09-12 Krall Jeffrey P Multi-focal ophthalmic lens with base in prism
DE102006030204A1 (en) * 2006-06-30 2008-01-03 Rodenstock Gmbh Pair of spectacle lenses in anisometropia
JP5442658B2 (en) * 2011-03-16 2014-03-12 伊藤光学工業株式会社 Double focus lens for glasses

Also Published As

Publication number Publication date
JP2017134172A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP4979774B2 (en) Pair of progressive-power lenses and design method thereof
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
US7914145B2 (en) Progressive power lens and manufacturing method therefor
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
JP3757682B2 (en) Progressive power lens design method
JP6598695B2 (en) Eyeglass lenses
JP2004502963A (en) Progressive spectacle lens with low shaking movement
JP2018084788A (en) Progressive refractive power lens design method, and progressive refractive power lens
JP2019211543A (en) Progressive refractive power lens design method
JP5989317B2 (en) Progressive power lens, manufacturing method thereof, and designing method thereof
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
JP2019045545A (en) Bifocal lens and method for manufacturing the same
JP5882437B1 (en) Eyeglass lenses
JP6126772B2 (en) Progressive power lens
JP6095271B2 (en) Lens set, lens design method, and lens manufacturing method
JP2019139120A (en) Bifocal lens and method of manufacturing bifocal lens
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP6038224B2 (en) Manufacturing method of progressive power lens
JP4195663B2 (en) Manufacturing method of lens for correcting astigmatism
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP2006527383A (en) Molding mold for near-focal compound lenses
JP5838419B2 (en) Manufacturing method of progressive power lens
JP2018077401A (en) Design method of progressive refractive power lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6598695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250