JP6038224B2 - Manufacturing method of progressive power lens - Google Patents

Manufacturing method of progressive power lens Download PDF

Info

Publication number
JP6038224B2
JP6038224B2 JP2015094204A JP2015094204A JP6038224B2 JP 6038224 B2 JP6038224 B2 JP 6038224B2 JP 2015094204 A JP2015094204 A JP 2015094204A JP 2015094204 A JP2015094204 A JP 2015094204A JP 6038224 B2 JP6038224 B2 JP 6038224B2
Authority
JP
Japan
Prior art keywords
lens
progressive
power
average
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015094204A
Other languages
Japanese (ja)
Other versions
JP2015135529A (en
Inventor
幸昌 内山
幸昌 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Essilor Co Ltd
Original Assignee
Nikon Essilor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Essilor Co Ltd filed Critical Nikon Essilor Co Ltd
Priority to JP2015094204A priority Critical patent/JP6038224B2/en
Publication of JP2015135529A publication Critical patent/JP2015135529A/en
Application granted granted Critical
Publication of JP6038224B2 publication Critical patent/JP6038224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Description

本発明は、累進屈折力レンズの製造方法に関する。   The present invention relates to a method for manufacturing a progressive-power lens.

累進屈折力レンズは、眼の調節力が衰退して近方視が困難になった場合の調節力の補助用眼鏡レンズである。一般に、累進屈折力レンズでは、装用時においてレンズの上方に位置する遠用視矯正領域(以下、「遠用部」と言う)と、下方に位置する近用視矯正領域(以下、「近用部」と言う)と、双方の領域の間において連続的に屈折力が変化する累進領域(以下、「中間部」と言う)とを備えている。なお、本発明において「上方」、「下方」、「水平」および「垂直」等といった表記は、装用時のレンズにおける位置関係を示すものであって、例えば遠用部の下方とは遠用部の領域内にあって中間部に近い領域を示す。累進屈折力レンズでは、遠用部、中間部および近用部のすべての領域において、明視域が広く、ゆれ、ゆがみ等が少なく、装用し易いレンズが理想的である。   The progressive-power lens is an auxiliary spectacle lens for adjusting power when the adjusting power of the eye declines and near vision becomes difficult. In general, in a progressive-power lens, a distance vision correction region (hereinafter referred to as “distance portion”) located above the lens and a near vision correction region (hereinafter referred to as “near vision”) located below the lens when worn. And a progressive region (hereinafter referred to as “intermediate portion”) in which the refractive power continuously changes between both regions. In the present invention, notations such as “upper”, “lower”, “horizontal” and “vertical” indicate the positional relationship in the lens when worn, and for example, the lower part of the distance part is the distance part. A region close to the middle portion is shown in FIG. In the progressive-power lens, a lens that is easy to wear is ideal because it has a wide clear vision area, little distortion, distortion, etc. in all areas of the distance portion, the intermediate portion, and the near portion.

従来の累進屈折力レンズでは、累進屈折力面の面非点隔差や面付加平均屈折力によって形成される分布で光学性能が評価されることが多かった。さらに面非点隔差が人間の眼が許容できる値以下の分布領域、いわゆる明視域と呼ばれる領域を確保することを確保することが大きな目的として考えられ、レンズ上で収差を抑えるべき範囲が限定されるので、収差の発生から逃れることのできない累進屈折力レンズ設計においては非常に有効な指針であった。   In the conventional progressive-power lens, the optical performance is often evaluated by the distribution formed by the surface astigmatism of the progressive-power surface and the surface added average refractive power. Furthermore, it is considered that the main purpose is to secure a distribution area where the astigmatic difference is less than the human eye can accept, that is, a so-called clear vision area, and the range where aberrations should be suppressed on the lens is limited. Therefore, it is a very effective guide for designing a progressive-power lens that cannot escape from the occurrence of aberrations.

ところで、人間の眼は収差の絶対値よりも変化量に対する感度のほうが高いと言われている。そのため累進屈折力レンズを設計する上で収差の絶対量だけでなく、視線移動に対する収差の変動量を抑制することができれば、累進屈折力レンズを使用する際に感じられるゆれ・ゆがみといった不快感を低減できると考えられる。   By the way, it is said that the human eye is more sensitive to the amount of change than the absolute value of aberration. Therefore, when designing a progressive-power lens, if not only the absolute amount of aberration but also the amount of variation in aberration with respect to line-of-sight movement can be suppressed, the unpleasant feeling of distortion and distortion that can be felt when using a progressive-power lens is achieved. It can be reduced.

例えば特許文献1では、レンズ面の中で面非点隔差が最大となる点を見つけ、その面非点隔差の値と、レンズの幾何中心からその点までの距離の比をコントロールすることで変動量が緩慢になり近視領域、中間視領域において広い視野を確保した累進屈折力レンズの技術が開示されている。   For example, in Patent Document 1, a point where the surface astigmatism is maximized is found in the lens surface, and the value is changed by controlling the ratio of the value of the surface astigmatism and the distance from the geometric center of the lens to the point. A progressive power lens technology has been disclosed in which the amount is slow and a wide field of view is ensured in the near vision region and the intermediate vision region.

特開平11−194307号公報JP-A-11-194307

実際に眼で見るときには、さまざまな方向への視線移動が考えられ、特に、多くの場合文字は縦あるいは横書きで書かれているために上下左右の視線移動の機会が多いと考えられる。そこで、縦方向・横方向の面非点隔差や面付加平均屈折力の変動量を制御することは、有効であると考えられる。しかしながら従来の例では、レンズ面の中で面非点隔差が最大となる点を制御することはできても、その最大となる点までの面非点隔差の変動を抑え、視線の縦方向・横方向の変動量を抑制することは困難であった。     When actually looking with the eyes, it can be considered to move the line of sight in various directions, and in particular, since characters are often written vertically or horizontally, there are many opportunities to move the line of sight vertically and horizontally. Therefore, it is considered effective to control the astigmatic difference in the vertical and horizontal directions and the fluctuation amount of the surface added average refractive power. However, in the conventional example, even though it is possible to control the point where the surface astigmatism is maximum in the lens surface, the variation of the surface astigmatism up to the maximum point is suppressed, and the vertical direction of the line of sight It was difficult to suppress the amount of fluctuation in the horizontal direction.

以上のような事情に鑑み、本発明の目的は、視線移動についても良好な見え方の得られる累進屈折力レンズの製造方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a manufacturing method of a progressive power lens that can obtain a good appearance with respect to line-of-sight movement.

本発明の第一の態様に従えば、装用状態で物体側の屈折面となる外面と、装用状態で眼球側の屈折面となる内面とを有する累進屈折力レンズであって、前記外面及び前記内面のうち少なくとも一方の面は、装用状態でレンズの上方に設けられ、比較的遠方視に適した遠用部と、装用状態でレンズの下方に設けられ、比較的近方視に適した近用部と、前記遠用部と前記近用部の間に設けられ、前記遠用部から前記近用部までの面屈折力を累進的に変化させる累進部とを有する累進面形状に形成されている累進屈折力レンズの製造方法において、
レンズ面の幾何中心からレンズ装用状態における水平方向でx(mm)の位置にあり且つ前記幾何中心からレンズ装用状態における鉛直方向にy(mm)の位置にある累進屈折力面上の任意の点Q(x,y)を中心として、レンズ装用状態における水平方向にD(mm)の幅をもつ線分領域の面非点隔差の平均を
According to a first aspect of the present invention, there is a progressive power lens having an outer surface that is a refractive surface on the object side in a worn state and an inner surface that is a refractive surface on the eyeball side in a worn state, the outer surface and the At least one of the inner surfaces is provided above the lens in the wearing state, and is a distance portion suitable for relatively far vision, and provided in the lower portion of the lens in the wearing state, and is a near portion suitable for relatively near vision. It is formed in a progressive surface shape having a use part, and a progressive part provided between the distance part and the near part and progressively changing the surface refractive power from the distance part to the near part. In the manufacturing method of the progressive-power lens which is,
Arbitrary point on the progressive-power surface that is at a position x (mm) in the horizontal direction in the lens wearing state from the geometric center of the lens surface and at a position y (mm) in the vertical direction in the lens wearing state from the geometric center Centering on Q (x, y), the average of the surface astigmatism of the line segment region having a width of D (mm) in the horizontal direction in the lens wearing state

Figure 0006038224
Figure 0006038224

とし、前記幾何中心からレンズ装用状態における鉛直方向の近用中心の位置をynとしたときに、|x|≦15を満足すると共に、y=0、y=yn×0.25、y=yn×0.5、y=yn×0.75又はy=yn、を満足する領域において、△xの間隔で前記面非点隔差の平均を求め、Q(x,y)における前記面非点隔差の平均のレンズ装用状態における水平方向の傾きを   When the position of the near center in the vertical direction in the lens wearing state from the geometric center is yn, | x | ≦ 15 is satisfied and y = 0, y = yn × 0.25, y = yn In an area satisfying × 0.5, y = yn × 0.75 or y = yn, the average of the surface astigmatism is obtained at intervals of Δx, and the surface astigmatism at Q (x, y) The horizontal inclination in the average lens wearing state of

Figure 0006038224
としたとき、処方で指定された加入度をADDとすると、
Figure 0006038224
When the addition specified in the prescription is ADD,

Figure 0006038224
Figure 0006038224

の条件を満足するように設計し、
前記幾何中心から近用中心と遠用中心とを通る主子午線曲線上の前記面非点隔差が、レンズの上方から下方に向かって大きくなり、
前記主子午線曲線上の前記面非点隔差が前記近用中心で加入度×0.25未満であり、
なお且つ、前記主子午線曲線上の前記面非点隔差が加入度×0.25となる点が前記近用中心よりも下方に1点のみ存在するように設計する累進屈折力レンズの製造方法が提供される。
Designed to satisfy the requirements of
The surface astigmatism on the main meridian curve passing from the geometric center through the near center and the far center increases from the top to the bottom of the lens,
The plane astigmatism on the main meridian curve is less than add-up x 0.25 at the near center;
In addition, there is a method of manufacturing a progressive power lens that is designed so that there is only one point where the astigmatism difference on the main meridian curve is an addition power of 0.25 below the near center. Provided.

本発明の態様によれば、視線移動についても良好な見え方の得られる累進屈折力レンズの製造方法が提供される。   According to the aspect of the present invention, there is provided a method for manufacturing a progressive-power lens capable of obtaining a good appearance with respect to line-of-sight movement.

対称に設計された累進多焦点レンズの領域区分の概要を示す図。The figure which shows the outline | summary of the area | region division of the progressive multifocal lens designed symmetrically. 非対称型累進多焦点レンズの領域区分の概要図である。It is a schematic diagram of the area | region division of an asymmetric type progressive multifocal lens. 本発明の実施形態にかかる左眼用の累進屈折力レンズを示す図。The figure which shows the progressive-power lens for left eyes concerning embodiment of this invention. 本発明の実施形態にかかる左眼用の累進屈折力レンズを示す図。The figure which shows the progressive-power lens for left eyes concerning embodiment of this invention. 本実施形態に対する比較例に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on the comparative example with respect to this embodiment. 本実施形態に対する比較例に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on the comparative example with respect to this embodiment. 本実施形態に対する比較例に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on the comparative example with respect to this embodiment. 本実施形態に対する比較例に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on the comparative example with respect to this embodiment. 本実施形態に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on this embodiment. 本実施形態に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on this embodiment. 本実施形態に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on this embodiment. 本実施形態に係る累進屈折力レンズの特性を示す図。The figure which shows the characteristic of the progressive-power lens which concerns on this embodiment.

本発明の実施の形態を説明する。以下の記載において、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表されるものとする。また、以下の説明において、累進屈折力レンズの「上方」、「下方」、「上部」、「下部」等と表記する場合は、当該累進屈折力レンズが眼鏡用に加工される場合において眼鏡を装用したときのレンズの位置関係に基づくものとする。以下の各図面においても、レンズの位置関係(上下左右)は、紙面に対する位置関係(上下左右)と一致するものとする。また、レンズを構成する2つの屈折面のうち、物体側の面を「外面」とし、眼球側の面を「内面」として表すものとする。   An embodiment of the present invention will be described. In the following description, the unit of refractive power is represented by diopter (D) unless otherwise specified. Further, in the following description, when the progressive power lens is described as “upper”, “lower”, “upper”, “lower”, etc., the glasses are used when the progressive power lens is processed for spectacles. It is based on the positional relationship of the lenses when worn. Also in the following drawings, the positional relationship (up / down / left / right) of the lens is the same as the positional relationship (up / down / left / right) with respect to the paper surface. Of the two refracting surfaces constituting the lens, the object side surface is referred to as an “outer surface” and the eyeball side surface is referred to as an “inner surface”.

図1は、対称に設計された累進屈折力レンズLS1の領域区分の概要を示す図である。
図1に示す累進屈折力レンズLS1は、装用時において上方に位置する遠用部Fと、下方の近用部Nと、双方の領域の間において連続的に屈折力が変化する中間部Pとを備えている。レンズ面の形状に関しては、レンズ面のほぼ中央を上方から下方にかけて鉛直に走る子午線に沿った断面と物体側(眼とは反対側)レンズ面との交線MM’がレンズの加入度などの仕様を表すための基準線として用いられ、レンズの設計においても重要な基準線として用いられている。このように対称に設計された累進屈折力レンズでは、遠用部Fの遠用中心OF、フィッティングポイントである遠用アイポイントE、レンズ面の幾何中心OGおよび近用中心ONは、基準となる中心線MM’上にある。
FIG. 1 is a diagram showing an outline of a region section of a progressive power lens LS1 designed symmetrically.
The progressive-power lens LS1 shown in FIG. 1 includes a distance portion F located above when worn, a near portion N below, and an intermediate portion P whose refractive power continuously changes between both regions. It has. As for the shape of the lens surface, the intersection line MM ′ between the section along the meridian running vertically from the top to the bottom of the lens surface and the lens surface on the object side (opposite to the eye) is the addition of the lens, etc. It is used as a reference line for expressing specifications, and is also used as an important reference line in lens design. In the progressive-power lens thus designed symmetrically, the distance center OF of the distance portion F, the distance eye point E that is a fitting point, the geometric center OG of the lens surface, and the near center ON are the references. It is on the center line MM ′.

図2は、レンズの装用状態において近用中心ONが鼻側に寄ることを考慮して、近用部Nを非対称に配置した累進屈折力レンズ(以下、「非対称型累進屈折力レンズ」と言う)LS2の領域区分の概要図である。図2に示すような非対称型累進屈折力レンズLS2においても、遠用部Fの遠用中心OF、遠用アイポイントE、レンズ面の幾何中心OGおよび近用中心ONを通る断面と物体側レンズ面との交線からなる中心線MM’が基準線として用いられる。   FIG. 2 shows a progressive power lens (hereinafter referred to as an “asymmetric type progressive power lens”) in which the near portion N is arranged asymmetrically in consideration of the fact that the near center ON is closer to the nose side when the lens is worn. ) It is a schematic diagram of a region classification of LS2. Also in the asymmetrical progressive-power lens LS2 as shown in FIG. 2, the cross section passing through the distance center OF of the distance portion F, the distance eye point E, the geometric center OG of the lens surface, and the near center ON, and the object side lens A center line MM ′ that is an intersection line with the surface is used as a reference line.

本実施形態においては、これらの基準線を総称して「主子午線曲線」という。遠用部Fの中心および近用部Nの中心は、レンズ度数を測定する際に基準になる位置であり、遠用測定基準点を遠用中心OFと呼び、近用測定基準点を近用中心ONと呼ぶ。さらに、遠用中心OFにおける面平均屈折力をベースカーブとし、遠用中心OFを通る透過光線の平均球面度数を、遠用部における基準の平均球面度数(以下、「遠用度数」と言う)とする。
通常、近用中心ONは、近用アイポイントに一致する。ただし、ここで言う遠用中心、近用中心とは、各領域における幾何的な中心ではなく、レンズの測定時及び装用時における機能的な中心を意味する。
In the present embodiment, these reference lines are collectively referred to as “main meridian curve”. The center of the distance portion F and the center of the near portion N are positions to be used as a reference when measuring the lens power. The distance measurement reference point is called the distance center OF, and the near measurement reference point is used for near purposes. Called center ON. Furthermore, the surface average refractive power at the distance center OF is a base curve, and the average spherical power of the transmitted light passing through the distance center OF is the reference average spherical power (hereinafter referred to as “distance power”) in the distance portion. And
Usually, the near vision center ON coincides with the near vision eye point. However, the distance center and the near center here mean not a geometric center in each region but a functional center at the time of measuring and wearing the lens.

本実施形態において、面平均屈折力(以下、「面屈折力」と言う)および面非点隔差(以下、「非点隔差」と言う)は、累進屈折力面上の任意の点における最大主曲率をψmaxとし、最小主曲率をψminとし、レンズの屈折率をnとしたとき、次の式(a)および(b)でそれぞれ表される。   In this embodiment, the surface average refractive power (hereinafter referred to as “surface refractive power”) and the surface astigmatism difference (hereinafter referred to as “astigmatic difference”) are the maximum principal power at any point on the progressive power surface. When the curvature is ψmax, the minimum principal curvature is ψmin, and the refractive index of the lens is n, they are expressed by the following equations (a) and (b), respectively.

面屈折力=(ψmax+ψmin)×(n−1)/2 (a)
非点隔差=(ψmax−ψmin)×(n−1) (b)
Surface power = (ψmax + ψmin) × (n−1) / 2 (a)
Astigmatic difference = (ψmax−ψmin) × (n−1) (b)

さらに、本実施形態において、面付加平均屈折力(以下、「面付加屈折力」と言う)とは、累進屈折力面上の任意の点において面屈折力からベースカーブを減じた面屈折力である。   Furthermore, in this embodiment, the surface addition average refractive power (hereinafter referred to as “surface addition power”) is a surface power obtained by subtracting the base curve from the surface power at any point on the progressive power surface. is there.

なお、累進屈折力レンズでは、レンズのほぼ幾何中心を通る主子午線曲線MM’上で、遠用中心OFから近用中心ONに向かって連続的にプラスの面屈折力(または球面度数)が付加され、この付加面屈折力(または付加球面度数)がほぼ最大になる近用中心ONの面屈折力(または球面度数)から遠用中心OFの面屈折力(または球面度数)を引いた値を、累進屈折力レンズの加入度と呼ぶ。   For progressive-power lenses, positive surface power (or spherical power) is continuously added from the distance center OF toward the near center ON on the main meridian curve MM ′ that passes through almost the geometric center of the lens. Then, the value obtained by subtracting the surface refractive power (or spherical power) of the distance center OF from the surface refractive power (or spherical power) of the near vision center ON where the additional surface refractive power (or additional spherical power) is substantially maximized. This is called the addition of a progressive power lens.

人間が眼でものを見るときは、瞳孔径相当の光束が眼球光学系によって網膜に結像されるため、レンズ面の1点を通る光線のみが見え方に影響するわけではない。そのため、面非点隔差や面付加平均屈折力の変動を考慮する際には、累進屈折力面の任意の点と隣接する点との、面非点隔差や面付加平均屈折力の変動量を見るよりも、測定しようとする点を含み、視線を移動させる方向に幅を持たせた線分領域での平均値の変動量を見るほうが効果があると考えられる。   When a human sees things with the eyes, a light beam corresponding to the pupil diameter is imaged on the retina by the eyeball optical system, so that only the light rays that pass through one point on the lens surface do not affect the way they are seen. Therefore, when considering variations in surface astigmatism and surface additional average power, the amount of variation in surface astigmatism and surface additional average power between any point on the progressive power surface and the adjacent point is calculated. Rather than seeing, it is considered that it is more effective to look at the fluctuation amount of the average value in the line segment region including the point to be measured and having a width in the direction of moving the line of sight.

そこで本発明では視線の移動に対するレンズ面での任意の点における収差の変動を考慮するために、視線を移動させる方向に任意の点を中心とした平均算出幅Dの線分領域内での面非点隔差平均(下記[数10]で示す)や面付加平均屈折力平均(下記[数11]で示す)をとって、面非点隔差平均及び面付加平均屈折力平均の視線移動方向の傾きがどう変動するかに着目した。   Therefore, in the present invention, in order to take into account fluctuations of aberrations at any point on the lens surface with respect to the movement of the line of sight, the surface within the line segment region of the average calculation width D centered at any point in the direction of movement of the line of sight Taking the astigmatic average (shown by the following [Equation 10]) and the surface added average refractive power average (shown by the following [Equation 11]), the surface astigmatic difference average and the surface added average refractive power average of the line-of-sight movement direction We focused on how the tilt fluctuated.

Figure 0006038224
Figure 0006038224

Figure 0006038224
Figure 0006038224

ここで、平均算出幅Dを大きくすれば広い範囲で平均を計算するので、結果として面非点隔差平均及び面付加平均屈折力平均が平滑化される。また平均算出幅Dを小さくすれば、面非点隔差平均及び面付加平均屈折力平均は微小変動の影響を受ける傾向にある。   Here, if the average calculation width D is increased, the average is calculated in a wide range, and as a result, the surface astigmatic difference average and the surface additional average refractive power average are smoothed. If the average calculation width D is reduced, the surface astigmatism average and the surface added average refractive power average tend to be affected by minute fluctuations.

本実施形態では、より実際のレンズ使用に適した形態をとるために、レンズ面での瞳孔径相当の大きさと平均算出幅Dを一致させることが好ましい。瞳孔径は年齢や周囲の明るさによって異なるものの、2〜6mmの大きさになるといわれており、平常時は4mm程度であるといわれている。本実施形態では、平均算出幅Dの値は6mm以下であることが好ましく、さらに一般的な使用条件に合わせて4mmとすることが好ましい。   In the present embodiment, it is preferable to make the size equivalent to the pupil diameter on the lens surface coincide with the average calculation width D in order to take a form more suitable for actual lens use. The pupil diameter is said to be 2 to 6 mm, although it varies depending on the age and ambient brightness, and is said to be about 4 mm in normal times. In the present embodiment, the average calculated width D is preferably 6 mm or less, and more preferably 4 mm in accordance with general use conditions.

一般的な累進屈折力レンズの遠用部領域では面非点隔差、面付加平均屈折力の値の変動量は抑えられている。このため、視線移動に対する収差の変動に伴う違和感は、それほど感じられないようになっていることが多い。一方、累進部領域や近用部領域においては累進屈折力レンズの性質上、面非点隔差、面付加平均屈折力ともに変動量が大きくなる傾向にあり、視線移動に対してゆれ・ゆがみといった不快感が発生してしまう場合がある。   In a distance portion region of a general progressive-power lens, the amount of variation in the values of surface astigmatism and surface added average refractive power is suppressed. For this reason, it is often the case that a sense of incongruity associated with a change in aberration with respect to line-of-sight movement is not felt so much. On the other hand, in the progressive area and the near area, the amount of variation in both the surface astigmatism and the surface added average refractive power tends to increase due to the nature of the progressive-power lens. Pleasure may occur.

例えば、累進部領域においては面付加平均屈折力が累進的に変わる上に、面非点隔差も大きく変動してしまう場合がある。一般的な累進屈折力レンズでは累進部領域においても主子午線曲線上の面非点隔差は非常によく抑えられているが、累進部領域の主子午線曲線から水平方向に少し離れた領域で面非点隔差の変動が大きくなる領域があり、この領域が視線移動に大きく影響を与えていると考えられた。   For example, in the progressive region, the surface added average refractive power changes progressively, and the surface astigmatism may vary greatly. In general progressive-power lenses, the surface astigmatism on the main meridian curve is very well suppressed even in the progressive region, but the surface non-surface astigmatism is slightly distant from the main meridian curve in the progressive region. There was a region where the fluctuation of the point gap was large, and this region was thought to have a significant effect on the movement of the line of sight.

また累進部領域から近用部領域を使って対象物を見るような状況を考えた場合、雑誌を閲覧するような場合が想定される。その場合、レンズの中心厚やベースカーブの曲率によって多少の差異があるものの、雑誌を30〜40cm程度離して見ると想定すると、累進屈折力面上の水平方向の幅は約30mmに相当する。   Further, when considering a situation in which an object is viewed from the progressive area to the near area, a case of browsing a magazine is assumed. In that case, although there are some differences depending on the center thickness of the lens and the curvature of the base curve, assuming that the magazine is viewed at a distance of about 30 to 40 cm, the horizontal width on the progressive power surface corresponds to about 30 mm.

本実施形態では、水平方向の視線移動に対する面非点隔差の変動を抑えるために、近用中心の前記幾何中心からレンズ装用状態における鉛直方向の位置をynとしたときにおいて、
|x|≦15を満足すると共に、
y=0、y=yn×0.25、y=yn×0.5、y=yn×0.75又はy=yn
を満足する線分領域において、次の[数12]を満足する。
In the present embodiment, in order to suppress the fluctuation of the surface astigmatism with respect to the horizontal line-of-sight movement, when the position in the vertical direction in the lens wearing state from the geometric center of the near vision center is yn,
Satisfying | x | ≦ 15,
y = 0, y = yn × 0.25, y = yn × 0.5, y = yn × 0.75 or y = yn
In the line segment region that satisfies the following, [Equation 12] is satisfied.

Figure 0006038224
Figure 0006038224

また、本実施形態では、水平方向の視線移動に対する面付加平均屈折力の変動を抑えるために、近用中心の前記幾何中心からレンズ装用状態における鉛直方向の位置をynとしたときに、
|x|≦15を満足すると共に、
y=0、y=yn×0.25、y=yn×0.5、y=yn×0.75又はy=yn、
を満足する線分領域において、次の[数13]を満足する。
Further, in the present embodiment, in order to suppress the variation of the surface added average refractive power with respect to the movement of the line of sight in the horizontal direction, when the position in the vertical direction in the lens wearing state from the geometric center of the near vision center is yn,
Satisfying | x | ≦ 15,
y = 0, y = yn × 0.25, y = yn × 0.5, y = yn × 0.75 or y = yn,
In the line segment region that satisfies the following, [Equation 13] is satisfied.

Figure 0006038224
Figure 0006038224

また、本実施形態では、鉛直方向の視線移動に対する面非点隔差の変動を抑えるために、近用中心の前記幾何中心からレンズ装用状態における鉛直方向の位置をynとしたときに、
yn≦y≦0を満足すると共に、
x=−15、x=−10、x=−5、x=5、x=10又はx=15、
を満足する線分領域において、次の[数14]を満足する。
Further, in the present embodiment, in order to suppress the variation of the surface astigmatism with respect to the vertical line-of-sight movement, when the position in the vertical direction in the lens wearing state from the geometric center of the near vision center is yn,
While satisfying yn ≦ y ≦ 0,
x = -15, x = -10, x = -5, x = 5, x = 10 or x = 15,
The following [Equation 14] is satisfied in the line segment region satisfying

Figure 0006038224
Figure 0006038224

本実施形態において、装用状態における各方向の距離は、レンズの幾何中心を基準に、装用状態における鉛直方向の場合は、上方に正の符号を、下方に負の符号をとるものとする。また、装用状態における水平方向の場合は、耳側に正の符号を、鼻側に負の符号をとるものとする。   In the present embodiment, the distance in each direction in the wearing state is based on the geometric center of the lens, and in the vertical direction in the wearing state, takes a positive sign upward and a negative sign below. In the horizontal direction in the wearing state, a positive sign is taken on the ear side and a negative sign is taken on the nose side.

図3は、本実施形態にかかる左眼用の累進屈折力レンズを示す図であって、レンズ装用状態における水平な平面と屈折面との交線で表される横断面線を説明する図である。本実施形態において、各累進屈折力レンズの面非点隔差平均の水平方向の傾きCXaの分布および面付加屈折力平均の水平方向の傾きPXaの分布は、この横断面線に沿って示している。   FIG. 3 is a diagram showing the progressive power lens for the left eye according to the present embodiment, and is a diagram for explaining a cross-sectional line represented by an intersection line between a horizontal plane and a refractive surface in a lens wearing state. is there. In the present embodiment, the distribution of the horizontal inclination CXa of the surface astigmatism average of each progressive-power lens and the distribution of the horizontal inclination PXa of the surface addition refractive power average are shown along this cross-sectional line. .

図3において、H1は幾何中心OGを通る横断面線であり、H5は近用中心ONを通る横断面線である。また、近用中心ONの幾何中心OGからの鉛直方向の位置をyn(mm)としたとき、H2〜H4は、幾何中心OGからの鉛直方向の位置yが、yn×0.25、yn×0.5、yn×0.75における横断面線をそれぞれ示している。以下、本実施形態では、左眼用の累進屈折力レンズに着目して本発明を説明するが、右眼用の累進屈折力レンズについても同様である。   In FIG. 3, H1 is a cross-sectional line passing through the geometric center OG, and H5 is a cross-sectional line passing through the near center ON. Further, when the vertical position from the geometric center OG of the near center ON is yn (mm), the vertical position y from the geometric center OG is yn × 0.25, yn × Cross-sectional lines at 0.5 and yn × 0.75 are shown. Hereinafter, in the present embodiment, the present invention will be described by focusing on the progressive-power lens for the left eye, but the same applies to the progressive-power lens for the right eye.

本実施形態では、面非点隔差平均の水平方向の傾きCXaおよび面付加屈折力平均の水平方向の傾きPXaは、次のように求めた。
まず、横断面線H1〜H5に沿って△x=1mmの間隔で面非点隔差および面付加屈折力を測定し、その測定した任意の点(x, y)において、点を中心とした(x−2,
y)、(x−1、y)、(x,y)、(x+1,y)、(x+2,y)の5点の面非点隔差および面付加屈折力の値から、点(x,y)における面非点隔差平均(下記[数15])および面付加屈折力平均(下記[数16])を算出した。
In the present embodiment, the horizontal inclination CXa of the surface astigmatism average and the horizontal inclination PXa of the surface additional refractive power average were obtained as follows.
First, the surface astigmatism and the surface additional refractive power are measured at intervals of Δx = 1 mm along the cross-sectional lines H1 to H5, and the point is centered at the measured arbitrary point (x, y) ( x-2,
y), (x−1, y), (x, y), (x + 1, y), (x + 2, y), the point (x, y) ) The surface astigmatism average (the following [Expression 15]) and the surface added refractive power average (the following [Expression 16]) were calculated.

Figure 0006038224
Figure 0006038224

Figure 0006038224
さらに、点(x,y)を中心とした(x−1、y)、(x,y)、(x+1,y)の三点のCx、Pxの回帰直線の傾きCXa(x,y)及びPXa(x,y)をそれぞれ算出した。ここで、CXa(x,y)については、下記[数17]で表され、PXa(x,y)については、下記[数18]で表される。
Figure 0006038224
Furthermore, Cx at three points (x-1, y), (x, y), (x + 1, y) centered at the point (x, y), the slope CXa (x, y) of the regression line of Px, and PXa (x, y) was calculated respectively. Here, CXa (x, y) is represented by the following [Equation 17], and PXa (x, y) is represented by the following [Equation 18].

Figure 0006038224
Figure 0006038224

Figure 0006038224
Figure 0006038224

本実施形態では、平均算出幅Dを4mmとしているが、この値に限定するものではなく、瞳孔径相当の大きさであれば同様の効果を得ることができる。また、本実施形態ではCXa、PXaの間隔△xを1mmとしているが、累進屈折力レンズの面非点隔差や面付加屈折力の分布を見る上で、変曲点があまり無い場合は細かくする必要は無く、本実施形態のように離散的にしても問題は無い。   In the present embodiment, the average calculation width D is 4 mm. However, the average calculation width D is not limited to this value, and the same effect can be obtained if the size is equivalent to the pupil diameter. In this embodiment, the distance Δx between CXa and PXa is set to 1 mm. However, when the surface astigmatism difference of the progressive power lens and the distribution of the surface added refractive power are observed, if the inflection point is not very large, the distance Δx is made fine. There is no need, and there is no problem even if it is discrete as in this embodiment.

図4は、本発明の実施形態にかかる左眼用の累進屈折力レンズを示す図であって、レンズ装用状態における鉛直な平面と屈折面との交線で表される縦断面線を説明する図である。本実施形態において、各累進屈折力レンズの面非点隔差分布は、この縦断面線に沿って示している。図4において、V1〜V7は、幾何中心OGからの位置xが−15(mm)、−10(mm)、−5(mm)、0(mm)、5(mm)、10(mm)、15(mm)における縦断面線をそれぞれ示している。   FIG. 4 is a diagram showing a progressive power lens for a left eye according to an embodiment of the present invention, and illustrates a longitudinal section line represented by a line of intersection between a vertical plane and a refractive surface in a lens wearing state. FIG. In this embodiment, the surface astigmatism distribution of each progressive-power lens is shown along this longitudinal cross section line. In FIG. 4, V1 to V7 have positions x from the geometric center OG of −15 (mm), −10 (mm), −5 (mm), 0 (mm), 5 (mm), 10 (mm), The longitudinal section lines at 15 (mm) are shown.

本実施形態では、面非点隔差平均の鉛直方向の傾きCYaは、次のように求めた。
まず、縦断面線V1〜V5に沿って△y=1mmの間隔で面非点隔差および面付加屈折力を測定し、その測定した任意の点(x,y)において、点を中心とした(x,y−2)、(x、y−1)、(x,y)、(x,y+1)、(x,y+2)の5点の面非点隔差の値から、点(x,y)における面非点隔差平均(下記[数19]で示す)を算出した。
In the present embodiment, the vertical inclination CYa of the surface astigmatism average is obtained as follows.
First, the surface astigmatism difference and the surface additional refractive power are measured at intervals of Δy = 1 mm along the longitudinal section lines V1 to V5, and the point is centered at the measured arbitrary point (x, y) ( x, y-2), (x, y-1), (x, y), (x, y + 1), and (x, y + 2) from the value of the surface astigmatism of the five points, the point (x, y) The surface astigmatic difference average (shown by [Equation 19] below) was calculated.

Figure 0006038224
Figure 0006038224

さらに、点(x,y)を中心とした、(x、y−1)、(x,y)、(x,y+1)の三点のCyの回帰直線の傾きを面非点隔差平均の水平方向の傾きCYa(x、y)とした。ここで、面非点隔差平均の水平方向の傾きCYa(x、y)は、下記[数20]のように示される。   Further, the slope of the regression line of Cy at three points (x, y-1), (x, y), and (x, y + 1) with the point (x, y) as the center is calculated as the horizontal of the astigmatic average. The direction inclination Cya (x, y) was used. Here, the horizontal inclination CYa (x, y) of the surface astigmatism average is expressed as in the following [Equation 20].

Figure 0006038224
Figure 0006038224

本実施形態では、平均算出幅Dは4mmとしているが、この値に限定するものではなく、瞳孔径相当の大きさであれば同様の効果を得ることができる。また、本実施形態ではCYaの間隔△yを1mmとしているが、累進屈折力レンズの面非点隔差や面付加屈折力の分布を見る上で、変曲点があまり無い場合は細かくする必要は無く、本実施形態のように離散的にしても問題は無い。   In the present embodiment, the average calculation width D is 4 mm. However, the average calculation width D is not limited to this value, and a similar effect can be obtained as long as the size is equivalent to the pupil diameter. In this embodiment, the CYa interval Δy is set to 1 mm. However, in view of the surface astigmatism difference and the surface added refractive power distribution of the progressive addition lens, it is necessary to reduce the inflection point if there are not many inflection points. There is no problem even if it is discrete as in this embodiment.

図5は、本実施形態に対する比較例としての横断面線H1〜H5に沿った面非点隔差平均の傾きおよび面付加屈折力平均の傾きの分布図である。図5において、横軸は装用状態における幾何中心からの水平方向の位置x(mm)を示している。水平方向の位置xは、耳側に正の符号を有し、鼻側に負の符号を有する。また、面非点隔差平均の傾きは実線で、面付加屈折力平均の傾きは破線で示されており、面非点隔差平均の傾きおよび面付加屈折力平均の傾きは、D(ディオプター)/mmで示されている。後述するように、従来技術にしたがう比較例に係る累進屈折力レンズでは、遠用部における面屈折力をベースカーブとほぼ等しく設計している。   FIG. 5 is a distribution diagram of the slope of the surface astigmatism average and the slope of the surface added refractive power average along the cross-sectional lines H1 to H5 as comparative examples for the present embodiment. In FIG. 5, the horizontal axis indicates the horizontal position x (mm) from the geometric center in the wearing state. The horizontal position x has a positive sign on the ear side and a negative sign on the nose side. In addition, the slope of the surface astigmatism average is indicated by a solid line, the slope of the surface addition refractive power average is indicated by a broken line, and the slope of the surface astigmatism average and the slope of the surface addition power average are D (diopter) / It is shown in mm. As will be described later, in the progressive-power lens according to the comparative example according to the prior art, the surface refractive power in the distance portion is designed to be substantially equal to the base curve.

また、図6は、本実施形態に対する比較例としての縦断面線V1〜V7に沿った面非点隔差平均の傾きの分布図である。図6において、横軸は装用状態における幾何中心OGからの鉛直方向の位置y(mm)を示している。鉛直方向の位置yは、上側に正の符号を有し、下側に負の符号を有する。また、面非点隔差平均の傾きは、D(ディオプター)/mmで示されている。   FIG. 6 is a distribution diagram of the average astigmatic difference slope along the longitudinal sectional lines V1 to V7 as a comparative example with respect to the present embodiment. In FIG. 6, the horizontal axis indicates the position y (mm) in the vertical direction from the geometric center OG in the wearing state. The position y in the vertical direction has a positive sign on the upper side and a negative sign on the lower side. In addition, the slope of the surface astigmatism average is indicated by D (diopter) / mm.

図5及び図6に示す累進屈折力レンズでは、外径φ=60mmであり、ベースカーブBC=4.00ディオプターであり、加入度ADD=2.00ディオプターであり、レンズの屈折率ne=1.67であり、近用中心ONの位置はレンズの幾何中心OGの13.5mm下方に位置している。   In the progressive-power lens shown in FIGS. 5 and 6, the outer diameter φ = 60 mm, the base curve BC = 4.00 diopter, the addition ADD = 2.00 diopter, and the refractive index ne = 1 of the lens. .67, and the position of the near center ON is located 13.5 mm below the geometric center OG of the lens.

図5に示す累進屈折力レンズでは、面非点隔差平均の傾きおよび面付加屈折力平均の傾きの変動が大きくなっており、また横断面線ごとにその傾向が異なっていることがわかる。つまり、このレンズを使用する上では、累進部において水平方向に視線移動すると不快に感じてしまう領域が存在する。   In the progressive-power lens shown in FIG. 5, it can be seen that the fluctuation of the average astigmatic difference average and the average additional refractive power average change are large, and the tendency is different for each cross-sectional line. In other words, when this lens is used, there is a region where it is felt uncomfortable when the line of sight moves in the horizontal direction in the progressive portion.

また、図6に示す累進屈折力レンズでは、面非点隔差平均の傾きの変動が大きくなっており、また縦断面線ごとにその傾向が異なっていることがわかる。つまり、このレンズを使用する上では、鉛直方向に視線移動すると不快に感じてしまう存在する。   Further, in the progressive-power lens shown in FIG. 6, it can be seen that the variation of the average astigmatism average inclination is large, and the tendency is different for each longitudinal section line. That is, when this lens is used, there is an uncomfortable feeling when the line of sight is moved in the vertical direction.

図7は、比較例にかかる累進屈折力レンズの累進屈折面の面非点隔差の分布図である。
図7に示す累進屈折力レンズでは、面非点隔差の最大となる領域が累進部の側方にあり、中心領域で等高線間隔が狭いために、水平方向および鉛直方向の面非点隔差の傾きが大きいことがわかる。
FIG. 7 is a distribution diagram of the surface astigmatism difference of the progressive addition surface of the progressive addition lens according to the comparative example.
In the progressive-power lens shown in FIG. 7, since the region where the surface astigmatism difference is maximum is on the side of the progressive portion and the contour line interval is narrow in the central region, the inclination of the surface astigmatism difference in the horizontal and vertical directions. It can be seen that is large.

図8は、比較例にかかる累進屈折力レンズの累進屈折面の面付加屈折力の分布図である。図8に示す累進屈折力レンズでは、面付加屈折力1.0の領域の水平方向の幅が狭いために、水平方向の面付加屈折力の傾きが大きいことがわかる。   FIG. 8 is a distribution diagram of the surface addition refractive power of the progressive addition surface of the progressive addition lens according to the comparative example. In the progressive-power lens shown in FIG. 8, since the horizontal width of the area of surface addition power 1.0 is narrow, it can be seen that the slope of the surface addition power in the horizontal direction is large.

図9は、本実施形態に係る累進屈折力レンズの横断面線H1〜H5に沿った面非点隔差平均の傾きおよび面付加屈折力平均の傾きの分布図である。図9において、横軸は装用状態における幾何中心からの水平方向の位置x(mm)を示している。水平方向の位置xは、耳側に正の符号を有し、鼻側に負の符号を有する。また、面非点隔差平均の傾きは実線で、面付加屈折力平均の傾きは破線で示されており、面非点隔差平均の傾きおよび面付加屈折力平均の傾きは、D(ディオプター)/mmで示されている。   FIG. 9 is a distribution diagram of the gradient of the surface astigmatism average and the gradient of the surface additional refractive power average along the cross-sectional lines H1 to H5 of the progressive-power lens according to the present embodiment. In FIG. 9, the horizontal axis indicates the horizontal position x (mm) from the geometric center in the wearing state. The horizontal position x has a positive sign on the ear side and a negative sign on the nose side. In addition, the slope of the surface astigmatism average is indicated by a solid line, the slope of the surface addition refractive power average is indicated by a broken line, and the slope of the surface astigmatism average and the slope of the surface addition power average are D (diopter) / It is shown in mm.

図10は、本実施形態にかかる累進屈折力レンズの縦断面線V1〜V7に沿った面非点隔差平均の傾きの分布図である。図10において、横軸は装用状態における幾何中心からの鉛直方向の位置y(mm)を示している。鉛直方向の位置yは、上側に正の符号を有し、下側に負の符号を有する。また、面非点隔差平均の傾きは、D(ディオプター)/mmで示されている。   FIG. 10 is a distribution diagram of the average astigmatic difference slope along the longitudinal sectional lines V1 to V7 of the progressive-power lens according to this embodiment. In FIG. 10, the horizontal axis indicates the position y (mm) in the vertical direction from the geometric center in the wearing state. The position y in the vertical direction has a positive sign on the upper side and a negative sign on the lower side. In addition, the slope of the surface astigmatism average is indicated by D (diopter) / mm.

本実施形態にかかる累進屈折力レンズでは、比較例と同様に、外径φ=60mmであり、ベースカーブBC=4.00ディオプターであり、加入度ADD=2.00ディオプターであり、レンズの屈折率ne=1.67であり、近用中心ONはレンズの幾何中心OGの13.5mm下方に位置している。   In the progressive-power lens according to the present embodiment, the outer diameter φ = 60 mm, the base curve BC = 4.00 diopter, the addition ADD = 2.00 diopter, and the refraction of the lens, as in the comparative example. The ratio ne = 1.67, and the near center ON is located 13.5 mm below the geometric center OG of the lens.

図9を参照すると、本実施例にかかる累進屈折力レンズでは、0≦y≦ynを満足する領域において、次の[数21]及び[数22]を満足していることがわかる。   Referring to FIG. 9, it can be seen that the progressive power lens according to this example satisfies the following [Equation 21] and [Equation 22] in a region where 0 ≦ y ≦ yn is satisfied.

Figure 0006038224
Figure 0006038224

Figure 0006038224
Figure 0006038224

図10を参照すると、本実施例にかかる累進屈折力レンズでは、|x|≦15を満足する領域において、次の[数23]を満足していることがわかる。   Referring to FIG. 10, it can be seen that the progressive power lens according to the present example satisfies the following [Equation 23] in a region where | x | ≦ 15.

Figure 0006038224
Figure 0006038224

図11は、本実施形態にかかる累進屈折力レンズの累進屈折面の面非点隔差の分布図である。図11を参照すると、本実施形態にかかる累進屈折力レンズでは、累進部の側方の面非点格差が抑えられており、面非点隔差の水平方向および鉛直方向の増加が緩慢になっていることがわかる。   FIG. 11 is a distribution diagram of the surface astigmatism of the progressive addition surface of the progressive addition lens according to the present embodiment. Referring to FIG. 11, in the progressive-power lens according to the present embodiment, the lateral astigmatism difference on the side of the progressive portion is suppressed, and the increase in the horizontal and vertical directions of the astigmatic difference becomes slow. I understand that.

図12は、本実施形態にかかる累進屈折力レンズの累進屈折面の面付加屈折力の分布図である。図12を参照すると、面付加屈折力が1.0の等高線の水平方向の幅が広がっており、水平方向の変化量が抑えられていることがわかる。   FIG. 12 is a distribution diagram of the surface addition refractive power of the progressive addition surface of the progressive addition lens according to the present embodiment. Referring to FIG. 12, it can be seen that the horizontal width of the contour line having a surface addition refracting power of 1.0 is widened, and the amount of change in the horizontal direction is suppressed.

上記[数21]について、下記[表1]を参照して具体例を説明する。[表1]は、本実施形態にかかる累進屈折力レンズにおける[数21]の値を示している。なお、[表1]では、縦方向に横断面線H1〜H5を示し、横方向に水平方向の位置x(mm)を示している。   A specific example of the above [Formula 21] will be described with reference to the following [Table 1]. [Table 1] shows the value of [Equation 21] in the progressive-power lens according to this embodiment. In [Table 1], the cross-sectional lines H1 to H5 are shown in the vertical direction, and the horizontal position x (mm) is shown in the horizontal direction.

Figure 0006038224
Figure 0006038224

[表1]に示すように、本実施形態にかかる累進屈折力レンズでは、0≦y≦ynを満足する領域において、上記[数21]を満足していることがわかる。   As shown in [Table 1], it can be seen that the progressive power lens according to the present embodiment satisfies the above [Equation 21] in a region where 0 ≦ y ≦ yn.

また、上記[数22]について、下記[表2]を参照して具体例を説明する。[表2]は、本実施形態にかかる累進屈折力レンズにおける[数22]の値を示している。なお、[表2]では、縦方向に横断面線H1〜H5を示し、横方向に水平方向の位置x(mm)を示している。   A specific example of the above [Equation 22] will be described with reference to the following [Table 2]. [Table 2] shows the value of [Equation 22] in the progressive-power lens according to this embodiment. In [Table 2], the cross-sectional lines H1 to H5 are shown in the vertical direction, and the horizontal position x (mm) is shown in the horizontal direction.

Figure 0006038224
Figure 0006038224

[表2]に示すように、本実施形態にかかる累進屈折力レンズでは、0≦y≦ynを満足する領域において、上記[数22]を満足していることがわかる。   As shown in [Table 2], it can be seen that the progressive power lens according to the present embodiment satisfies the above [Equation 22] in a region where 0 ≦ y ≦ yn.

また、上記[数23]について、下記[表3]を参照して具体例を説明する。[表3]は、本実施形態にかかる累進屈折力レンズにおける[数23]の値を示している。なお、[表3]では、縦方向に鉛直方向の位置y(mm)を示し、横方向に縦断面線V1〜V7を示している。   A specific example of [Equation 23] will be described with reference to [Table 3] below. [Table 3] shows the value of [Equation 23] in the progressive-power lens according to this embodiment. In [Table 3], a vertical position y (mm) is shown in the vertical direction, and vertical cross-sectional lines V1 to V7 are shown in the horizontal direction.

Figure 0006038224
Figure 0006038224

[表3]に示すように、本実施形態にかかる累進屈折力レンズでは、|x|≦15を満足する領域において、上記[数23]を満足していることがわかる。   As shown in [Table 3], it can be seen that the progressive power lens according to the present embodiment satisfies the above [Equation 23] in a region satisfying | x | ≦ 15.

以上説明したように、本実施形態によれば、面の面非点隔差や面付加平均屈折力の変動量を考慮して光学性能の最適化を行うことにより、当該面非点隔差や面付加屈折力の変動量を抑制することができ、視線を水平方向、あるいは鉛直方向に動かしても違和感のない見え方が可能な累進屈折力レンズを得ることができる。   As described above, according to the present embodiment, the surface astigmatism and the surface addition are optimized by optimizing the optical performance in consideration of the surface astigmatism of the surface and the fluctuation amount of the surface added average refractive power. It is possible to obtain a progressive power lens that can suppress the amount of fluctuation of the refractive power and that can be viewed without any sense of incongruity even if the line of sight is moved in the horizontal direction or the vertical direction.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。   It should be noted that the technical scope of the present invention is not limited to the above-described embodiment, and modifications can be made as appropriate without departing from the spirit of the present invention.

LS1、LS2…累進屈折力レンズ F…遠用部 N…近用部 P…中間部 MM’…
主子午線曲線 OF…遠用中心 E…遠用アイポイント OG…幾何中心 ON…近用中
LS1, LS2 ... Progressive power lens F ... Distance portion N ... Near portion P ... Intermediate portion MM '...
Main meridian curve OF ... Center for distance E ... Eye point for distance OG ... Geometric center ON ... Center for near use

Claims (2)

装用状態で物体側の屈折面となる外面と、装用状態で眼球側の屈折面となる内面とを有する累進屈折力レンズであって、前記外面及び前記内面のうち少なくとも一方の面は、装用状態でレンズの上方に設けられ、比較的遠方視に適した遠用部と、装用状態でレンズの下方に設けられ、比較的近方視に適した近用部と、前記遠用部と前記近用部の間に設けられ、前記遠用部から前記近用部までの面屈折力を累進的に変化させる累進部とを有する累進面形状に形成されている累進屈折力レンズの製造方法において、
レンズ面の幾何中心からレンズ装用状態における水平方向でx(mm)の位置にあり且つ前記幾何中心からレンズ装用状態における鉛直方向にy(mm)の位置にある累進屈折力面上の任意の点Q(x,y)を中心とし、レンズ面での瞳孔径の大きさに相当する平均算出幅D(mm)を2〜6として、レンズ装用状態における水平方向に平均算出幅Dをもつ線分領域の面非点隔差の平均を
Figure 0006038224
とし、
前記幾何中心からレンズ装用状態における鉛直方向の近用中心の位置をynとしたときに、|x|≦15を満足すると共に、
y=0、y=yn×0.25、y=yn×0.5、y=yn×0.75又はy=yn、
を満足する領域において、
△xの間隔で前記面非点隔差の平均を求め、Q(x,y)における前記面非点隔差の平均のレンズ装用状態における水平方向の傾きを
Figure 0006038224
としたとき、
処方で指定された加入度をADDとすると、
Figure 0006038224
の条件を満足するように設計し、
前記幾何中心から近用中心と遠用中心とを通る主子午線曲線上の前記面非点隔差が、レンズの上方から下方に向かって大きくなり、
前記主子午線曲線上の前記面非点隔差が前記近用中心で加入度×0.25未満であり、
なお且つ、前記主子午線曲線上の前記面非点隔差が加入度×0.25となる点が前記近用中心よりも下方に1点のみ存在するように設計する
累進屈折力レンズの製造方法。
A progressive-power lens having an outer surface that is a refractive surface on the object side in a worn state and an inner surface that is a refractive surface on the eyeball side in a worn state, wherein at least one of the outer surface and the inner surface is in a worn state Provided in the upper part of the lens and relatively suitable for far vision, the near part provided in the worn state under the lens and relatively suitable for near vision, the distance part and the near part. In a manufacturing method of a progressive power lens formed in a progressive surface shape having a progressive portion that is provided between the use portions and progressively changes the surface refractive power from the distance portion to the near portion,
Arbitrary point on the progressive-power surface that is at a position x (mm) in the horizontal direction in the lens wearing state from the geometric center of the lens surface and at a position y (mm) in the vertical direction in the lens wearing state from the geometric center A line segment having an average calculated width D in the horizontal direction in the lens wearing state, with Q (x, y) being the center, and an average calculated width D (mm) corresponding to the size of the pupil diameter on the lens surface being 2 to 6. The average of the area astigmatism of the area
Figure 0006038224
age,
When the position of the near center in the vertical direction in the lens wearing state from the geometric center is yn, | x | ≦ 15 is satisfied,
y = 0, y = yn × 0.25, y = yn × 0.5, y = yn × 0.75 or y = yn,
In the area that satisfies
The average of the surface astigmatism is obtained at intervals of Δx, and the horizontal inclination in the lens wearing state of the average of the surface astigmatism at Q (x, y) is calculated.
Figure 0006038224
When
If the addition specified in the prescription is ADD,
Figure 0006038224
Designed to satisfy the requirements of
The surface astigmatism on the main meridian curve passing from the geometric center through the near center and the far center increases from the top to the bottom of the lens,
The plane astigmatism on the main meridian curve is less than add-up x 0.25 at the near center;
In addition, the progressive power lens manufacturing method is designed so that there is only one point on the main meridian curve where the astigmatism difference is addition power × 0.25 below the near center .
前記レンズの直径が60mmである
ことを特徴とする請求項に記載の累進屈折力レンズの製造方法。
Method for manufacturing a progressive-power lens according to claim 1, wherein the diameter of the lens is 60 mm.
JP2015094204A 2015-05-01 2015-05-01 Manufacturing method of progressive power lens Active JP6038224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094204A JP6038224B2 (en) 2015-05-01 2015-05-01 Manufacturing method of progressive power lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094204A JP6038224B2 (en) 2015-05-01 2015-05-01 Manufacturing method of progressive power lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010228701A Division JP6126772B2 (en) 2010-10-08 2010-10-08 Progressive power lens

Publications (2)

Publication Number Publication Date
JP2015135529A JP2015135529A (en) 2015-07-27
JP6038224B2 true JP6038224B2 (en) 2016-12-07

Family

ID=53767338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094204A Active JP6038224B2 (en) 2015-05-01 2015-05-01 Manufacturing method of progressive power lens

Country Status (1)

Country Link
JP (1) JP6038224B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264910B2 (en) * 2018-09-28 2023-04-25 ホヤ レンズ タイランド リミテッド Progressive power lens, design method thereof, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699294B1 (en) * 1992-12-11 1995-02-10 Essilor Int Progressive multifocal ophthalmic lens.
JP3691876B2 (en) * 1994-08-26 2005-09-07 東海光学株式会社 Lens for correcting presbyopia
JP3611155B2 (en) * 1996-10-18 2005-01-19 株式会社ニコン Progressive multifocal lens

Also Published As

Publication number Publication date
JP2015135529A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
US11226496B2 (en) Quasi progressive lenses for eyewear
KR20050004878A (en) Double-sided aspheric varifocal power lens
US9581831B2 (en) Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
US6412948B2 (en) Progressive power multifocal lens
US6669337B2 (en) Progressive spectacle lens with low swaying effects
JP4380887B2 (en) Progressive multifocal lens
US8931898B2 (en) Non-progressive corridor bi-focal lens with substantially tangent boundary of near and distant visual fields
JP2019211543A (en) Progressive refractive power lens design method
US8684522B2 (en) Progressive-power lens and progressive-power lens design method
US8757799B2 (en) Progressive multifocal ophthalmic lens
JP6126772B2 (en) Progressive power lens
JP6038224B2 (en) Manufacturing method of progressive power lens
US20210018763A1 (en) A method for determining a single vision ophthalmic lens
JP4243335B2 (en) Progressive power lens
JP5036946B2 (en) Progressive spectacle lens with slight magnification difference
JP4450480B2 (en) Progressive multifocal lens series
US8092012B2 (en) Single vision spectacle lens
JPH10123469A (en) Progressive multifocus lens
JP5138536B2 (en) Progressive power lens series
JP2004126256A (en) Double-side aspherical progressive power lens
JP2006350380A (en) Both-sided aspherical varifocal refractive lens and method of designing it
WO2010044260A1 (en) Progressive power lens
JPH10123467A (en) Progressive multifocus lens
JP5135160B2 (en) Progressive power lens series
JP2003532139A (en) Progressive spectacle lens having dynamic characteristics with less characteristics at the wearing position when the line of sight moves in the horizontal direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6038224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150