JP3788083B2 - Progressive multifocal lens, spectacles and manufacturing method - Google Patents

Progressive multifocal lens, spectacles and manufacturing method Download PDF

Info

Publication number
JP3788083B2
JP3788083B2 JP00150199A JP150199A JP3788083B2 JP 3788083 B2 JP3788083 B2 JP 3788083B2 JP 00150199 A JP00150199 A JP 00150199A JP 150199 A JP150199 A JP 150199A JP 3788083 B2 JP3788083 B2 JP 3788083B2
Authority
JP
Japan
Prior art keywords
prism
distance
refractive power
addition
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00150199A
Other languages
Japanese (ja)
Other versions
JP2000199877A (en
Inventor
一寿 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP00150199A priority Critical patent/JP3788083B2/en
Publication of JP2000199877A publication Critical patent/JP2000199877A/en
Application granted granted Critical
Publication of JP3788083B2 publication Critical patent/JP3788083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、遠用部と近用部とで異なるプリズム作用を有する累進多焦点レンズに関するものである。
【0002】
【従来の技術】
累進多焦点レンズは遠くを見るための遠用屈折力を有する遠用部と、手元を見るための近用屈折力を有する近用部と、前記遠用部と近用部との間に有って屈折力が連続的に変化する中間部とを有する。遠用屈折力と近用屈折力との差を加入屈折力と呼び、一般的には0.50D(ディオプトリ)〜4.00Dの屈折力範囲で0.25D毎に予め用意されている。従って、眼鏡装用者の老視の程度に合わせて適切な加入屈折力を選択することができる。このように、遠用部屈折力と近用部屈折力とは実使用上問題の無い範囲で自由に選択ができるようになっている。
【0003】
一般に、眼鏡装用者の処方の中には、上記の遠用部屈折力や近用部屈折力といった焦点作用に関係した屈折力の他に、視線の方向を変化させる作用を有するプリズム屈折力が存在する。累進多焦点レンズを製造する場合は遠用部のプリズム屈折力を決めると、近用部のプリズム屈折力は累進屈折面の形状や遠用部屈折力および加入屈折力によって決まってしまい、近用部のプリズム屈折力を自由に選択又は指定することはできなかった。
【0004】
【発明が解決しようとする課題】
しかしながら、遠用部のプリズム屈折力と近用部のプリズム屈折力は本来別々に処方されるのが望ましいことは言うまでもない。左右眼のプリズムが正しく処方されない場合には、物が二重に見えたり遠近感が異なって見えたりするので、眼鏡を長時間掛けることが苦痛になる。特に左右の遠用部頂点屈折力や加入屈折力が異なる場合には、近用部分でのプリズム屈折力の垂直成分が著しく違う場合があり、両眼視の障害なっている。
【0005】
本発明の累進多焦点レンズは、遠用部のプリズム屈折力の垂直成分と、近用部のプリズム屈折力の垂直成分とを別々に指定できるようにすることで、遠方視時および近方視時のどちらにおいても快適に両眼視を行うことができ、長時間の装用を可能にする眼鏡レンズを提供する。
【0008】
【課題を解決するための手段】
すなわち本発明は、遠用部頂点屈折力の異なる左右一対の累進多焦点レンズを用いた眼鏡であって、前記左右一対の累進多焦点レンズのうち遠用部頂点屈折力がより負の屈折力を有する方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化が、他方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化より大きいことを特徴とする。
【0011】
また本発明は、遠用部頂点屈折力の異なる左右一対の累進多焦点レンズを用いた眼鏡であって、前記左右一対の累進多焦点レンズのうち遠用部頂点屈折力がより負の屈折力を有する方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化が、他方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化より大きいことを特徴とする眼鏡の製造方法である。
【0012】
【発明の実施の形態】
図1は累進多焦点レンズの概略図である。レンズ1の上部に遠用部領域11があり、レンズ下部に近用部領域13がある。中間部領域12は遠用部領域11と近用部領域13との間にある。遠用部領域11の下端に遠用部プリズム測定基準点21があり、近用部領域13の上端に近用部プリズム測定基準点22が存在する。本発明の累進多焦点レンズでは遠用部プリズム測定基準点21および近用部プリズム測定基準点22はそれぞれ遠用部設計基準点および近用部設計基準点に対応している。遠用部プリズム測定基準点21と近用部プリズム測定基準点22とを通り遠用部から近用部に掛けて引かれた線分は主注視線23であり、眼鏡装用者の視線がもっとも頻繁に通過する仮定された設計上の仮想線である。
【0013】
図2は主注視線上の平均屈折力の変化を表す。グラフの横軸は遠用部プリズム測定基準点21を中心とした各点の位置を表しており、近用部に向かう側をプラスとしている。縦軸は平均屈折力を表す。本実施例では遠用部プリズム基準点21より左側、即ちレンズの上部では屈折力が一定であり、遠用部プリズム測定基準点21から近用部プリズム測定基準点22に掛けて直線的に屈折力が変化する。さらに近用部プリズム測定基準点より右側、即ちレンズの下部では屈折力が一定となっている。
【0014】
一般的にプレンティスの式として知られているプリズム屈折力と頂点屈折力との関係式を以下に示す。
【0015】
【数1】

Figure 0003788083
【0016】
即ち頂点屈折力D(D)のレンズにおいて光軸からh(cm)離れた位置でのプリズム屈折力P(Δ)は上数で表される。
【0017】
光軸にP0(D)のプリズム屈折力が付いている場合には、数式1の拡張として以下の数式2が使える。
【0018】
【数2】
Figure 0003788083
【0019】
この、数式1または数式2は、レンズの頂点屈折力が距離hの間で一定であることを前提としているため、実際のレンズでは近似的な計算にしか用いられていない。
【0020】
しかしながら、距離hとして非常に短い距離Δh1(cm)を考えると、実際の眼鏡レンズでは頂点屈折力がほぼ一定と考えて良くなる。即ち、光軸から微小距離Δh1だけ離れた点Q1におけるプリズム屈折力Pは、以下の数式3により正確に計算できる。
【0021】
【数3】
Figure 0003788083
【0022】
またΔh1離れた点Q1を基準にさらにΔh2(cm)離れた点Q2におけるプリズム量は以下の数式で表される。
【0023】
【数4】
Figure 0003788083
【0024】
さらにΔh3、Δh4...と考えていくと、一般的に光軸から任意の距離h(cm)離れた位置でのプリズム量は以下の数式で表されることは容易に証明できる。
【0025】
【数5】
Figure 0003788083
【0026】
ここで、数式5を累進多焦点レンズに適用することを考える。図2のように遠用部プリズム基準点21から加入度が直線的に変化している場合は、数式5の中のD(x)は
【0027】
【数6】
Figure 0003788083
【0028】
という簡単な数式に置き換えることができる。ここでaは比例定数であり、簡単な計算により累進帯の長さL(cm)と加入度Add(D)から以下のように求めることができる。
【0029】
【数7】
Figure 0003788083
【0030】
数式6、7を数式5に代入して近用部プリズム基準点22まで積分すると以下のとおり近用部プリズム基準点22でのプリズム量が計算できる。
【0031】
【数8】
Figure 0003788083
【0032】
また、図3に示すように遠用部プリズム基準点21から加入度の増加がゆっくり進み、近用部プリズム基準点22の近くで急な増加をするように加入度の変化を設定すると、近用部プリズム基準点22でのプリズム量を変えることができる。
【0033】
一例として、加入度の変化が以下のような2次式で表される場合を考える。
【0034】
【数9】
Figure 0003788083
【0035】
数式9を数式5に代入して計算すると、近用部プリズム基準点22におけるプリズム量は以下のようになる。
【0036】
【数10】
Figure 0003788083
【0037】
さらに、図4のように遠用部プリズム基準点21の近くで加入度の増加が大きく、近用部プリズム基準点の近傍では緩やかに変化する場合の一例として加入度の変化が数式11のように表される場合には、近用部プリズム基準点でのプリズム量は数式12のようになる。
【0038】
【数11】
Figure 0003788083
【0039】
【数12】
Figure 0003788083
【0040】
数式8、数式10、数式12を比較すると、累進帯の長さLが同じでも加入度の変化の仕方により近用部プリズム基準点におけるプリズム量がことなることがわかる。逆に言えば、加入度の変化のさせ方をコントロールすることにより、近用部のプリズム量をある程度自由に設定できることが、本発明者の研究により判明した。なお、以上の議論は全て図1の主注視線23に沿った面内の議論であり、このため加入度変化の仕方でプリズム量をコントロールできるのは、主注視線に平行な方向の、即ちレンズの垂直方向のプリズムに関するものである。
【0041】
表1に加入度別に、各加入度変化毎の近用部プリズム基準点でのプリズム量を示す。累進帯の長さは1.6cmとした。加入度0.50Dの場合でも▲1▼と▲2▼で0.25D以上の差を付けられ、加入度3.50Dに至っては▲1▼と▲3▼で1.79の差を付けられることが判った。
【0042】
【表1】
Figure 0003788083
【0043】
遠用部に度数D0が付いているレンズの場合は、今までの議論の中で加入度による度数の変化をDAdd(x)として、D(x)=D0+DAdd(x)で近用部プリズム屈折力の数式を計算すればよい。例えば、遠用度数が−3.00D、加入度2.00D、累進帯長1.6cmで、加入度が直線的に変化する累進多焦点レンズでは、D(x)=−3.00+2.00/1.6*xとして計算すると、近用部プリズム測定点22でのプリズム量は−3.2PD(プリズムディオプトリー)となる。符号のマイナスはプリズムの基底方向がレンズの外周部に向かっていることを表しており、レンズを眼鏡として使用する場合は基底下方のプリズムになる。
【0044】
加入度数が同じで加入度の変化も同じ場合、遠用部の屈折力が左右で1.00D違うと、遠用部から1.6cm離れた場所では1.6PDのプリズム差が生じる。例えば、右レンズがS−3.00D、加入度2.00D、左レンズがS−4.00D、加入度2.00Dの場合、左右とも加入度の変化が直線的で、累進帯長1.6cmの場合、右レンズの近用部プリズム測定点22でのプリズムは前述したように3.2PD基底下方のプリズムが付き、左レンズでは4.8PD基底下方のプリズムとなり、1.6PDもの差が生じる。本発明の累進多焦点レンズでは、例えば右レンズの加入度の変化をD(x)=a・xの変化とし、左レンズはD(x)=a・√xの変化とすると、右レンズの近用部プリズム基準点でのプリズム量は3.8PD基底下方、左レンズでは4.38PD基底下方となり、その差は0.58PDに減少する。加入度の変化は説明しやすいように単純な関数で表せるもので説明したが、より複雑な関数による変化でも良いし、離散的な数値データによるものでも本発明の原理は変わらない。即ち、加入度の変化のさせ方に特に制限はなく、左右のプリズム差をゼロにするような変化の仕方に設定することもできる。
【0045】
一般的には、遠用部付近で加入度の変化が大きく近用部付近で加入度の変化が小さい場合には近用部でのプリズムは基底上方に大きいプリズムが入りやすく、逆に遠用部付近での加入度の変化が小さい場合には基底上方に比較的小さなプリズムとなる。このことは、左右のレンズの遠用部屈折力が違う場合には、よりマイナスの屈折力を有するレンズの加入度の変化を遠用部付近で大きくしてやればよいことになる。なぜなら、遠用部の屈折力がよりマイナスの屈折力を有するレンズの方が、近用部ではより基底下方のプリズムが付きやすいので、加入度の変化を遠用部付近で大きくすることにより、近用部のプリズムをより基底上方に補正できるからである。
【0046】
つぎに図5に本発明の累進多焦点レンズの製造方法を表すブロック図を示す。入力情報31は眼鏡装用者のレンズ処方であり、左右レンズの球面屈折力、乱視屈折力、乱視軸および加入度である。演算32において球面屈折力、乱視屈折力および乱視軸の情報からレンズの上下方向の屈折力を求める。これは、近用部の上下方向のプリズム屈折力に影響するのは、遠用部の上下方向の屈折力がほとんどであるためである。演算33ではあらかじめ記憶されている累進帯の長さや、遠用部の基準プリズムと、演算32で求めた遠用部の上下方向の屈折力、入力情報31の中の加入度を用い、加入度変化が直線的な場合の近用部のプリズムを求める。演算34では左右の近用部のプリズム値の比較を行い、左右のプリズム差があらかじめ設定された許容差以下の場合は計算を終了する。左右のプリズム差があらかじめ設定された許容差を越える場合には、演算35において左右レンズの加入度の変化の仕方を設定し直し演算33へ戻り再計算を行う。このとき演算35では、近用部の基底上方プリズムのより小さい方のレンズの加入度変化を遠用部付近で大きくなるように、他方のレンズの加入度変化を遠用部付近でゆっくり変化するように設定する。33,34、35のサイクルは左右の近用部プリズムがあらかじめ設定された許容差以下になるまで繰り返される。プリズム差が許容差以下になった場合には計算を終了し、その時点で設定されている加入度変化の情報を次の行程に送る。次の行程では、加入度変化の設定値に従い累進屈折面を創生して製造装置に加工指示をだしたり、あらかじめ決められた累進屈折面形状のデータの中から指示された加入度変化に近いデータを探し出して加工指示を出す。
【0047】
本発明の累進多焦点レンズでは累進帯の長さは左右で同じで良いので、近用部の位置は左右で同じ場所に設定できるという利点がある。また、加入度の変化は細かく設定できるため、どのような不同視の場合でも対応可能である。
【0048】
また、本実施例では説明を簡単にするために累進帯の下端である近用部プリズム測定点でのプリズムを扱ってきたが、近用部領域13の中のどこかでプリズムを合わせることはもちろん可能である。また、遠用部に所定のプリズムが付いている場合や、左右の加入度数が異なる場合でも左右の近用部プリズムを合わせることが可能である。さらには、近用部のプリズム量を、左右別々に設定することもできるので、眼科処方などで近用プリズムが指定された場合にも対応が可能となる。
【図面の簡単な説明】
【図1】 本発明の累進多焦点レンズの概念図。
【図2】 加入度の変化を示す図。
【図3】 加入度の変化を示す図。
【図4】 加入度の変化を示す図。
【図5】 本発明の累進多焦点レンズの製造方法を示すブロック図。
【符号の説明】
11 遠用部領域
12 中間部領域
13 近用部領域
21 遠用部プリズム測定基準点(遠用部設計基準点)
22 近用部プリズム測定基準点(近用部設計基準点)
23 中間部主注視線
31 入力情報
32 遠用部上下方向屈折力の演算
33 近用部上下方向のプリズム演算
34 近用部の左右のプリズム差の判定
35 加入度変化の設定[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a progressive multifocal lens having different prism actions in a distance portion and a near portion.
[0002]
[Prior art]
The progressive multifocal lens has a distance portion having a distance power for viewing a distance, a near portion having a near power for looking at a hand, and a distance portion between the distance portion and the near portion. And an intermediate portion where the refractive power continuously changes. The difference between the refractive power for the distance and the refractive power for the near distance is called the addition refractive power, and is generally prepared in advance every 0.25D in the refractive power range of 0.50D (diopter) to 4.00D. Therefore, an appropriate addition power can be selected according to the degree of presbyopia of the spectacle wearer. In this way, the distance portion refractive power and the near portion refractive power can be freely selected within a range where there is no problem in practical use.
[0003]
In general, in the prescription for spectacle wearers, in addition to the refractive power related to the focal action such as the distance power and the near power, the prism refractive power having the function of changing the direction of the line of sight is included. Exists. When manufacturing a progressive multifocal lens, if the refractive power of the distance portion is determined, the refractive power of the near portion is determined by the shape of the progressive refracting surface and the refractive power and addition power of the distance portion. It was not possible to freely select or specify the refractive power of the prism.
[0004]
[Problems to be solved by the invention]
However, it is needless to say that it is desirable that the prism refractive power of the distance portion and the prism refractive power of the near portion are originally prescribed separately. If the right and left eye prisms are not prescribed correctly, it will be painful to wear glasses for a long time because objects appear double or look different. Particularly, when the vertex power and the addition power in the left and right distance portions are different, the vertical component of the prism refractive power in the near portion may be significantly different, which is an obstacle to binocular vision.
[0005]
The progressive multifocal lens of the present invention allows the vertical component of the prism refractive power of the distance portion and the vertical component of the prism refractive power of the near portion to be specified separately, thereby enabling distance vision and near vision. Provided is a spectacle lens that can perform binocular viewing comfortably at any time and can be worn for a long time.
[0008]
[Means for Solving the Problems]
That is, the present invention is a pair of glasses using a pair of left and right progressive multifocal lenses having different distance vertex refractive power, and the distance portion vertex refractive power of the pair of left and right progressive multifocal lenses is more negative. The average refractive power change in the vicinity of the distance portion area in the intermediate area of the progressive multifocal lens having a larger value is larger than the average refractive power change in the vicinity of the distance area in the intermediate area of the other progressive multifocal lens. Features.
[0011]
Further, the present invention is a pair of glasses using a pair of left and right progressive multifocal lenses having different distance apex refractive power, and the distance apex refractive power of the pair of left and right progressive multifocal lenses is more negative. The average refractive power change in the vicinity of the distance portion area in the intermediate area of the progressive multifocal lens having a larger value is larger than the average refractive power change in the vicinity of the distance area in the intermediate area of the other progressive multifocal lens. It is the manufacturing method of the spectacles characterized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view of a progressive multifocal lens. There is a distance portion area 11 at the top of the lens 1 and a near portion area 13 at the bottom of the lens. The intermediate area 12 is between the distance area 11 and the near area 13. A distance prism measurement reference point 21 exists at the lower end of the distance area 11, and a near prism measurement reference point 22 exists at the upper end of the near area 13. In the progressive multifocal lens of the present invention, the distance portion prism measurement reference point 21 and the near portion prism measurement reference point 22 correspond to the distance portion design reference point and the near portion design reference point, respectively. The line drawn from the distance portion to the near portion through the distance portion prism measurement reference point 21 and the near portion prism measurement reference point 22 is the main gaze line 23, and the eye line of the spectacle wearer is the most. It is an assumed design imaginary line that passes frequently.
[0013]
FIG. 2 shows a change in average refractive power on the main line of sight. The horizontal axis of the graph represents the position of each point centered on the distance portion prism measurement reference point 21, with the side toward the near portion being positive. The vertical axis represents the average refractive power. In this embodiment, the refractive power is constant at the left side of the distance prism reference point 21, that is, at the top of the lens, and refracts linearly from the distance prism measurement reference point 21 to the near prism measurement reference point 22. The power changes. Further, the refractive power is constant on the right side of the near-field prism measurement reference point, that is, on the lower part of the lens.
[0014]
A relational expression between the prism refractive power and the vertex refractive power, which is generally known as the Prentice equation, is shown below.
[0015]
[Expression 1]
Figure 0003788083
[0016]
In other words, the prism refractive power P (Δ) at a position h (cm) away from the optical axis in the lens having the vertex refractive power D (D) is expressed by the upper number.
[0017]
When the prism refractive power of P0 (D) is attached to the optical axis, the following expression 2 can be used as an extension of expression 1.
[0018]
[Expression 2]
Figure 0003788083
[0019]
Formula 1 or Formula 2 is based on the premise that the vertex refractive power of the lens is constant between the distances h, and is therefore used only for approximate calculation in an actual lens.
[0020]
However, when a very short distance Δh1 (cm) is considered as the distance h, it is considered that the vertex refractive power is almost constant in an actual spectacle lens. That is, the prism refractive power P at the point Q1 separated from the optical axis by a minute distance Δh1 can be accurately calculated by the following Equation 3.
[0021]
[Equation 3]
Figure 0003788083
[0022]
Further, the prism amount at the point Q2 further separated by Δh2 (cm) with respect to the point Q1 separated by Δh1 is expressed by the following mathematical formula.
[0023]
[Expression 4]
Figure 0003788083
[0024]
Further, Δh3, Δh4. . . In general, it can be easily proved that the prism amount at a position h (cm) away from the optical axis is generally expressed by the following formula.
[0025]
[Equation 5]
Figure 0003788083
[0026]
Here, consider applying Formula 5 to a progressive multifocal lens. As shown in FIG. 2, when the addition is linearly changed from the distance portion prism reference point 21, D (x) in Equation 5 is
[Formula 6]
Figure 0003788083
[0028]
It can be replaced with a simple formula. Here, a is a proportionality constant, and can be obtained from the length L (cm) of the progressive zone and the addition Add (D) by simple calculation as follows.
[0029]
[Expression 7]
Figure 0003788083
[0030]
Substituting Equations 6 and 7 into Equation 5 and integrating up to the near portion prism reference point 22, the prism amount at the near portion prism reference point 22 can be calculated as follows.
[0031]
[Equation 8]
Figure 0003788083
[0032]
Further, as shown in FIG. 3, when the addition power is set so that the addition gradually increases from the distance prism reference point 21 and rapidly increases near the near prism reference point 22, The prism amount at the use prism reference point 22 can be changed.
[0033]
As an example, consider a case where the change in addition is expressed by the following quadratic expression.
[0034]
[Equation 9]
Figure 0003788083
[0035]
When calculating by substituting Equation 9 into Equation 5, the prism amount at the near portion prism reference point 22 is as follows.
[0036]
[Expression 10]
Figure 0003788083
[0037]
Further, as shown in FIG. 4, as an example of the case where the increase in addition is large near the distance prism reference point 21 as shown in FIG. In this case, the prism amount at the near portion prism reference point is expressed by Equation 12.
[0038]
## EQU11 ##
Figure 0003788083
[0039]
[Expression 12]
Figure 0003788083
[0040]
Comparing Formula 8, Formula 10, and Formula 12, it can be seen that the amount of prism at the near-side prism reference point varies depending on how the addition power changes even if the length L of the progressive zone is the same. In other words, the inventors' study has revealed that the amount of prism in the near portion can be set freely to some extent by controlling how the addition is changed. The above discussions are all in-plane discussions along the main line of sight 23 in FIG. 1. Therefore, the prism amount can be controlled by the addition change method in the direction parallel to the main line of sight, that is, It relates to a prism in the vertical direction of the lens.
[0041]
Table 1 shows the amount of prisms at the near-side prism reference point for each addition change by addition. The length of the progressive zone was 1.6 cm. Even when the addition is 0.50D, a difference of 0.25D or more is given between (1) and (2), and when the addition is 3.50D, a difference of 1.79 is given between (1) and (3). I found out.
[0042]
[Table 1]
Figure 0003788083
[0043]
In the case of a lens with a power D0 in the distance portion, the change in power due to the addition power is D Add (x) in the discussion so far, and D (x) = D0 + D Add (x). What is necessary is just to calculate the formula of prism refractive power. For example, in a progressive multifocal lens in which the dioptric power is −3.00D, the addition power is 2.00D, the progressive zone length is 1.6 cm, and the addition power varies linearly, D (x) = − 3.00 + 2.00 When calculated as /1.6*x, the prism amount at the near-field prism measurement point 22 is −3.2 PD (prism diopter). The minus sign indicates that the base direction of the prism is toward the outer periphery of the lens. When the lens is used as spectacles, the prism is located below the base.
[0044]
When the addition power is the same and the change in addition is the same, if the refracting power of the distance portion is different by 1.00 D on the left and right, a prism difference of 1.6 PD occurs at a position 1.6 cm away from the distance portion. For example, when the right lens is S-3.00D and the addition is 2.00D, the left lens is S-4.00D and the addition is 2.00D, the change in addition is linear on both the left and right sides, and the progressive zone length is 1. In the case of 6 cm, the prism at the near-point prism measurement point 22 of the right lens has a prism below the 3.2 PD base as described above, and the prism at the left lens becomes a prism below the 4.8 PD base, with a difference of 1.6 PD. Arise. In the progressive multifocal lens of the present invention, for example, when the change in the addition of the right lens is D (x) = a · x 2 and the left lens is D (x) = a · √x, the right lens The prism amount at the near-side prism reference point is 3.8 PD base lower and the left lens is 4.38 PD base lower, and the difference is reduced to 0.58 PD. The change in the addition power has been described as a simple function that can be easily explained. However, the change in the addition function may be a more complicated function or the discrete numerical data, and the principle of the present invention does not change. That is, there is no particular limitation on how to change the addition, and it is also possible to set the change so that the difference between the left and right prisms is zero.
[0045]
In general, when the addition change is large near the distance portion and the addition change is small near the distance portion, a prism in the near portion is likely to enter a large prism above the base. When the change in the addition power near the portion is small, a relatively small prism is formed above the base. This means that when the distance-part refractive powers of the left and right lenses are different, the change in the addition power of the lens having a more negative refractive power may be increased near the distance part. Because, the lens having a negative refractive power in the distance portion is more likely to have a prism below the base in the near portion, so by increasing the addition change near the distance portion, This is because the near-side prism can be corrected more upwardly toward the base.
[0046]
Next, FIG. 5 is a block diagram showing a method for manufacturing a progressive multifocal lens of the present invention. The input information 31 is a lens prescription for the spectacle wearer, and includes the spherical power, astigmatism power, astigmatism axis, and addition power of the left and right lenses. In the calculation 32, the refractive power in the vertical direction of the lens is obtained from information on the spherical power, the astigmatic power, and the astigmatic axis. This is because the vertical refractive power of the distance portion is mostly affected by the vertical refractive power of the near portion. In the calculation 33, the length of the progressive zone stored in advance, the distance reference prism, the vertical power of the distance calculated in the calculation 32, and the addition in the input information 31 are used. Find the near-use prism when the change is linear. In the calculation 34, the right and left near portion prism values are compared, and if the left and right prism differences are equal to or smaller than a preset tolerance, the calculation is terminated. If the left and right prism differences exceed the preset tolerance, the calculation method 35 resets the way of changing the addition of the left and right lenses, and returns to calculation 33 to perform recalculation. At this time, in the calculation 35, the addition change of the other lens is slowly changed near the distance portion so that the addition change of the smaller lens of the near-basis upper prism becomes larger in the vicinity of the distance portion. Set as follows. The cycles 33, 34, and 35 are repeated until the left and right near portion prisms are less than or equal to a preset tolerance. When the prism difference is equal to or smaller than the tolerance, the calculation is terminated, and information on the addition change set at that time is sent to the next process. In the next step, a progressive refracting surface is created in accordance with the set value of the change in addition, and a processing instruction is issued to the manufacturing apparatus, or it is close to the addition change indicated from the data of the progressive refracting surface shape determined in advance. Find data and give processing instructions.
[0047]
The progressive multifocal lens of the present invention has the advantage that the length of the progressive zone can be the same on the left and right, so that the position of the near portion can be set at the same place on the left and right. In addition, since the change in addition can be set finely, it is possible to cope with any non-congruity.
[0048]
Further, in this embodiment, the prism at the near part prism measurement point which is the lower end of the progressive zone has been dealt with for the sake of simplicity of explanation, but it is possible to align the prism somewhere in the near part region 13. Of course it is possible. In addition, the right and left near portion prisms can be combined even when the distance portion has a predetermined prism or when the left and right addition powers are different. Furthermore, since the amount of prisms in the near portion can be set separately on the left and right sides, it is possible to cope with the case where the near prism is designated in ophthalmic prescription or the like.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a progressive multifocal lens of the present invention.
FIG. 2 is a diagram showing a change in addition power.
FIG. 3 is a diagram showing a change in addition power.
FIG. 4 is a diagram showing a change in addition power.
FIG. 5 is a block diagram showing a method for manufacturing a progressive multifocal lens of the present invention.
[Explanation of symbols]
11 Distance section area 12 Middle section area 13 Near section area 21 Distance section prism measurement reference point (Distance design reference point)
22 Near part prism measurement reference point (Near part design reference point)
23 Middle part main gazing line 31 Input information 32 Calculation of distance refractive power in the vertical direction 33 Prismatic calculation in the vertical direction of the near part 34 Determination of right and left prism difference 35 Setting of change in addition power

Claims (2)

遠用部頂点屈折力の異なる左右一対の累進多焦点レンズを用いた眼鏡であって、前記左右一対の累進多焦点レンズのうち遠用部頂点屈折力がより負の屈折力を有する方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化が、他方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化より大きいことを特徴とする眼鏡。A pair of left and right progressive multifocal lenses having different distance vertex powers, wherein the distance vertex power of the left and right progressive lenses has a more negative refractive power. The spectacles characterized in that an average refractive power change in the vicinity of the distance portion area in the intermediate area of the multifocal lens is larger than an average refractive power change in the vicinity of the distance area in the intermediate area of the other progressive multifocal lens. 遠用部頂点屈折力の異なる左右一対の累進多焦点レンズを用いた眼鏡であって、前記左右一対の累進多焦点レンズのうち遠用部頂点屈折力がより負の屈折力を有する方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化が、他方の累進多焦点レンズの中間部領域における遠用部領域近辺の平均屈折力変化より大きいことを特徴とする眼鏡の製造方法。A pair of left and right progressive multifocal lenses having different distance vertex powers, wherein the distance vertex power of the left and right progressive lenses has a more negative refractive power. An average refractive power change in the middle area of the multifocal lens near the distance area is larger than an average refractive power change in the middle area of the other progressive multifocal lens near the distance area. Production method.
JP00150199A 1999-01-06 1999-01-06 Progressive multifocal lens, spectacles and manufacturing method Expired - Lifetime JP3788083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00150199A JP3788083B2 (en) 1999-01-06 1999-01-06 Progressive multifocal lens, spectacles and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00150199A JP3788083B2 (en) 1999-01-06 1999-01-06 Progressive multifocal lens, spectacles and manufacturing method

Publications (2)

Publication Number Publication Date
JP2000199877A JP2000199877A (en) 2000-07-18
JP3788083B2 true JP3788083B2 (en) 2006-06-21

Family

ID=11503225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00150199A Expired - Lifetime JP3788083B2 (en) 1999-01-06 1999-01-06 Progressive multifocal lens, spectacles and manufacturing method

Country Status (1)

Country Link
JP (1) JP3788083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072528A1 (en) 2007-12-04 2009-06-11 Hoya Corporation Pair of progressive refractive power lens and method for designing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890108B2 (en) * 2006-06-06 2012-03-07 東海光学株式会社 How to check prism amount of progressive power lens
JP5838419B2 (en) * 2011-08-17 2016-01-06 東海光学株式会社 Manufacturing method of progressive power lens
JP5140768B1 (en) * 2012-02-20 2013-02-13 株式会社山一屋 Progressive multifocal lens, progressive multifocal lens design method, progressive multifocal lens processing method
JP5987101B1 (en) * 2015-11-12 2016-09-06 正純 逢坂 Design method of progressive multifocal lens
US20180196281A1 (en) * 2017-01-06 2018-07-12 eyeBrain Medical, Inc. Prismatic contact lens
DE102017000777A1 (en) 2017-01-27 2018-08-02 Rodenstock Gmbh Method for considering different prismatic corrections in the distance and near

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072528A1 (en) 2007-12-04 2009-06-11 Hoya Corporation Pair of progressive refractive power lens and method for designing same
US8162478B2 (en) 2007-12-04 2012-04-24 Hoya Corporation Pair of progressive power lens and method for designing same

Also Published As

Publication number Publication date
JP2000199877A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
US4606622A (en) Multi-focal spectacle lens with a dioptric power varying progressively between different zones of vision
JP4425350B2 (en) Progressive lens element, design method and use thereof
JP4959087B2 (en) Progressive spectacle lens calculation method and method for manufacturing this type of spectacle lens
JP4481647B2 (en) Balanced progressive lens
US7883206B2 (en) Multifocal lens having a progressive optical power region and a discontinuity
KR101902372B1 (en) Progressive ophthalmic lens
JP4674346B2 (en) Progressive Addition Lens
JP5286473B2 (en) Progressive power spectacle lens design method
JPH0690368B2 (en) Progressive multifocal lens and glasses
KR20070100902A (en) Multi-focal ophthalmic lens with base in prism
JP2007241276A (en) Method for the determination of progressive focus ophthalmic lens
US5446508A (en) Progressive power lens
JP2011507021A (en) Progressive eye lens
US20130100398A1 (en) Progressive addition lens
JP2004502963A (en) Progressive spectacle lens with low shaking movement
JP3788083B2 (en) Progressive multifocal lens, spectacles and manufacturing method
JPH08234146A (en) Gradually progressive multifocus lens and spectacle lens
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
JP5036946B2 (en) Progressive spectacle lens with slight magnification difference
GB2130391A (en) Ophthalmic lens having a progessively variable focal power determined taking convergence of eyes into account
JP7090155B2 (en) Progressive power lens design method, manufacturing method and progressive power lens
JP5068411B2 (en) Progressive eyeglass lenses with slightly different binocular characteristics during eye movement
US8092012B2 (en) Single vision spectacle lens
CN109964166B (en) Method for providing a selection chart for an over-the-counter ophthalmic lens
JP3226108B2 (en) Method of manufacturing progressive lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term