JP3226108B2 - Method of manufacturing progressive lens - Google Patents

Method of manufacturing progressive lens

Info

Publication number
JP3226108B2
JP3226108B2 JP23338591A JP23338591A JP3226108B2 JP 3226108 B2 JP3226108 B2 JP 3226108B2 JP 23338591 A JP23338591 A JP 23338591A JP 23338591 A JP23338591 A JP 23338591A JP 3226108 B2 JP3226108 B2 JP 3226108B2
Authority
JP
Japan
Prior art keywords
power
lens
distance
measurement position
diopter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23338591A
Other languages
Japanese (ja)
Other versions
JPH0572503A (en
Inventor
一寿 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23338591A priority Critical patent/JP3226108B2/en
Publication of JPH0572503A publication Critical patent/JPH0572503A/en
Application granted granted Critical
Publication of JP3226108B2 publication Critical patent/JP3226108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は累進焦点レンズの度数測
定位置におけるレンズ表面の形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shape of the surface of a progressive power lens at a power measuring position.

【0002】[0002]

【従来の技術】従来の技術としては、特公平2−397
68に示されているように、主子午線に沿った方向の曲
率ρtとそれに直角な方向の曲率ρsが異なる発明があ
る。この発明の主たる効果は、眼鏡装用者の視覚(非点
収差及び像の歪曲)の改良にある。従って、実際に眼鏡
として装用している場合には良好な視野を提供できるも
のである。
2. Description of the Related Art As a conventional technique, Japanese Patent Publication No. 2-397
As shown at 68, there is an invention in which the curvature ρt in the direction along the main meridian and the curvature ρs in the direction perpendicular to it are different. The main effect of the present invention is to improve the vision (astigmatism and image distortion) of the spectacle wearer. Therefore, when actually worn as spectacles, a good visual field can be provided.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、実際に
特公平2−39768の累進焦点レンズでは、眼鏡とし
て装用した状態では確かに所定の効果(非点収差及び歪
曲の改善)は得られるが、このレンズの遠用度数および
近用度数をレンズメーターで測定してみると、ρtとρ
sの曲率差により乱視度数が発生する事が判明した。こ
れは、装用状態での光線の通過と、レンズメーターによ
る測定状態での光線の通過が異なるためである。すなわ
ち、装用状態で収差を改善した場合、レンズメーターで
の測定に対しては逆に収差が発生する。
However, in the progressive lens of Japanese Patent Publication No. 2-39768, a certain effect (improvement of astigmatism and distortion) can be certainly obtained in a state of wearing as spectacles. When the distance power and near power of the lens are measured with a lens meter, ρt and ρ
It has been found that the astigmatic power occurs due to the difference in curvature of s. This is because the passage of the light beam in the wearing state is different from the passage of the light beam in the measurement state by the lens meter. That is, when the aberration is improved in the wearing state, the aberration occurs in reverse to the measurement by the lens meter.

【0004】眼科医において眼鏡レンズを処方する場合
には、一般的にトライアルレンズと呼ばれる所定の度数
のレンズを患者に試用させ、最適度数を選択している。
そして、このトライアルレンズの度数は、レンズメータ
ーの測定により保証されている。従って、装用する眼鏡
レンズの度数もレンズメーターで保証されたものでなけ
れば、処方通りの眼鏡レンズとは言えない。すなわち、
特公平2−39768のレンズは目に掛けた状態では収
差が改善されているが、必ずしも眼科医の処方通りのレ
ンズとは言えない。
When an ophthalmologist prescribes a spectacle lens, a patient is given a trial of a lens having a predetermined power, generally called a trial lens, to select an optimum power.
The power of the trial lens is guaranteed by the measurement of the lens meter. Therefore, unless the power of the spectacle lens to be worn is also guaranteed by the lens meter, it cannot be said that the spectacle lens is as prescribed. That is,
The lens of Japanese Patent Publication No. 2-39768 has improved aberrations when placed on the eyes, but is not necessarily a lens as prescribed by an ophthalmologist.

【0005】特に、度数測定位置が光学中心から離れる
に従って、光軸外収差が大きくなることは一般的に知ら
れている。本発明者の研究によれば、従来の累進焦点レ
ンズでは、光学中心から10mm以上離れたところで度
数を測定すると、光軸外収差が無視できないほど大きく
なることが判明した。累進焦点レンズの多くが、光学中
心から10mm以内に遠用度数測定位置を設定して、処
方度数を保証しているのはこのためである。一方、近用
度数測定位置は光学中心から10mm以上離れるものが
多いが、従来の累進焦点レンズにおいては、近用度数の
保証はされておらず、加入度を参考的に測定できるのみ
である。
In particular, it is generally known that off-axis aberrations increase as the power measurement position moves away from the optical center. According to the study of the present inventors, it has been found that, in the conventional progressive lens, when the power is measured at a distance of 10 mm or more from the optical center, the off-axis aberration becomes so large that it cannot be ignored. It is for this reason that many progressive lenses set the distance power measurement position within 10 mm from the optical center to assure prescription power. On the other hand, the near dioptric power measurement position is often located at a distance of 10 mm or more from the optical center. However, in a conventional progressive lens, the near dioptric power is not guaranteed, and the addition can only be measured by reference.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
め、本発明の累進焦点レンズは、主子午線曲線4の遠用
部領域1の下端である遠用中心13と前記曲線の近用領
域2の上端である近用中心14の間で、所定の法則に従
って屈折力が変化して加入度を付与する累進焦点レンズ
であって、前記遠用部領域1および前記近用部領域2の
少なくとも一方の領域の一部あるいは全部において、前
記主子午線曲線4上における該曲線に沿った方向の曲率
(ρt)と前記曲線に直角な方向の曲率(ρs)がρt
≠ρsである累進焦点レンズにおいて、前記遠用部領域
1の遠用度数測定位置8または前記近用部領域2の近用
度数測定位置9で、前記主子午線に沿った方向の表面屈
折力Dtと前記主子午線に直角な方向の表面屈折力Ds
の間に以下の関係が有ることを特徴とする。
In order to solve the above problems, a progressive lens according to the present invention comprises a distance center 13 which is the lower end of a distance portion 1 of a main meridian curve 4 and a near distance region of the curve. A progressive power lens whose refractive power changes in accordance with a predetermined rule between the near centers 14 which are the upper ends of the lenses 2 to give an additional power, wherein at least the distance portion 1 and the near portion 2 In part or all of one of the regions, the curvature (ρt) of the main meridian curve 4 in the direction along the curve and the curvature (ρs) in the direction perpendicular to the curve are ρt.
In a progressive-focus lens of ≠ ρs, the surface refractive power Dt in the direction along the main meridian at the distance power measurement position 8 in the distance portion area 1 or the near power measurement position 9 in the near portion area 2. And the surface refractive power Ds in a direction perpendicular to the principal meridian
Are characterized by the following relationship:

【0007】[0007]

【数2】ΔD=Ds−Dt=a×Pw2+b×Pw+c ここで Ds=(n−1)×ρs [単位:ディオプトリー] Dt=(n−1)×ρt [単位:ディオプトリー] Pw :遠用度数 [単位:ディオプトリー] a、b、c:係数 n :レンズ素材の屈折率 である。ΔD = Ds−Dt = a × Pw 2 + b × Pw + c where Ds = (n−1) × ρs [unit: diopter] Dt = (n−1) × ρt [unit: diopter] Pw: far Power [unit: diopter] a, b, c: coefficient n: refractive index of lens material.

【0008】さらに、前記加入度を付与する屈折面がレ
ンズの凸面側屈折面11である累進焦点レンズにおい
て、前記係数aが正の値であることを特徴とする。
Further, in a progressive-focus lens in which the refracting surface for providing the addition is the convex refracting surface 11 of the lens, the coefficient a is a positive value.

【0009】また、前記加入度を付与する屈折面がレン
ズの凹面側屈折面12である累進焦点レンズにおいて、
前記係数aが負の値であることを特徴とする。
Also, in a progressive lens wherein the refractive surface for providing the addition is the concave-side refractive surface 12 of the lens,
The coefficient a is a negative value.

【0010】[0010]

【作用】本発明の累進焦点レンズは、主子午線に沿った
方向の曲率ρtとそれに直角な方向の曲率ρsの差を適
切な値に設定することにより、レンズメーターで測定し
たときの度数を保証できるようにする。
In the progressive lens according to the present invention, the difference between the curvature ρt in the direction along the principal meridian and the curvature ρs in the direction perpendicular to the principal meridian is set to an appropriate value, thereby guaranteeing the power when measured with a lens meter. It can be so.

【0011】[0011]

【実施例】本発明の実施例を以下では図面の番号に対応
させて説明していく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1は、本発明の第1の実施
例の累進焦点レンズの概観図である。図中の記号は、遠
用部領域1、近用部領域2、中間部領域3、主子午線
4、レンズ本体5、遠用部領域1と中間部領域3の境界
線6、中間部領域3と近用部領域2の境界線7、遠用度
数測定位置8、近用度数測定位置9、光学中心10、レ
ンズの凸面側屈折面11、凹面側屈折面12、遠用中心
13、近用中心14である。なお説明を分かりやすくす
るために、境界線6と7を図中では明記してあるが、実
際のレンズでは境界線は存在しない。光学中心10と遠
用度数測定位置8との間隔は15mmとなっている。レ
ンズは、屈折率n=1.50の素材を使用しており、加
入度は2.00[ディオプトリー:以下ではDと記す]
である。
(Embodiment 1) FIG. 1 is a schematic view of a progressive lens according to a first embodiment of the present invention. The symbols in the figure are a distance portion region 1, a near portion region 2, a middle portion region 3, a principal meridian 4, a lens body 5, a boundary line 6 between the distance portion region 1 and the middle portion region 3, and a middle portion region 3. And near vision region 2, distance power measurement position 8, near power measurement position 9, optical center 10, convex-side refraction surface 11, concave-side refraction surface 12 of lens, distance center 13, near vision It is the center 14. For the sake of simplicity, the boundaries 6 and 7 are shown in the drawing, but there is no boundary in an actual lens. The distance between the optical center 10 and the distance measuring position 8 is 15 mm. The lens is made of a material having a refractive index n = 1.50, and has an addition power of 2.00 [diopter: hereinafter referred to as D].
It is.

【0013】図2は図1の凸面側屈折面11の遠用度数
測定位置8の部分を拡大した図である。屈折面の曲率ρ
tは主子午線4に沿った方向の曲率であり、ρsはそれ
に直角な方向の曲率である。主子午線に沿った方向の表
面屈折力Dtと、それに直角な方向の表面屈折力Ds
は、曲率ρt、ρsと以下の関係がある。なお、ρt、
ρsの単位は[1/m]である。
FIG. 2 is an enlarged view of the portion of the convex refracting surface 11 shown in FIG. Refractive surface curvature ρ
t is the curvature in the direction along the principal meridian 4, and ρs is the curvature in the direction perpendicular to it. Surface power Dt in the direction along the principal meridian and surface power Ds in the direction perpendicular to it
Has the following relationship with the curvatures ρt and ρs. Note that ρt,
The unit of ρs is [1 / m].

【0014】[0014]

【数3】 Ds=(n−1)×ρs [単位:ディオプトリー] Dt=(n−1)×ρt [単位:ディオプトリー] n :レンズ素材の屈折率 レンズの度数は、凹面側屈折面12を適当な球面、ある
いはトーリック面等にする事で調整するため、Dtおよ
びDsの値そのものを特定することは、本発明の主旨で
はない。光軸外収差を改善するためには、DtとDsの
差ΔDだけが問題となる。図3(a)に遠用部の処方度
数PwとΔDの関係を示す。この関係を更に詳しく解析
すると、PwとΔDの間には以下の関係が成り立つこと
が判明した。
Ds = (n−1) × ρs [unit: diopter] Dt = (n−1) × ρt [unit: diopter] n: refractive index of the lens material It is not the gist of the present invention to specify the values of Dt and Ds themselves in order to adjust by making an appropriate spherical surface or toric surface or the like. In order to improve the off-axis aberration, only the difference ΔD between Dt and Ds becomes a problem. FIG. 3A shows the relationship between the prescription power Pw of the distance portion and ΔD. When this relationship was analyzed in more detail, it was found that the following relationship was established between Pw and ΔD.

【0015】[0015]

【数4】ΔD=Ds−Dt=a×Pw2+b×Pw+c Pw :遠用度数 [単位:ディオプトリー] a、b、c:係数 図3(b)は本実施例の近用度数測定位置9における、
PwとΔDの関係を示したものである。Pwは近用部の
度数では無く、遠用部の処方度数である。また、近用度
数測定位置9は、光学中心10から18mm離れてい
る。この場合にもPwとΔDの間には、上記と同様の関
係が成り立つ。
ΔD = Ds−Dt = a × Pw 2 + b × Pw + c Pw: distance power [unit: diopter] a, b, c: coefficient FIG. 3 (b) shows a near power measurement position 9 in this embodiment. At
It shows the relationship between Pw and ΔD. Pw is not the power of the near portion but the prescription power of the far portion. The near power measurement position 9 is 18 mm away from the optical center 10. Also in this case, the same relationship as described above holds between Pw and ΔD.

【0016】表1は本実施例における係数a、b、cの
値である。
Table 1 shows the values of coefficients a, b, and c in this embodiment.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例2)図4(a)(b)は、本発明
の第2の実施例での遠用部と近用部の、PwとΔDの関
係を示した物である。本実施例では、レンズ素材の屈折
率および光学中心10と遠用度数測定位置8、近用度数
測定位置9の位置は第1の実施例と同じであるが、加入
度が1.00[D]となっている。表2は本実施例での
係数a、b、cの値を示す。
(Embodiment 2) FIGS. 4 (a) and 4 (b) show the relationship between Pw and ΔD of a distance portion and a near portion in a second embodiment of the present invention. In this embodiment, the refractive index of the lens material and the positions of the optical center 10, the distance power measurement position 8, and the near power measurement position 9 are the same as those in the first embodiment, but the addition is 1.00 [D]. ]. Table 2 shows the values of the coefficients a, b, and c in this embodiment.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例3)図5(a)(b)は本発明の
第3の実施例でのPwとΔDの関係を示す。
(Embodiment 3) FIGS. 5A and 5B show the relationship between Pw and ΔD in the third embodiment of the present invention.

【0021】加入度が3.00[D]である以外は、第
1の実施例と同じである。表3は本実施例での係数の値
を示す。
The operation is the same as that of the first embodiment except that the addition is 3.00 [D]. Table 3 shows the values of the coefficients in this embodiment.

【0022】[0022]

【表3】 [Table 3]

【0023】(実施例4)図6(a)(b)は本発明の
第4実施例でのPwとΔDの関係を示す。本実施例では
遠用度数測定位置8が光学中心10から10mm離れて
おり、近用度数測定位置9は23mm離れている。加入
度は2.00[D]、屈折率は1.50である。表4は
本実施例の係数の値を示す。
(Embodiment 4) FIGS. 6A and 6B show the relationship between Pw and ΔD in a fourth embodiment of the present invention. In this embodiment, the distance power measuring position 8 is 10 mm away from the optical center 10 and the near power measuring position 9 is 23 mm away. The addition is 2.00 [D] and the refractive index is 1.50. Table 4 shows the values of the coefficients of the present embodiment.

【0024】[0024]

【表4】 [Table 4]

【0025】(実施例5)図7(a)(b)は本発明の
第5実施例でのPwとΔDの関係を示す。本実施例では
遠用度数測定位置8が光学中心10から20mm離れて
おり、近用度数測定位置9は13mm離れている。加入
度は2.00[D]、屈折率は1.50である。表5は
本実施例の係数の値を示す。
(Embodiment 5) FIGS. 7A and 7B show the relationship between Pw and ΔD in the fifth embodiment of the present invention. In this embodiment, the distance power measuring position 8 is 20 mm away from the optical center 10, and the near power measuring position 9 is 13 mm away. The addition is 2.00 [D] and the refractive index is 1.50. Table 5 shows the values of the coefficients of the present embodiment.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【発明の効果】本発明により、度数測定位置が光学中心
から離れた場所にある累進焦点レンズにおいて、レンズ
メーターによる度数測定が正確に行え、眼科医での処方
度数を保証できるばかりでなく、目に掛けた状態におい
ても収差改善の効果があることが判明した。
According to the present invention, in a progressive power lens whose power measurement position is located away from the optical center, the power can be accurately measured by a lens meter, and not only the prescribed power can be guaranteed by an ophthalmologist, but also the eye can be guaranteed. It was found that there was an effect of improving the aberration even in the state of being applied.

【0028】さらに、レンズの製造に当たっては、以下
の効果がある。一般の眼鏡処方箋にはレンズの基本的な
度数として、球面度数と乱視度数が指定されている。レ
ンズ製造業者はこの2つの度数、即ち球面度数と乱視度
数を処方箋の指示により加工しなければならない。この
とき、度数測定位置と光学中心が離れている場合には、
光軸外収差が乱視度数に加算され、正確な乱視度数で加
工することは困難になる。例えば、球面度数−2.00
[D]、乱視度数−4.00[D]、乱視軸90度の場
合には、主子午線に沿った方向(レンズの上下方向)は
度数が−2.00[D]と比較的弱度数のため、光軸外
収差はほとんど無視できて、従来の加工で度数が保証で
きるが、主子午線に直角な方向(レンズの水平方向)は
度数が球面度数と乱視度数の和である−6.00[D]
となり、光軸外収差が無視できなくなる。このため、従
来の加工では凹面側屈折面を微調整して乱視度数を保証
するしかなかった。乱視軸が90度というように固定さ
れている場合は、従来の加工方法でも度数の保証は可能
であるが、乱視軸は眼鏡装用者によって変わるため、全
ての乱視軸に対応出来るように凹面側屈折面を調整する
ことは不可能である。本発明では、光軸外収差を他の屈
折面(実施例では凸面側屈折面)の曲率差により打ち消
しているため、乱視軸の方向に関係なく度数を保証でき
る。このため、光軸外収差が問題となる強度数レンズの
製造が可能となり、より多くの人に眼鏡レンズを提供で
きる。
Further, the following effects can be obtained in manufacturing a lens. A general spectacle prescription specifies a spherical power and an astigmatic power as basic powers of a lens. The lens manufacturer must process these two powers, the spherical power and the astigmatic power, according to the prescription instructions. At this time, if the power measurement position and the optical center are separated,
The off-axis aberration is added to the astigmatic power, and it is difficult to process with an accurate astigmatic power. For example, spherical power −2.00
In the case of [D], astigmatic power -4.00 [D], and astigmatic axis 90 degrees, the power along the main meridian (vertical direction of the lens) is -2.00 [D], which is a relatively weak power. Therefore, the off-axis aberration can be almost ignored, and the power can be guaranteed by the conventional processing. However, in the direction perpendicular to the principal meridian (horizontal direction of the lens), the power is the sum of the spherical power and the astigmatic power. 00 [D]
And off-axis aberrations cannot be ignored. For this reason, in the conventional processing, the concave refractive surface has to be finely adjusted to guarantee the astigmatic power. If the astigmatism axis is fixed at 90 degrees, the power can be guaranteed by the conventional processing method, but since the astigmatism axis changes depending on the spectacle wearer, the concave side is used to cope with all astigmatism axes. It is not possible to adjust the refractive surface. In the present invention, since the off-axis aberration is canceled out by the difference in curvature between the other refracting surfaces (in the embodiment, the convex refracting surface), the power can be guaranteed irrespective of the direction of the astigmatic axis. For this reason, it is possible to manufacture a lens having a number of intensities in which off-axis aberration is a problem, and it is possible to provide spectacle lenses to more people.

【0029】なお、本発明の実施例では屈折率1.50
のレンズについて説明したが、屈折率が異なるレンズで
も、本発明の効果には変わりない。また、加入度を与え
る屈折面が凹面側にあるレンズの場合には、凹面側に曲
率差を付与することにより、本発明と同等の効果が得ら
れる。この場合には、係数a、b、cの符号が反転す
る。さらに、本発明の実施例ではレンズメーターでの測
定時に光軸外収差を完全に除去することを前提に説明し
てきたが、一般的に認められている許容誤差内の値まで
補正されていれば、本発明の累進焦点レンズに含まれ
る。
In the embodiment of the present invention, the refractive index is 1.50.
Has been described, but the effects of the present invention do not change even if the lenses have different refractive indices. In addition, in the case of a lens having a concave surface on which a refraction surface giving the addition is provided, an effect equivalent to that of the present invention can be obtained by providing a curvature difference on the concave surface side. In this case, the signs of the coefficients a, b, and c are inverted. Further, in the embodiments of the present invention, the description has been made on the assumption that the off-axis aberration is completely removed at the time of measurement with the lens meter, but if the value is corrected to a value within a generally accepted tolerance. , Included in the progressive lens of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の累進焦点レンズの概観図。FIG. 1 is a schematic view of a progressive lens according to the present invention.

【図2】度数測定位置での屈折面の形状を示す図。FIG. 2 is a diagram illustrating a shape of a refraction surface at a power measurement position.

【図3】第1実施例の表面屈折力差を示す図。 (a)遠用度数測定位置 (b)近用度数測定位置FIG. 3 is a diagram showing a surface refractive power difference of the first embodiment. (A) Far-sight frequency measurement position (b) Near-sight frequency measurement position

【図4】第2実施例の表面屈折力差を示す図。 (a)遠用度数測定位置 (b)近用度数測定位置FIG. 4 is a diagram showing a surface refractive power difference of the second embodiment. (A) Far-sight frequency measurement position (b) Near-sight frequency measurement position

【図5】第3実施例の表面屈折力差を示す図。 (a)遠用度数測定位置 (b)近用度数測定位置FIG. 5 is a diagram showing a surface refractive power difference of the third embodiment. (A) Far-sight frequency measurement position (b) Near-sight frequency measurement position

【図6】第4実施例の表面屈折力差を示す図。 (a)遠用度数測定位置 (b)近用度数測定位置FIG. 6 is a diagram showing a surface refractive power difference of the fourth embodiment. (A) Far-sight frequency measurement position (b) Near-sight frequency measurement position

【図7】第5実施例の表面屈折力差を示す図。 (a)遠用度数測定位置 (b)近用度数測定位置FIG. 7 is a diagram showing a surface refractive power difference of the fifth embodiment. (A) Far-sight frequency measurement position (b) Near-sight frequency measurement position

【符号の説明】[Explanation of symbols]

1・・・・・遠用部領域 2・・・・・近用部領域 3・・・・・中間部領域 4・・・・・主子午線 5・・・・・レンズ本体 6・・・・・遠用部領域と中間部領域の境界線 7・・・・・中間部領域と近用部領域の境界線 8・・・・・遠用度数測定位置 9・・・・・近用度数測定位置 10・・・・光学中心 11・・・・凸面側屈折面 12・・・・凹面側屈折面 13・・・・遠用中心 14・・・・近用中心 ρt・・・・主子午線に沿った方向の屈折面の曲率 ρs・・・・主子午線に直角な方向の屈折面の曲率 1 ··· Distance section area 2 ··· Near section area 3 ···· Intermediate section 4 ··· Main meridian 5 ··· Lens body 6・ Boundary line between distance section area and middle section area 7 ・ ・ ・ ・ ・ ・ ・ Border line between middle section area and near section area 8 ・ ・ ・ ・ ・ ・ Distance power measurement position 9 ・ ・ ・ ・ ・ ・ ・ Near power measurement Position 10 ··· Optical center 11 ··· Convex side refractive surface 12 ··· Concave side refractive surface 13 ··· Distance center 14 ··· Near center ρt ··· To the main meridian Curvature of refraction surface along direction ρs ...

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主子午線曲線(4)の遠用部領域(1)の
下端である遠用中心(13)と前記曲線の近用領域
(2)の上端である近用中心(14)の間で、所定の法
則に従って屈折力が変化して加入度を付与する累進焦点
レンズであって、前記遠用部領域(1)および前記近用
部領域(2)の少なくとも一方の領域の一部あるいは全
部において、前記主子午線曲線(4)上における該曲線
に沿った方向の曲率(ρt)と前記曲線に直角な方向の
曲率(ρs)がρt≠ρsである累進焦点レンズの製造
方法において、 前記遠用部領域(1)の遠用度数定位置(8)または
前記近用部領域(2)の近用度数測定位置(9)で、前
記主子午線に沿った方向の表面屈折力Dtと前記主子午
線に直角な方向の表面屈折力Dsが以下の関係を満たす
ようにレンズ面の形状を形成することを特徴とする累進
焦点レンズの製造方法。 ΔD=Ds−Dt=a×Pw2+b×Pw+c ここで Ds=(n−1)×ρs [単位:ディオプトリー] Dt=(n−1)×ρt [単位:ディオプトリー] Pw :遠用度数 [単位:ディオプトリー] a、b、c:係数 n :レンズ素材の屈折率 であり、 前記係数aは正の値または負の値をとる。
1. A distance center (13) which is a lower end of a distance portion area (1) of a main meridian curve (4) and a near distance center (14) which is an upper end of a near area (2) of the curve. A progressive power lens that changes its refractive power in accordance with a predetermined rule to provide an additional power, and is a part of at least one of the distance portion region (1) and the near portion region (2). Alternatively, in all, manufacture of a progressive lens having a curvature (ρt) in a direction along the principal meridian curve (4) and a curvature (ρs) in a direction perpendicular to the curve is ρt ≠ ρs
In the method, the at the near vision diopter measurement position of the far vision diopter measurement position of the distance portion (1) (8) or the near portion region (2) (9), the direction of the surface along said principal meridional The refractive power Dt and the surface refractive power Ds in a direction perpendicular to the principal meridian satisfy the following relationship:
A method of manufacturing a progressive lens , wherein the shape of the lens surface is formed as described above . ΔD = Ds−Dt = a × Pw 2 + b × Pw + c where Ds = (n−1) × ρs [unit: diopter] Dt = (n−1) × ρt [unit: diopter] Pw: distance power [unit] : Diopter] a, b, c: coefficient n: refractive index of the lens material, and the coefficient a takes a positive value or a negative value.
JP23338591A 1991-09-12 1991-09-12 Method of manufacturing progressive lens Expired - Lifetime JP3226108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23338591A JP3226108B2 (en) 1991-09-12 1991-09-12 Method of manufacturing progressive lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23338591A JP3226108B2 (en) 1991-09-12 1991-09-12 Method of manufacturing progressive lens

Publications (2)

Publication Number Publication Date
JPH0572503A JPH0572503A (en) 1993-03-26
JP3226108B2 true JP3226108B2 (en) 2001-11-05

Family

ID=16954269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23338591A Expired - Lifetime JP3226108B2 (en) 1991-09-12 1991-09-12 Method of manufacturing progressive lens

Country Status (1)

Country Link
JP (1) JP3226108B2 (en)

Also Published As

Publication number Publication date
JPH0572503A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US8162478B2 (en) Pair of progressive power lens and method for designing same
KR100940699B1 (en) Progressive-power lens
JP4425350B2 (en) Progressive lens element, design method and use thereof
KR101902372B1 (en) Progressive ophthalmic lens
JP4959087B2 (en) Progressive spectacle lens calculation method and method for manufacturing this type of spectacle lens
EP1882973A1 (en) Design method for spectacle lens, spectacle lens, and spectacles
GB2069714A (en) Progressively varying focal power ophthalmic lens
JPH0690368B2 (en) Progressive multifocal lens and glasses
WO1997011401A1 (en) Gradient-index multifocal lens
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
US20130038833A1 (en) Progressive multifocal ophthalmic lens
EP0668524A2 (en) Progressive power lens
JP4510177B2 (en) Progressive focus lens for spectacles, manufacturing method thereof, and spectacles using the progressive focus lens for spectacles
US6505930B1 (en) Spectacles frames for shaped lens elements
US6186626B1 (en) Pair of multifocal progressive spectacle lenses
EP0627647B1 (en) Progressive multifocal lens
JPH08234146A (en) Gradually progressive multifocus lens and spectacle lens
JP5036946B2 (en) Progressive spectacle lens with slight magnification difference
JPS5988718A (en) Progressive focusing spectacle lens considering vergence of eye
JP3788083B2 (en) Progressive multifocal lens, spectacles and manufacturing method
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
JP2019045545A (en) Bifocal lens and method for manufacturing the same
JP3226108B2 (en) Method of manufacturing progressive lens
JPH07294859A (en) Progressive multi-focus lens
US20130148078A1 (en) Progressive multifocal ophthalmic lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11