JPS598799B2 - How to dispose of radioactive waste - Google Patents

How to dispose of radioactive waste

Info

Publication number
JPS598799B2
JPS598799B2 JP1321278A JP1321278A JPS598799B2 JP S598799 B2 JPS598799 B2 JP S598799B2 JP 1321278 A JP1321278 A JP 1321278A JP 1321278 A JP1321278 A JP 1321278A JP S598799 B2 JPS598799 B2 JP S598799B2
Authority
JP
Japan
Prior art keywords
radioactive waste
waste
asphalt
slag
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1321278A
Other languages
Japanese (ja)
Other versions
JPS54106800A (en
Inventor
滋 土尻
昇 森山
邦夫 荒木
和英 宮崎
誠一 戸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1321278A priority Critical patent/JPS598799B2/en
Publication of JPS54106800A publication Critical patent/JPS54106800A/en
Publication of JPS598799B2 publication Critical patent/JPS598799B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 本発明は中および低レベルの固体状放射性廃棄物の処理
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating medium and low level solid radioactive waste.

固体状の放射性廃棄物、例えば1uCi/ml以下の原
子炉冷却用炉過助剤、汚染された可燃性物の焼却灰等の
粉末のもの、イオン交換樹脂等の粒状のもの等は、コン
クリート、アスファルト、プラスチツクス等と混合し固
化処理し、ドラム缶等の容器に入れて保管したのち、海
洋廃棄により廃棄処分しようとするのが一つの処理方法
であった。
Solid radioactive wastes, such as reactor cooling aids of 1 uCi/ml or less, powders such as incineration ash of contaminated combustibles, and granules such as ion exchange resins, etc., are treated as concrete, One method of disposal was to mix it with asphalt, plastics, etc., solidify it, store it in containers such as drums, and then dispose of it in the ocean.

一般に放射性廃棄物の海洋廃棄基準は法令即ち、「放射
性同位元素等による放射線障害の防止に関する法律第1
9条第2項」および「放射性同位元素等による放射線障
害の防止に関する法律施行規則、昭和35年9月30日
総理府令第56号、第19条第1項第8号」により規定
されており、例えば、放射性廃棄物は容器に封入し、封
入容器は廃棄処分の際、および廃棄後において破損する
おそれのない程度の強度を有し耐腐食性であること、容
器に封入したときの比重が12以上であることなどの基
準に合致したものでなければ海洋へ廃棄処分することは
できない。
In general, standards for marine disposal of radioactive waste are determined by laws and regulations, such as the Act on Prevention of Radiation Hazards Caused by Radioisotopes, etc.
Article 9, Paragraph 2" and "Ordinance for Enforcement of the Act on Prevention of Radiation Hazards Due to Radioactive Isotopes, etc., Prime Minister's Office Ordinance No. 56 of September 30, 1960, Article 19, Paragraph 1, Item 8". For example, radioactive waste is sealed in a container, and the sealed container must be strong enough and corrosion-resistant to prevent damage during and after disposal, and the specific gravity when sealed in the container must be Items that do not meet standards such as being 12 or higher cannot be disposed of in the ocean.

一方、従来の固化処理技術のうち(1)セメント、骨材
と固体状放射性廃棄物、例えは、原子炉冷却水用沖過助
剤を固化する場合、炉過助剤の混入量が多くなるにつれ
て混線が困難となり、これに伴って混線に必要な水量が
増加しその結果ブリージングが多くなって必要とされる
機械的強度を期待することが出来なくなる。
On the other hand, among conventional solidification processing techniques, (1) When solidifying cement, aggregate and solid radioactive waste, for example, offshore super-aid for reactor cooling water, a large amount of reactor super-aid is mixed in. As the wiring becomes more difficult to cross, the amount of water required for the wiring increases, and as a result, breathing increases, making it impossible to expect the required mechanical strength.

炉過助剤−セメント同化の場合、均質な混練ができ、機
械的強度がある程度期待できる混入限度は2 0 0
1/rrl程度であり、減容性が非常に悪く、又このさ
きの機械的強度(圧縮強度)は100 kp/i程度で
あり海洋廃棄処分の際必要とされる圧縮強度( 1 5
okg/crit以上)を満足することができない。
In the case of furnace additive-cement assimilation, the mixing limit at which homogeneous mixing can be achieved and a certain degree of mechanical strength can be expected is 200.
1/rrl, the volume reduction property is very poor, and the mechanical strength (compressive strength) is about 100 kp/i, which is higher than the compressive strength required for marine disposal (15
okg/crit or higher).

したがって沖過助剤などのセメント固化体は固体状放射
性廃棄物固化処理法としては不適当である。
Therefore, solidified cement such as Oki-Kousakusai is inappropriate as a method for solidifying solid radioactive waste.

(2)又、従来技術である固体状放射性廃棄物とアスフ
ァルトもしくは熱可塑性合成樹脂とを混合熔融し冷却固
化させる方法は、アスファルトもしくは熱可塑性合成樹
脂(例えば、ポリエチレン)および瀘過助剤、イオン交
換樹脂などの固体状放射性廃棄物の比重が何れも約1と
小さいため海洋廃棄処分の際固化体を入れたドラム缶な
どの容器が破損した場合、固化体が浮上分散し放射能汚
染がひろがる恐れ等の欠点がある。
(2) In addition, the conventional method of mixing and melting solid radioactive waste with asphalt or thermoplastic synthetic resin and cooling it to solidify it is based on asphalt or thermoplastic synthetic resin (e.g. polyethylene), filtering aid, and ions. Since the specific gravity of solid radioactive waste such as exchangeable resin is as low as approximately 1, if a container such as a drum containing solidified waste is damaged during ocean disposal, the solidified material may float and disperse, potentially spreading radioactive contamination. There are drawbacks such as.

この欠点を改良するためには、放射性廃棄物を含んだ固
化体とこれを充填した容器とが分離した場合、固化体自
身も海水の比重より大きい1.2以上の比重を有し、且
つ海底着底時の衝撃、着底後の水圧等にも耐え得るよう
な物理的又は機械的強度を有することが要求される。
In order to improve this drawback, when the solidified material containing radioactive waste and the container filled with it are separated, the solidified material itself has a specific gravity of 1.2 or more, which is higher than the specific gravity of seawater, and It is required to have physical or mechanical strength that can withstand impact upon landing on the bottom, water pressure after landing on the bottom, etc.

比重の点では、従来のコンクリート固化体以外、即ち、
枦過助剤などの固体状放射性廃棄物とアスファルト、熱
可塑性合成樹脂などの固化体は各々約1〜1.1程度で
あり、この点ではドラム缶などの容器の安全性が確認さ
れない限り海洋廃棄処分は不可能である。
In terms of specific gravity, other than conventional solidified concrete, i.e.
Solid radioactive waste such as filtration additives and solidified materials such as asphalt and thermoplastic synthetic resins each have a molecular weight of approximately 1 to 1.1, and in this respect, unless the safety of containers such as drums is confirmed, they cannot be disposed of at sea. Disposal is not possible.

一方、放射性廃棄物のみならず産業界には各種の産業廃
棄物が多量に排出され、これらの安全な処理・処分は社
会的に重大な問題となってきている。
On the other hand, not only radioactive waste but also various industrial wastes are generated in large quantities in industry, and the safe treatment and disposal of these wastes has become a serious social issue.

これら一般産業廃棄物は、それ自体の特性を生かし産業
資材として再利用される場合もあるが、大部分は排出量
が膨大なことや重金属の流出、粉じんなどの公害規制の
面からもその処分方法には苦慮している場合が多い。
Although these general industrial wastes are sometimes reused as industrial materials by taking advantage of their own characteristics, the majority of them are disposed of due to the huge amount of waste, the outflow of heavy metals, and pollution regulations such as dust. In many cases, it is difficult to decide on a method.

例えば、非鉄金属製煉産業においても、銅、鉛、亜鉛な
どの有価金属を分離した廃滓の量は膨大であり、これら
は大部分堆積場所などに蓄積されている。
For example, in the nonferrous metal manufacturing and refining industry, the amount of waste from which valuable metals such as copper, lead, and zinc have been separated is enormous, and most of this waste is accumulated in places where it is deposited.

これらの製煉廃滓のうち、乾式製煉法によって銅、鉛、
亜鉛などを分離したものは一部建設資材として活用され
ているが、その大半は工場内に保管された後埋立てなど
を兼ねて処分されているが公害規制が強化された今日、
その処理・処分も重大な問題であり、多量の廃滓が工場
・堆積場などに蓄積されたままになっている。
Of these slags, copper, lead,
Some separated materials such as zinc are used as construction materials, but most of them are stored in factories and then disposed of in landfills, etc., but today, with stricter pollution regulations,
The treatment and disposal of waste slag is also a serious problem, and a large amount of waste slag remains accumulated in factories, dumping grounds, etc.

本発明者らは、放射性廃棄物と一般産業廃棄物の組合わ
せに着目し有効な処理・処分方法の検討を重ねた結果、
アスファルト又は熱可塑性合成樹脂、例えば、ポリエチ
レン、のすぐれた特性を損うことなく、乾式非鉄製煉廃
滓の性質を生かして、海洋廃棄処分用固化体に要求され
る物性にすぐれ且つ海洋廃棄処分の基準である比重が固
化体自身で1.2以上を有する工業的大量処理が可能で
経済的な方法を発見し本発明にいたった。
The present inventors focused on the combination of radioactive waste and general industrial waste, and as a result of repeated studies on effective treatment and disposal methods,
By taking advantage of the properties of dry non-ferrous brick slag without impairing the excellent properties of asphalt or thermoplastic synthetic resins such as polyethylene, it has excellent physical properties required for solidified materials for marine waste disposal and is suitable for marine disposal. The present invention was achieved by discovering an economical method capable of industrial large-scale processing in which the solidified material itself has a specific gravity of 1.2 or more, which is a standard for the following.

従って、本発明の目的は固体状放射性廃棄物の新規な処
理・処分方法を提供することである。
Therefore, an object of the present invention is to provide a new method for treating and disposing of solid radioactive waste.

本発明の更なる目的は、固体状放射性廃棄物と一般産業
廃棄物、特に乾式非鉄製煉廃滓を同時に灰理・処分する
新規な方法を提供するこさである。
A further object of the present invention is to provide a new method for simultaneously ashing and disposing of solid radioactive waste and general industrial waste, particularly dry non-ferrous brick slag.

更に本発明の別の目的は、原子炉冷却水、放射囲廃液処
理の炉過助剤、イオン交換樹脂その他の固体状放射性廃
棄物の薄片などとアスファルトもしくは熱可塑性合成樹
脂および銅、鉛、亜鉛などの乾式非鉄金属製煉工程にお
いて排出されるスラグなとの廃滓を使用し海洋廃棄処分
が可能な放射性廃棄物の処理・処分方法を提供すること
である。
Furthermore, another object of the present invention is to combine reactor cooling water, reactor support agent for radioactive waste treatment, ion exchange resin and other solid radioactive waste flakes, asphalt or thermoplastic synthetic resin, and copper, lead, zinc. It is an object of the present invention to provide a method for treating and disposing radioactive waste that can be disposed of in the ocean by using slag and other tailings discharged from dry nonferrous metal manufacturing processes such as slag, etc.

すなわち本発明は放射性廃棄物を処理するに当り前記固
体状放射性廃棄物とアスファルトもしくは熱可塑性合成
樹脂と乾式非鉄金属製煉廃滓の三種の物質とを溶融混合
し次いで冷却固化することを特徴をする。
That is, the present invention is characterized in that, in treating radioactive waste, the solid radioactive waste, asphalt or thermoplastic synthetic resin, and dry non-ferrous metal brick slag are melt-mixed and then cooled and solidified. do.

更に本発明を詳しく述べると本発明の方法は原子炉冷却
水、放射性廃液処理用などの炉過助剤、粉末又は粒状イ
オン交換樹脂、その他固体状放射性廃棄物の薄片、ある
いはそれらの混合物とアスファルトもしくはポリエチレ
ンの様な熱可塑性合成樹脂と乾式非鉄金属製煉廃滓、例
えばスラグなどを5メッシュ以下に調整したものを熔融
混合することを特徴とする。
To further describe the present invention in detail, the method of the present invention involves the use of reactor cooling water, reactor aids for radioactive waste liquid treatment, powdered or granular ion exchange resin, flakes of other solid radioactive waste, or mixtures thereof and asphalt. Alternatively, it is characterized by melt-mixing a thermoplastic synthetic resin such as polyethylene and dry nonferrous metal brick slag, such as slag, adjusted to 5 mesh or less.

この熔融混合にはエクストルーダー(押出機)などを使
用するか又市販の混合機で三者を混合し次いでこの混合
物を熔融炉に入れ熔融しても良い。
For this melt mixing, an extruder or the like may be used, or the three components may be mixed in a commercially available mixer, and then the mixture may be placed in a melting furnace and melted.

いづれにせよ150〜200℃の温度で加熱する。In any case, heat at a temperature of 150 to 200°C.

この温度は放射性廃棄物およびアスファルトもしくは熱
可塑性合成樹脂が炭化せずかつアスファルトもしくは熱
可塑性合成樹脂の融点以上でなければならず、例えばポ
リエチレンなどは160〜190℃が好ましくこの温度
において熔融後30分〜2時間撹拌を加えて混合する場
合もある。
This temperature must be such that the radioactive waste and asphalt or thermoplastic synthetic resin do not carbonize and must be higher than the melting point of the asphalt or thermoplastic synthetic resin.For example, for polyethylene, it is preferably 160 to 190°C and 30 minutes after melting at this temperature. Mixing may be performed with stirring for ~2 hours.

熔融混合した混合物は熔融炉より外部の容器ヘアスファ
ノレトもしくは熱可塑性合成樹脂が熔融した状態のま5
取出し冷却固化させる。
The melted mixture is transferred from the melting furnace to an external container or a thermoplastic synthetic resin in a molten state.
Take out and cool to solidify.

本発明法による固化体は放射性廃棄物とアスファルトも
しくは熱可塑性合成樹脂と乾式非鉄金属製煉廃滓とが各
々均一に分散し、固化体自体の比重が1.2以上であり
従来のアスファルトもしくは熱可塑性合成樹脂と瀘過助
剤などの固体状放射性廃棄物とを混合した固化体の比重
1〜1.05程度に比べ海水の比重より大きくなってい
るので海洋廃棄処分したものが浮上することはない。
The solidified material produced by the method of the present invention has radioactive waste, asphalt or thermoplastic synthetic resin, and dry non-ferrous metal brick slag uniformly dispersed, and the solidified material itself has a specific gravity of 1.2 or more. Compared to the specific gravity of the solidified material, which is a mixture of plastic synthetic resin and solid radioactive waste such as filtration aid, which is about 1 to 1.05, the specific gravity is higher than that of seawater, so it is unlikely that materials disposed of in the ocean will float to the surface. do not have.

さらに本発明法による固化体はその物理的、機械的性質
においても従来のアスファルトもしくは熱可塑性合成樹
脂と固体状放射性廃棄物の両者のみからなる固化体より
もすぐれたものである。
Furthermore, the solidified material obtained by the method of the present invention is superior in physical and mechanical properties to conventional solidified material consisting only of asphalt or thermoplastic synthetic resin and solid radioactive waste.

この比重、物理的、機械的強度により海洋廃棄処分の際
その固化体の安全性は保持されたとえドラム缶などの容
器が破損したとしても固化体は安全に処分される。
Due to this specific gravity, physical and mechanical strength, the safety of the solidified material is maintained during marine disposal, and even if the container such as a drum is damaged, the solidified material can be safely disposed of.

さらに乾式非鉄金属製煉廃滓の混合による比重増加は放
射性廃棄物から出る放射線のしゃへい効来があり取扱い
、輸送、保管の際有利である。
Furthermore, the increase in specific gravity due to the mixing of dry nonferrous metal brick slag has the effect of shielding radiation emitted from radioactive waste, which is advantageous during handling, transportation, and storage.

又、乾式非鉄金属製煉廃滓は主成分である鉄、ケイ素な
どやその他の金属元素類もケイ酸化合物又は酸化物など
の化学的に安定した形になっており重金属の浸出による
海洋汚染のおそれはないが固化体中の廃滓粒子はアスフ
ァルトもしくは熱可塑性合成樹脂で表面が覆われている
状態にあるのでさらに安全である。
In addition, the main components of dry non-ferrous metal brick slag, such as iron, silicon, and other metal elements, are in chemically stable forms such as silicic acid compounds or oxides, so there is no risk of marine pollution due to leaching of heavy metals. Although there is no danger, it is safer because the surface of the waste particles in the solidified body is covered with asphalt or thermoplastic synthetic resin.

本発明法による固化体がそれらのすぐれた性能を示す原
因は明らかではないが本発明法において使用する乾式非
鉄金属製煉廃滓粒子とアスファルトもしくは熱可塑性合
成樹脂とが熔融状態において好ましい相互作用をしてい
るものと思われる。
The reason why the solidified material obtained by the method of the present invention exhibits such excellent performance is not clear, but the dry nonferrous metal brick slag particles used in the method of the present invention and asphalt or thermoplastic synthetic resin have a favorable interaction in the molten state. seems to be doing so.

すなわち、本発明方法において使用する例えば銅の熔鉱
炉、亜鉛の揮発炉などから排出される廃滓は炉内におい
て数百度以上に加熱され銅、亜鉛などの有価金属と分離
されたものであり、炉外では水などにより急冷されるた
め排出された廃滓は急激に体積が縮少し廃滓粒子の表面
のみならず内部にも細かい無数の割れ目が生ずる。
That is, the slag discharged from, for example, a copper melt furnace, a zinc volatilization furnace, etc. used in the method of the present invention is heated to a temperature of several hundred degrees or more in the furnace and separated from valuable metals such as copper and zinc. Outside the furnace, the waste slag is rapidly cooled by water, etc., so the volume of the discharged slag rapidly shrinks, resulting in countless fine cracks not only on the surface but also inside the waste slag particles.

一方、アスファルトもしくは熱可塑性合成樹脂、例え代
ポリエチレンなどは加熱熔融すると粘度が低下し微細な
無数の割れ目を有する廃滓粒子の空隙に熔融状態のアス
ファルトもしくは樹脂が容易に進入する。
On the other hand, when asphalt or a thermoplastic synthetic resin, such as polyethylene, etc., is heated and melted, the viscosity decreases, and the molten asphalt or resin easily enters the voids of the waste particles, which have numerous fine cracks.

この際粉末又は粒状などの放射性廃棄物も、アスファル
トもしくは樹脂と共に空隙に進入し廃滓粒子の空隙に固
定される。
At this time, radioactive waste such as powder or granules also enters the voids together with asphalt or resin and is fixed in the voids of the tailings particles.

廃滓は鉄、ケイ素、アルミニウム、カルシウム、マグネ
シウムなどのケイ酸化合物、酸化物が主成分で化学的に
安定した形で存在するため熔融中におけるガス発生など
の恐れはなく固化体は極めて緻密な状態となる。
The main components of waste slag are silicic acid compounds and oxides such as iron, silicon, aluminum, calcium, and magnesium, which exist in a chemically stable form, so there is no risk of gas generation during melting, and the solidified material is extremely dense. state.

熔融状態におけるアスファルトもしくは樹脂が廃滓粒子
の空隙内まで進入したものはアスファルトもしくは樹脂
と接着した状態で撹拌による流れにのって均質に分散さ
れ、この分散した廃滓粒子が中心核となり何らかの分散
促進作用を起し比重の小さい放射性廃棄物をさらに均質
に分散させるものと思われる。
When the asphalt or resin in the molten state penetrates into the voids of the waste slag particles, it is adhered to the asphalt or resin and is homogeneously dispersed by the flow caused by stirring, and the dispersed waste slag particles become the central nucleus and cause some kind of dispersion. It is thought that this promotes the dispersion of radioactive waste, which has a small specific gravity, and makes it more homogeneous.

さらに冷却するにつれて熔融したアスファルトもしくは
樹脂が硬化する際廃滓粒子はアスファルトもしくは樹脂
と完全に接合した状態において骨材のごとき作用をなし
これが固化体の物理的、機械的性質を劣化させない原因
となっているものと考えられる。
When the molten asphalt or resin hardens as it cools further, the waste particles act like aggregates in a state where they are completely bonded with the asphalt or resin, which prevents the physical and mechanical properties of the solidified material from deteriorating. It is thought that the

以下本発明を実施例により具体的に解説する。The present invention will be specifically explained below using examples.

実施例 1 ストレート6 0/8 0アスファルト600gを電熱
加熱式混和蒸発器に入れ170℃で熔融インペラーで撹
拌しつつ放射性廃液処理に使用した5.1uCi/ru
lの比放射能を有するイオン交換樹脂(カチオン型:ア
ニオン型−1=2重量比、含水量50(重量%)soo
gおよび銅製煉熔鉱炉より排出した製煉廃滓(比重3.
3、Fe203 40%、8102 3 9 %、AI
2 0 3 8 %、Ca0 9 %、粒度一100
メッシュ)105gを徐々に供給し、1時間水分を蒸発
しつつ混和した。
Example 1 600 g of straight 6 0/8 0 asphalt was placed in an electrothermally heated mixed evaporator and stirred by a melting impeller at 170° C. 5.1 uCi/ru used for radioactive waste liquid treatment.
Ion exchange resin with a specific radioactivity of l (cation type: anion type - 1 = 2 weight ratio, water content 50 (wt%) soo
g and smelting slag discharged from a copper slag furnace (specific gravity 3.
3, Fe203 40%, 8102 39%, AI
2038%, Ca09%, particle size -100
105 g of mesh) was gradually fed and mixed while evaporating water for 1 hour.

この熔融状態の混合物をアルミニウム製容器に入れ12
時間放冷固化した。
Put this molten mixture into an aluminum container 12
It was left to cool and solidify for a while.

表−1はその固化体の物性測定結果であるが同様の条件
で処理したアスファルトと放射性廃棄物との従来法によ
る固化体に比べ、比重が大きくイオン交換水中の浸漬に
よる重量変化も少なくかつ軟化点が上昇し安定した性状
の海洋廃棄処分可能な固化体であることがわかる。
Table 1 shows the measurement results of the physical properties of the solidified material. Compared to the solidified material obtained by the conventional method of asphalt and radioactive waste treated under similar conditions, it has a higher specific gravity, less changes in weight when immersed in ion-exchanged water, and is softer. The point increases, indicating that the solidified material has stable properties and can be disposed of in the ocean.

実施例 2 ペレット状のポリエチレン675g(比重1.03)、
原子炉冷却水の瀘過助剤(比重1.00、比放射能6.
O uCi/TLl) 2 2 5 gおよび乾式亜
鉛製煉工程中の亜鉛揮発炉より排出する廃滓(比重3.
3、Fe203 38%、Sin232%、AI203
12係、Ca0 1 1%、粘度−20メッシュ)
3 9 8 gをホツパーより同時にエクストルーダー
(押出機)に装入し190℃に温度を保持しつつ熔融混
合を行ネつた後、円筒型鉄製容器中にこの熔融混合物を
取り出し12時間室温まで放冷後固化体を取り出し.物
性の測定を行った。
Example 2 675 g of pelleted polyethylene (specific gravity 1.03),
Reactor cooling water filtration aid (specific gravity 1.00, specific radioactivity 6.
O uCi/TLl) 2 2 5 g and slag discharged from the zinc volatilization furnace during the dry zinc smelting process (specific gravity 3.
3, Fe203 38%, Sin232%, AI203
12, Ca0 1 1%, viscosity -20 mesh)
398 g were simultaneously charged into an extruder (extruder) from the hopper and melted and mixed while maintaining the temperature at 190°C.Then, the molten mixture was taken out into a cylindrical iron container and allowed to stand for 12 hours at room temperature. After cooling, remove the solidified material. Physical properties were measured.

その結果は表−2に示す如4く、同様の条件で作製した
従来法によるポリエチレンー炉過助剤による固化体に比
べ、比重は増加し、重量・体積共にイオン交換水中浸漬
変化が小さく且つ機械的性質である圧縮強度は向上し、
海洋廃棄処分が可能であることを示している。
As shown in Table 2, the results are as follows: Compared to the solidified material of polyethylene with a furnace auxiliary agent produced by the conventional method produced under similar conditions, the specific gravity increased, and both the weight and volume changed less when immersed in ion-exchanged water. Compressive strength, which is a mechanical property, improves,
This shows that ocean disposal is possible.

実施例 3 ペレット状ポリエチレン5 6 0g(比重1.0 3
)、放射性廃液処理に使用した粉末イオン交換樹脂、
炉過助剤、粒状イオン交換樹脂の混合物(比重1.02
)240g(比放射能5. 5 uCi/ml)および
銅製煉の熔鉱炉より排出される製煉廃滓(比重3.5、
Fe2034 5%、Si0238%、AI 2035
%,Ca08%、粒度−35メツシ..:L)370g
を市販の混合機にて30分混合を行った後電熱式加熱熔
融炉に入れ180℃において撹拌を行ない熔融30分、
インペラーによる撹拌付混合熔融1.5時間行った後、
実施例2と同様にして炉より採取し10時間後に固化体
を取り出し物性測定を行った。
Example 3 Pellet polyethylene 560g (specific gravity 1.03
), powdered ion exchange resin used for radioactive waste liquid treatment,
A mixture of furnace auxiliary agent and granular ion exchange resin (specific gravity 1.02
) 240g (specific radioactivity 5.5 uCi/ml) and smelting slag (specific gravity 3.5,
Fe2034 5%, Si0238%, AI 2035
%, Ca08%, particle size -35 mesh. .. :L) 370g
Mixed for 30 minutes using a commercially available mixer, then placed in an electric heating melting furnace and stirred at 180°C to melt for 30 minutes.
After 1.5 hours of mixing and melting with stirring using an impeller,
The material was collected from the furnace in the same manner as in Example 2, and after 10 hours, the solidified material was taken out and its physical properties were measured.

表−3はその結果であるが同様の条件で試験を行つたポ
リエチレンと放射性廃棄物の従来法による固化体に比べ
、比重は犬で、イオン交換水中の浸漬による体積重量変
化が小さく圧縮強度もすぐれ、同化体の表面線量率も少
さくなり、海洋廃棄処分用固化体としてすぐれた性能を
示した。
Table 3 shows the results.Compared to the conventional solidified material of polyethylene and radioactive waste tested under similar conditions, the specific gravity is lower, and the volumetric weight change due to immersion in ion-exchanged water is smaller, and the compressive strength is lower. In addition, the surface dose rate of the assimilated material was reduced, and it showed excellent performance as a solidified material for marine waste disposal.

Claims (1)

【特許請求の範囲】[Claims] 1 固体状放射性廃棄物とアスファルトもしくは熱可塑
性合成樹脂と乾式非鉄金属製煉廃滓の三種の物質を熔融
混合して冷却固化することを特徴とする固体状放射性廃
棄物の処理方法。
1. A method for treating solid radioactive waste, which comprises melting and mixing three types of materials: solid radioactive waste, asphalt or thermoplastic synthetic resin, and dry nonferrous metal brick slag, and cooling and solidifying the mixture.
JP1321278A 1978-02-08 1978-02-08 How to dispose of radioactive waste Expired JPS598799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321278A JPS598799B2 (en) 1978-02-08 1978-02-08 How to dispose of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321278A JPS598799B2 (en) 1978-02-08 1978-02-08 How to dispose of radioactive waste

Publications (2)

Publication Number Publication Date
JPS54106800A JPS54106800A (en) 1979-08-22
JPS598799B2 true JPS598799B2 (en) 1984-02-27

Family

ID=11826841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321278A Expired JPS598799B2 (en) 1978-02-08 1978-02-08 How to dispose of radioactive waste

Country Status (1)

Country Link
JP (1) JPS598799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213702A (en) * 2012-03-30 2013-10-17 Ihi Corp Method for producing solidified body, method for producing crushed aggregate, method for producing earth crust-like composition, solidified object, crushed aggregate, paste-form earth crust-like composition, and earth crust-like composition

Also Published As

Publication number Publication date
JPS54106800A (en) 1979-08-22

Similar Documents

Publication Publication Date Title
US5649323A (en) Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes
JP2013104824A (en) Removal method of radioactive cesium and manufacturing method of burned product
US4010108A (en) Radioactive waste disposal of water containing waste using urea-formaldehyde resin
KR20090028305A (en) Shot dust briquet for steel manufacturing and method of manufacturing thereof
US4764216A (en) Method of converting particles liberated in chemical or physical processes into a harmless form by mixing with a molten silicate-containing material
EP0508589A1 (en) Method and apparatus for recovering useful products from waste streams
JPS598799B2 (en) How to dispose of radioactive waste
JPH0114560B2 (en)
JP3490904B2 (en) Processing method and processing equipment for powder dust containing heavy metals
JPH07290024A (en) Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste
KR20010020594A (en) Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
JPH0556479B2 (en)
KR100460096B1 (en) Waste treatment method and solidified material obtained by the same method
JP2002031698A (en) Method and device for solidifying treatment of radioactive waste
JPH06246253A (en) Method for sealing and solidifying material containing heavy metal
JP2004089913A (en) Waste treatment method and formed product obtained thereby
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPH1067547A (en) Production of artificial lightweight aggregate using incinerated ash
JP2005329400A (en) Method for stabilizing slag solidification product
NL1038859C2 (en) DEVICE AND METHOD FOR THE PURPOSE OF PROCESSING NATURALLY RADIOACTIVE MATERIAL TO CONCRETE FOR USEFUL USE ELSEWHERE.
JP2014102088A (en) Stone container for radioactive waste
JPS623698A (en) Solidifying processing method of radioactive waste
KR900003607B1 (en) Concertration and dry and soliding method of uranium waste
JPS63300999A (en) Treatment of radioactive waste material containing sodium nitrate
Lageraaen et al. THERMOPLASTIC ENCAPSULATION TREATABILITY STUDY OF FERNALD SILO 1 AND SILO 3 WASTES.