JPH07290024A - Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste - Google Patents

Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste

Info

Publication number
JPH07290024A
JPH07290024A JP11016694A JP11016694A JPH07290024A JP H07290024 A JPH07290024 A JP H07290024A JP 11016694 A JP11016694 A JP 11016694A JP 11016694 A JP11016694 A JP 11016694A JP H07290024 A JPH07290024 A JP H07290024A
Authority
JP
Japan
Prior art keywords
heavy metal
sulfur
weight
parts
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11016694A
Other languages
Japanese (ja)
Inventor
Tsutomu Moriya
勉 守屋
Hiroshi Kato
弘 加藤
Kaoru Ichinomiya
薫 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11016694A priority Critical patent/JPH07290024A/en
Publication of JPH07290024A publication Critical patent/JPH07290024A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/36Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing sulfur, sulfides or selenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE:To reutilize a harmful heavy metal-contg. waste for the construction and architectural material as a substitute for natural resources by safely solidifying the waste. CONSTITUTION:One hundred pts.wt. of the mixture of harmful heavy metal- contg. wastes and slag, 5-100 pts.wt. of sulfur polymer cement(SPC) formed by sulfur or by the reaction of sulfur with petroleum hydrocarbons and 1-30 pts.wt. of the heavy metal sequestering stabilizer consisting of sodium silicate, sodium sulfide and/or a chelating agent are mixed. The mixture is held at about 120-150 deg.C, melted, kneaded, then cooled and solidified to obtain the construction and architectural material. Accordingly, the harmful heavy metals are hardly eluted from the industrial waste contg. the heavy metals, a product excellent in strength is obtained, and the product is reutilized as the construction and architectural material as a substitute for natural ballast or crushed stone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有害廃棄物の処理生成物
を利用した土木建築用材料に係り、特に重金属を含有す
る廃棄物を固体化処理することにより得られる土木建築
用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for civil engineering and construction using a treated product of hazardous waste, and more particularly to a material for civil engineering and building obtained by solidifying a waste containing a heavy metal.

【0002】[0002]

【従来の技術および発明が解決すべき課題】従来土木用
骨材に関しては、砂利、砕石、割栗石、玉石等の自然資
源が利用されているが、近年資源の枯渇あるいは採取規
制の強化による品不足が問題となっている。高炉、平
炉、転炉、電炉等の金属製錬所から発生する熔滓スラグ
等を破砕整粒して、砂利、砕石等の代替えとして利用す
ることも試みられているが、品質規格基準による制約も
あって総てが有効に利用されるには到っていない。また
建設現場から得られるコンクリート塊やアスファルト塊
等も一部で利用されているが、回収処理を行う場所の確
保、周囲環境への配慮、品質の均一性、経済性等により
未だその活用が不充分な段階である。
2. Description of the Related Art Conventionally, natural materials such as gravel, crushed stone, crushed stone, and cobblestone have been used as aggregates for civil engineering. The shortage is a problem. It has also been attempted to crush and size slag, etc. generated from metal smelters such as blast furnaces, open hearth furnaces, converters, and electric furnaces, and use it as a substitute for gravel, crushed stone, etc. Therefore, not all of them have been used effectively. In addition, concrete lumps and asphalt lumps obtained from construction sites are also used in some areas, but due to reasons such as securing a place for recovery processing, consideration of the surrounding environment, uniformity of quality, and economic efficiency, it is still unusable. This is a sufficient stage.

【0003】一方製鋼ダスト、一般焼却灰、フライアッ
シュ、熔滓スラグ等の発生量は年々増加する傾向にあ
り、反面それらの処分用地は近年ますます逼迫してい
る。特にこれら廃棄物中にCd,Pb,Zn,Hg,C
r・・・等の有害重金属が含まれている場合は、その投
棄地周辺が重金属の溶出によって汚染される恐れがある
ため処分方法自体が問題となっている。
On the other hand, the amount of steelmaking dust, general incineration ash, fly ash, slag slag, etc. tends to increase year by year, while the sites for their disposal have become more and more tight in recent years. Especially in these wastes, Cd, Pb, Zn, Hg, C
When harmful heavy metals such as r ... Are contained, the disposal method itself is a problem because the surrounding area of the dumping site may be contaminated by the elution of heavy metals.

【0004】これらの廃棄物の処理方法として、ポルト
ランドセメント(PC)による重金属の封鎖方法が一般
的に試みられているが、種々の欠点がを伴うため重金属
を完全に封鎖する技術の完成には到っていない。すなわ
ちこの方法はPCの水和反応によるものであるが凝固ま
でに長時間を要し、また廃棄物中に存在する多くの塩類
その他の不純物質等により凝固反応が妨害されるため、
セメント固化強度及び耐久力の劣化につながり、亀裂等
が発生しやすく、特に酸性に弱い欠点により重金属が溶
出して環境汚染を生じる恐れがある。
As a method of treating these wastes, a method of sealing heavy metals with Portland cement (PC) has been generally attempted, but since various drawbacks are involved, it is not possible to complete a technique for completely sealing heavy metals. I haven't arrived. That is, although this method is based on the hydration reaction of PC, it takes a long time to coagulate, and many salts and other impurities present in the waste interfere with the coagulation reaction.
Cement solidification strength and durability are deteriorated, cracks and the like are likely to occur, and heavy metals may be eluted to cause environmental pollution particularly due to weakness in acidity.

【0005】さらに、硫黄の温度による形態変化に着目
して産業廃棄物に硫黄を混合して加熱し、溶融状態の硫
黄と混練された廃棄物粒子中の重金属を冷却時に凝固す
る硫黄の高分子鎖中に取り込んだ状態で廃棄物を固形化
することも提案されている。この方法は処理が迅速であ
り、かつ有害物質が凝固した高分子硫黄鎖中に取り込ま
れて外部に溶出し難い状態となるので、重金属を含む廃
棄物の固形化処理に適している。
Further, paying attention to the morphological change due to the temperature of sulfur, sulfur is mixed with the industrial waste and heated, and the heavy metal in the waste particles kneaded with the molten sulfur and solidified during cooling is a polymer of sulfur. It has also been proposed to solidify the waste as it is incorporated into the chain. This method is suitable for solidification treatment of waste containing heavy metals, since the treatment is rapid and the harmful substance is taken into the solidified polymer sulfur chain and is difficult to be eluted outside.

【0006】しかし従来の硫黄処理方法においては、廃
棄物中に多量の塩類が存在していたり、廃棄物自体がた
とえば製鋼ダストのようにミクロン以下の超微粒子の場
合には、重金属を固定封鎖する際に被処理廃棄物以上の
多量の硫黄を必要とする場合があり、それでも尚完全に
二次的な溶出をおさえられるとは限らない。
However, in the conventional sulfur treatment method, when a large amount of salts are present in the waste or when the waste itself is ultrafine particles of micron or less, such as steelmaking dust, the heavy metal is fixed and blocked. In this case, a large amount of sulfur, which is more than the waste to be treated, may be required, and still the secondary elution may not be completely suppressed.

【0007】本発明の目的は有害重金属を含有する産業
廃棄物の固体化処理によって、有害物質である重金属の
環境への流出がほとんどなく、高い密度および強度を有
しかつ耐酸性、耐塩性および耐液浸透性にすぐれた安定
な土木建築用材料を提供することにある。
The object of the present invention is that by the solidification treatment of industrial waste containing harmful heavy metals, there is almost no outflow of heavy metals, which are harmful substances, to the environment, and they have high density and strength, and have acid resistance, salt resistance and It is intended to provide a stable material for civil engineering and construction having excellent liquid permeation resistance.

【0008】[0008]

【課題を解決するための技術的手段】前記本発明の目的
は、有害重金属含有廃棄物100重量部と、硫黄5〜1
00重量部と、硅酸ソーダ、硫化ソーダ及び/又はキレ
ート剤からなる重金属封鎖安定剤1〜30重量部とから
なる混合物よりなり、前記混合物を約120〜150℃
の温度で加熱溶融混練し次いで冷却固化させて得られる
土木建築用材料によって達成される。
The above-mentioned object of the present invention is to provide 100 parts by weight of hazardous heavy metal-containing waste and 5 to 1 sulfur.
00 parts by weight and 1 to 30 parts by weight of a heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent, and the mixture is about 120 to 150 ° C.
It is achieved by a material for civil engineering and construction obtained by heating, melting and kneading at the temperature of, and then cooling and solidifying.

【0009】本発明の目的はまた有害重金属含有廃棄物
100重量部と、硫黄と石油系炭化水素との反応によっ
て生成する硫黄ポリマーセメント(SPC)5〜100
重量部と、硅酸ソーダ、硫化ソーダおよび/又はキレー
ト剤からなる重金属封鎖安定剤を1〜30重量部とから
なる混合物よりなり、前記混合物を約120〜150℃
の温度で加熱溶融混練し次いで冷却固化させて得られる
土木建築用材料によって達成される。
An object of the present invention is also the sulfur polymer cement (SPC) 5-100 produced by the reaction of 100 parts by weight of hazardous heavy metal-containing waste with sulfur and petroleum hydrocarbons.
1 to 30 parts by weight of a heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent, and the mixture is about 120 to 150 ° C.
It is achieved by a material for civil engineering and construction obtained by heating, melting and kneading at the temperature of, and then cooling and solidifying.

【0010】本発明の目的はまた有害重金属含有廃棄物
および熔滓スラグの1:0.5 〜2重量比の混合物100
重量部と、硫黄5〜100重量部と、硅酸ソーダ、硫化
ソーダおよび/又はキレート剤からなる重金属封鎖安定
剤1〜30重量部とからなる混合物よりなり、前記混合
物を約120〜150℃の温度で加熱溶融混練し次いで
冷却固化させて得られる土木建築用材料によって達成さ
れる。
The object of the invention is also a mixture of hazardous heavy metal-containing waste and slag slag in a ratio of 1: 0.5 to 2 by weight.
Parts by weight, 5 to 100 parts by weight of sulfur, and 1 to 30 parts by weight of a heavy metal sequestering stabilizer consisting of sodium silicate, sodium sulfide and / or a chelating agent, and the mixture at about 120 to 150 ° C. This is achieved by a material for civil engineering and construction obtained by heating, melting and kneading at a temperature and then cooling and solidifying.

【0011】本発明の目的はまた有害重金属含有廃棄物
および熔滓スラグの1:0.5 〜2重量比の混合物100
重量部と、硫黄と石油系炭化水素との反応によって生成
する硫黄ポリマーセメント(SPC)5〜100重量部
と、硅酸ソーダ、硫化ソーダおよび/又はキレート剤か
らなる重金属封鎖安定剤1〜30重量部とからなる混合
物よりなり、前記混合物を約120〜150℃の温度で
加熱溶融混練し次いで冷却固化させて得られる土木建築
用材料によって達成される。
The object of the invention is also a mixture of hazardous heavy metal-containing waste and slag slag in a ratio of 1: 0.5 to 2 by weight.
Parts by weight, 5-100 parts by weight of sulfur polymer cement (SPC) produced by the reaction of sulfur and petroleum hydrocarbons, and 1 to 30 parts by weight of a heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent. It is achieved by a material for civil engineering and construction obtained by heating, melting and kneading the mixture at a temperature of about 120 to 150 ° C. and then cooling and solidifying the mixture.

【0012】[0012]

【作用】本発明において処理対象とする有害重金属含有
廃棄物は、Cd,Pb,Zn,Hg、Cr等の有害重金
属を一種又は二種以上含有する廃棄物であり、特にかか
る有害な重金属を含む恐れの大きい産業廃棄物、たとえ
ば製鋼ダスト、一般焼却灰およびフライアッシュ等であ
る。
The hazardous heavy metal-containing waste to be treated in the present invention is a waste containing one or more harmful heavy metals such as Cd, Pb, Zn, Hg and Cr, and particularly contains such harmful heavy metals. Industrial wastes of high risk, such as steelmaking dust, general incineration ash and fly ash.

【0013】硫黄は製鋼ダスト等の廃棄物中の重金属塩
と反応して硫化物を形成し、温度による形態変化に際し
冷却凝固する硫黄の高分子鎖中に廃棄物粒子中の重金属
を取込みかつ廃棄物全体を固形化する。
Sulfur reacts with heavy metal salts in waste such as steelmaking dust to form sulfides, and the heavy metal in the waste particles is taken in and discarded in the polymer chain of sulfur that cools and solidifies when the shape changes with temperature. Solidify the whole thing.

【0014】硫黄は前記の廃棄物100重量部に対し、
硫黄5〜100重量部の割合で混合される。硫黄の量が
廃棄物100重量部に対して、5重量部よりも少ないと
廃棄物中の重金属をほぼ完全に取り込むことが困難であ
る。一方その量を100重量部より多くしても、それに
よって得られる効果はそれほど向上せず、むしろ強度お
よびコストの面で不利となる。廃棄物100重量部に対
する硫黄の好ましい混合量は処理対象とする廃棄物によ
って異なるが、たとえば電炉からの製鋼ダストの場合、
40〜50重量部とすることが適当である。
Sulfur is added to 100 parts by weight of the above waste,
5 to 100 parts by weight of sulfur are mixed. When the amount of sulfur is less than 5 parts by weight with respect to 100 parts by weight of waste, it is difficult to take in heavy metals in the waste almost completely. On the other hand, even if the amount is more than 100 parts by weight, the effect obtained by that does not improve so much, but rather it is disadvantageous in terms of strength and cost. The preferable amount of sulfur mixed with 100 parts by weight of waste depends on the waste to be treated, but in the case of steelmaking dust from an electric furnace, for example,
It is suitable to be 40 to 50 parts by weight.

【0015】本発明において用いる前記重金属封鎖安定
剤は溶融状態の硫黄又はSPCとよく混和し、化学的,
物理的に重金属の封鎖に寄与する。すなわち、硅酸ソー
ダ(Na2 SiO3 )は廃棄物中の重金属塩と反応して
珪酸金属塩または金属水酸化物、更に脱水されて金属酸
化物等となる。また、硫化ソーダ(Na2 S)は重金属
塩と反応して金属硫化物となり、水に不溶な化合物とし
て安定化される。更にNa2 SiO3 は脱水により強固
な被膜をつくりその接着効果により粉状廃棄物ダストの
減容化、即ち見掛け比重の上昇に寄与し硫黄の使用量を
減少させる。
The heavy metal sequestering stabilizer used in the present invention is well miscible with sulfur or SPC in a molten state,
Physically contributes to the blockage of heavy metals. That is, sodium silicate (Na 2 SiO 3 ) reacts with the heavy metal salts in the waste to react with silicate metal salts or metal hydroxides, and is further dehydrated into metal oxides or the like. Further, sodium sulfide (Na 2 S) reacts with a heavy metal salt to form a metal sulfide, which is stabilized as a water-insoluble compound. Further, Na 2 SiO 3 forms a strong film by dehydration, and its adhesive effect contributes to volume reduction of powdery waste dust, that is, contributes to an increase in apparent specific gravity and reduces the amount of sulfur used.

【0016】キレート剤は廃棄物中の重金属をキレート
化合物として安定化する。このようなキレート剤として
は、一般に金属塩の分離や精製および分析等に用いられ
て、アルカリ土類金属、希土類および遷移金属等と安定
な錯塩を形成するいわゆるキレート試薬が用いられ、エ
チレンジアミン、EDTA、NTA、アセチルアセトン
グリシン等が挙げられる。本発明に特に好ましく用いら
れる市販のキレート剤としては、例えばエポルバ500
(登録商標:ミヨシ油脂(株))およびNKK重金属安
定剤A−100(日本鋼管(株))等が挙げられる。
The chelating agent stabilizes the heavy metal in the waste as a chelating compound. As such a chelating agent, a so-called chelating agent which is generally used for separation, purification and analysis of a metal salt and forms a stable complex salt with an alkaline earth metal, a rare earth and a transition metal is used, and ethylenediamine and EDTA are used. , NTA, acetylacetone glycine and the like. Examples of commercially available chelating agents which are particularly preferably used in the present invention include Epolba 500.
(Registered trademark: Miyoshi Yushi Co., Ltd.) and NKK heavy metal stabilizer A-100 (Nippon Steel Tube Co., Ltd.).

【0017】上記のような硅酸ソーダ,硫化ソーダおよ
び/又はキレート剤からなる重金属封鎖安定剤は単独又
は二種以上の混合物として廃棄物100重量部当り1〜
30重量部の割合で混合される。重金属封鎖安定剤の混
合量が1重量部よりも少ないと、意図する封鎖効果が不
安定となる。一方、30重量部以上の量で加えても封鎖
効果はそれに伴って向上せずコスト面で不利となる。
The heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent as described above may be used alone or as a mixture of two or more of 1 to 100 parts by weight of waste.
30 parts by weight are mixed. If the amount of the heavy metal sequestering stabilizer mixed is less than 1 part by weight, the intended sequestering effect becomes unstable. On the other hand, even if added in an amount of 30 parts by weight or more, the blocking effect is not improved accordingly, which is disadvantageous in terms of cost.

【0018】次に廃棄物に対し、硫黄と重金属封鎖安定
剤を混合して、加熱混練する際の温度は約120〜15
0℃である。このときの温度が120℃よりも低いと硫
黄の溶融が不充分で混練が困難となり、一方、150℃
よりも高いと硫黄が粘稠度の高いμ相に移行して混練作
業効率を低下させる。
Next, the temperature at which the waste is mixed with sulfur and the heavy metal sequestering stabilizer and kneaded by heating is about 120 to 15
It is 0 ° C. If the temperature at this time is lower than 120 ° C, the melting of sulfur is insufficient and kneading becomes difficult.
If it is higher than this, sulfur shifts to the highly viscous μ phase and reduces the kneading work efficiency.

【0019】硫黄および重金属封鎖安定剤は、廃棄物に
対し同時に混合してもよく、またあらかじめ重金属封鎖
安定剤を廃棄物に混合して加熱した後に、硫黄を添加し
てもよい。あらかじめ金属封鎖安定剤を廃棄物に混合す
る場合は、約100〜120℃程度に加熱することが好
ましく、これによって重金属封鎖安定剤が廃棄物中に充
分に混合された状態で反応が起るため、その後硫黄を加
えて加熱溶融混練する際の作業時間を同時添加の場合に
比べて著しく短縮することができる。
The sulfur and the heavy metal sequestering stabilizer may be mixed into the waste material at the same time, or the sulfur may be added after the heavy metal sequestering stabilizer is previously mixed with the waste material and heated. When the sequestering stabilizer is mixed with the waste in advance, it is preferable to heat the sequestering stabilizer to about 100 to 120 ° C., which causes the reaction in the state where the heavy sequestering stabilizer is sufficiently mixed in the waste. Further, the working time when adding sulfur and then heating, melting and kneading can be significantly shortened as compared with the case of simultaneous addition.

【0020】硫黄と重金属封鎖安定剤および廃棄物とを
加熱溶融混練した後、適当な型に移して放冷固化する。
この場合、通常の加圧ないしは振動成形機により又は型
枠流し込みにより半ブリケット化および放冷することに
より重金属がほぼ完全に封鎖され、それらの溶出による
二次汚染をおさえることが出来ると共に得られた処理成
形品について少なくとも150〜200kg/cm2
上の圧縮強度が得られる。この圧縮強度は時間の経過時
間と共に増大する。
After sulfur, the heavy metal sequestering stabilizer and the waste are heated and melted and kneaded, they are transferred to an appropriate mold and left to cool and solidify.
In this case, the heavy metal was almost completely blocked by a normal pressurization or vibration molding machine or by half-briquetteing by allowing the mold to be poured and allowed to cool, and secondary contamination due to elution of them was suppressed and obtained. A compression strength of at least 150 to 200 kg / cm 2 or more is obtained for the treated molded product. This compressive strength increases with the passage of time.

【0021】この固化生成物は後述する実施例に記載す
るように含有する重金属の溶出値が法的規制値を充分に
満足するとともに前記の優れた圧縮強度を有するため、
それ自体でたとえば路盤補強工事や壁面型流し込み工事
等に利用することのできる土木建築用材料となる。さら
にこれらを適宜な寸法および形状に破砕して砂利、砕
石、割栗石、玉石、沈石等の代替品として利用すること
ができ、さらにこれらを骨材としてポルトランドセメン
ト等と配合することにより強度の点で従来のPCコンク
リートに匹敵しかつ有害重金属の溶出のおそれのほとん
どないコンクリートを製造することができる。
This solidified product has the above-mentioned excellent compressive strength because the elution value of the heavy metal contained therein sufficiently satisfies the legally regulated value as described in Examples below, and
By itself, it becomes a civil engineering and construction material that can be used for roadbed reinforcement work, wall type pouring work, and the like. Further, these can be crushed to an appropriate size and shape to be used as a substitute for gravel, crushed stone, crushed stone, cobblestone, crushed stone, and the like. In this respect, it is possible to manufacture concrete that is comparable to conventional PC concrete and has almost no risk of elution of harmful heavy metals.

【0022】本発明においてはまた有害重金属を含む廃
棄物の処理に際して前記硫黄に代えて硫黄と石油系炭化
水素化合物との反応生成物であるいわゆるSPCを用い
ることにより硫黄によるセメント効果を一層向上させる
ことができる。SPCは従来からコンクリートまたはア
スファルト等の代替もしくは改良材料として用いられて
おり(米国特許第4190816、4391969号
等)、硫黄と一種又はそれ以上の石油系炭化水素とをた
とえば60〜80%:40〜20%の混合比(重量比)
で130〜150℃で反応させることによって得られ
る。このような石油系炭化水素の例としては、C4-20
オレフィン系炭化水素、ジオレフィン系炭化水素、ジシ
クロペンタジエンやそのオリゴマ等のジエン系炭化水
素、その他ビニルトルエン、メチルスチレン等の芳香族
炭化水素が挙げられる。
In the present invention, when treating waste containing harmful heavy metals, so-called SPC, which is a reaction product of sulfur and a petroleum hydrocarbon compound, is used in place of the sulfur to further improve the cement effect of sulfur. be able to. SPC has been conventionally used as a substitute or improvement material for concrete or asphalt (US Pat. No. 4,190,816, 4391969, etc.), and contains sulfur and one or more petroleum hydrocarbons, for example, 60-80%: 40- 20% mixing ratio (weight ratio)
It is obtained by reacting at 130 to 150 ° C. Examples of such petroleum hydrocarbons are C 4-20 olefinic hydrocarbons, diolefinic hydrocarbons, diene hydrocarbons such as dicyclopentadiene and its oligomers, and other aromatics such as vinyltoluene and methylstyrene. Group hydrocarbons may be mentioned.

【0023】加熱溶融状態のSPCは廃棄物中の重金属
塩と反応して硫化物を生成し、これらが冷却によって生
成したガラス状SPCと結合し、さらに前記重金属封鎖
安定剤による処理生成物も含めて高分子化し、廃棄物ダ
ストの微粒子がSPCに覆われた状態で結合されて一体
化する。この場合、SPC中の炭化水素は撹拌混練の際
の混合物の粘度を低下させて混合を効率化し、さらにそ
れによって反応の促進および均一化に寄与し、重金属封
鎖安定剤との併用による効果をより一層向上させ、それ
によって硫黄単体を用いた場合に比較してより少量でか
つより効果的な処理が行われる。重金属含有廃棄物に対
するSPCの配合量は廃棄物の種類によっても変わる
が、たとえば廃棄物が製鋼ダストと鉄製錬スラグとの
1:1混合物である場合には廃棄物の20〜30重量%
程度でも充分である。
The heat-melted SPC reacts with the heavy metal salts in the waste to form sulfides, which combine with the glassy SPC formed by cooling, and further include the product treated with the heavy metal sequestering stabilizer. Are polymerized, and the fine particles of the waste dust are combined and integrated while being covered with the SPC. In this case, the hydrocarbon in the SPC lowers the viscosity of the mixture at the time of stirring and kneading to improve the mixing efficiency, thereby contributing to the promotion and homogenization of the reaction, and the effect of the combined use with the heavy metal sequestering stabilizer is further improved. A further improvement, which results in a smaller and more effective treatment as compared to the use of elemental sulfur. The amount of SPC mixed with the heavy metal-containing waste varies depending on the type of the waste, but if the waste is a 1: 1 mixture of steelmaking dust and iron smelting slag, 20 to 30% by weight of the waste is included.
The degree is enough.

【0024】さらに本発明においては、硫黄又はSPC
を用いてダストを溶融混練固化する際熔滓スラグ等の粒
状物質を混合することにより配合割合に応じて異なるが
固形化物の圧縮強度の高いものが得られる。
Further in the present invention, sulfur or SPC
When melt-kneading and solidifying the dust by using, a granular material such as a slag slag is mixed to obtain a solid material having a high compressive strength although it varies depending on the mixing ratio.

【0025】前記廃棄物の中でも製鋼ダストやフライア
ッシュのように粒径がミクロンオーダ又はそれ以下の微
粉末状の産業廃棄物を硫黄やSPCと溶融混練するため
には比較的大量の硫黄やSPCを必要とし、かつ得られ
る固化成形体の圧縮強度等の物性も必ずしも全ての用途
における土木建築用材料としての特性を完全に満足させ
るものではない。このような微粒状の廃棄物に対しては
これも典型的な産業廃棄物である比較的粒径の大きな熔
滓スラグの破砕片(ミリオーダ)を混合して用いると溶
融処理に際して用いる硫黄の量をスラグ添加量に対応し
て大幅に減少させることができ、かつ得られる固化成形
体の圧縮強度等の物性も格段にすぐれたものとなり、土
木建築用材料又は骨材としてさらに実用的な用途が期待
される。
Among the above-mentioned wastes, a relatively large amount of sulfur or SPC is required for melt-kneading fine powdery industrial wastes having a particle size of micron order or less such as steelmaking dust and fly ash with sulfur or SPC. And the physical properties such as the compressive strength of the obtained solidified molded article do not always completely satisfy the characteristics as a material for civil engineering and construction in all applications. For such fine-grained waste, the amount of sulfur used in the melting process should be determined by mixing crushed pieces of molten slag (milli-order), which is also a typical industrial waste, with a relatively large particle size. Can be significantly reduced in accordance with the amount of slag added, and the physical properties such as the compressive strength of the obtained solidified molded product are remarkably excellent, and more practical use as a material for civil engineering and construction or an aggregate. Be expected.

【0026】熔滓スラグ等の粒状物質を混合して処理を
行う場合、使用される硫黄又はSPCの量は熔滓スラグ
の種類配合比などにより若干異なるがほぼスラグの混合
量に比例して減少する。また有害金属廃棄と熔滓スラグ
との混合比は1:0.5〜2.0重量部の範囲とするこ
とが好ましい。熔滓スラグの混合比を2.0以上にする
と硫黄(又はSPC)によるセメント結合力が全体とし
て減少するので、処理生成物の強度が低下する。また混
合比を0.5以下にするとスラグを混合することによっ
て得られる効果、すなわち硫黄(又はSPC)の所要量
の低下および処理生成物の強度の向上等が実質的に得ら
れなくなる。以下本発明を実施例によって説明する。
When processing is carried out by mixing a granular material such as slag slag, the amount of sulfur or SPC used is slightly different depending on the kind and mixing ratio of the slag slag, but decreases almost in proportion to the amount of slag mixed. To do. Further, the mixing ratio of the hazardous metal waste and the slag slag is preferably in the range of 1: 0.5 to 2.0 parts by weight. When the mixing ratio of the molten slag is 2.0 or more, the cement binding force due to sulfur (or SPC) is reduced as a whole, so that the strength of the treated product is reduced. When the mixing ratio is 0.5 or less, the effect obtained by mixing the slag, that is, the required amount of sulfur (or SPC) is reduced and the strength of the treated product is not substantially obtained. The present invention will be described below with reference to examples.

【0027】実施例1 表1に示す製鋼ダスト10kgに珪酸ソーダ0.5kg
を加え、温度100〜120℃で5分間攪拌混合し、次
いで硫黄4kgを加え温度130〜140℃で加熱溶融
し充分均一になる様に15分間攪拌混練を行い、直径5
cmおよび高さ10cmの円筒状の容器に移し冷却固化
させた(表2、No.1)。分析結果を表3に示す。
Example 1 10 kg of steel-making dust shown in Table 1 and 0.5 kg of sodium silicate
Was added, and the mixture was stirred and mixed at a temperature of 100 to 120 ° C. for 5 minutes, then 4 kg of sulfur was added, and the mixture was heated and melted at a temperature of 130 to 140 ° C. and stirred and kneaded for 15 minutes to be sufficiently uniform, and the diameter was 5
cm and a height of 10 cm were transferred to a cylindrical container to be cooled and solidified (Table 2, No. 1). The analysis results are shown in Table 3.

【0028】実施例2 表1に示す製鋼ダスト7kgと銅製錬熔滓スラグ3kg
に硫化ソーダ0.5kgを加え、温度100〜120℃
で5分間攪拌混合し、次いで硫黄4kgを加え温度13
0〜140℃で加熱溶融し、充分均一になるように15
分間攪拌混練を行い、直径5cmおよび高さ10cmの
円筒状の容器に移し冷却固化させた(表2、No.
2)。分析結果を表3に示す。
Example 2 7 kg of steelmaking dust and 3 kg of copper smelting slag shown in Table 1
0.5kg of sodium sulfide is added to the temperature of 100-120 ℃
Stir to mix for 5 minutes, then add 4 kg of sulfur and
Heat and melt at 0-140 ° C, and make sure it is uniform.
The mixture was stirred and kneaded for a minute, transferred to a cylindrical container having a diameter of 5 cm and a height of 10 cm, and cooled and solidified (Table 2, No. 2).
2). The analysis results are shown in Table 3.

【0029】実施例3 表1に示す製鋼ダスト6kgと鉄製錬熔滓スラグ4kg
に珪酸ソーダ0.4kgを加え、温度100〜120℃
で5分間攪拌混合し、次いで硫黄3.2kgを加え温度
130〜140℃で加熱溶融し、充分均一になるように
15分間攪拌混練を行い、直径5cmおよび高さ10c
mの円筒状の容器に移し冷却固化させた(表2、No.
3)。分析結果を表3に示す。
Example 3 6 kg of steelmaking dust and 4 kg of iron smelting slag shown in Table 1
0.4kg of sodium silicate is added to the temperature of 100-120 ℃
Stir and mix for 5 minutes, then add 3.2 kg of sulfur, heat and melt at a temperature of 130 to 140 ° C., stir and knead for 15 minutes to obtain a sufficiently uniform mixture, diameter 5 cm and height 10 c
m into a cylindrical container and cooled and solidified (No. 2 in Table 2).
3). The analysis results are shown in Table 3.

【0030】実施例4 表1に示す製鋼ダスト5kgと銅製錬熔滓スラグ5kg
に対して硫化ソーダ0.3kgを加え、温度100〜1
20℃で5分間攪拌混合し次いで硫黄3kgを加え温度
130〜140℃で加熱溶融し、充分均一になるように
15分間攪拌混練を行い、直径5cmおよび高さ10c
mの円筒状の容器に移し冷却固化させた(表2、No.
4)。分析結果を表3に示す。
Example 4 5 kg of steelmaking dust and 5 kg of copper smelting slag shown in Table 1
Sodium sulfide 0.3kg is added to the temperature of 100-1
Stir and mix at 20 ° C. for 5 minutes, add 3 kg of sulfur, heat and melt at a temperature of 130 to 140 ° C., stir and knead for 15 minutes to obtain a sufficiently uniform mixture, diameter 5 cm and height 10 c
m into a cylindrical container and cooled and solidified (No. 2 in Table 2).
4). The analysis results are shown in Table 3.

【0031】実施例5 表1に示す製鋼ダスト10kgに珪酸ソーダ0.5kg
を加え、温度100〜120℃で5分間攪拌混合し、次
いでSPC3kgを加え温度130〜140℃で加熱溶
融し、充分均一になるように15分間攪拌混練を行い、
直径5cmおよび高さ10cmの円筒状の容器に移し冷
却固化させた(表2、No.5)。分析結果を表3に示
す。
Example 5 0.5 kg of sodium silicate was added to 10 kg of steelmaking dust shown in Table 1.
Is added, and the mixture is stirred and mixed at a temperature of 100 to 120 ° C. for 5 minutes, then 3 kg of SPC is added, the mixture is heated and melted at a temperature of 130 to 140 ° C., and the mixture is stirred and kneaded for 15 minutes to be sufficiently uniform,
It was transferred to a cylindrical container having a diameter of 5 cm and a height of 10 cm to be cooled and solidified (Table 2, No. 5). The analysis results are shown in Table 3.

【0032】実施例6 表1に示す製鋼ダスト7kgと銅製錬熔滓スラグ3kg
に対して硫化ソーダ0.5kgを加え、温度100〜1
20℃で5分間攪拌混合し、次いでSPC3kgを加え
温度130〜140℃で加熱溶融し、充分均一になるよ
うに15分間攪拌混練を行い、直径5cmおよび高さ1
0cmの円筒上の容器に移し冷却固化させた(表2、N
o.6)。分析結果を表3に示す。
Example 6 7 kg of steelmaking dust and 3 kg of copper smelting slag shown in Table 1
0.5 kg of sodium sulfide is added to the temperature of 100-1
Stir and mix at 20 ° C. for 5 minutes, then add 3 kg of SPC, heat and melt at a temperature of 130 to 140 ° C., and stir and knead for 15 minutes to obtain a sufficiently uniform mixture, diameter 5 cm and height 1
It was transferred to a container on a 0 cm cylinder and solidified by cooling (Table 2, N
o. 6). The analysis results are shown in Table 3.

【0033】実施例7 表1に示す製鋼ダスト6kgと鉄製錬熔滓スラグ4kg
に対して珪酸ソーダ0.4kgを加え、温度100〜1
20℃で5分間攪拌混合し、次いでSPC2.2kgを
加え温度130〜140℃で加熱溶融し、充分均一にな
るように15分間攪拌混練を行い、直径5cmおよび高
さ10cmの円筒状の容器に移し冷却固化させた(表
2、No.7)。分析結果を表3に示す。
Example 7 6 kg of steelmaking dust and 4 kg of iron smelting slag shown in Table 1
Sodium silicate 0.4kg is added to the temperature of 100-1
Stir and mix at 20 ° C. for 5 minutes, then add 2.2 kg of SPC, heat and melt at a temperature of 130 to 140 ° C., stir and knead for 15 minutes so as to be sufficiently uniform, and put into a cylindrical container having a diameter of 5 cm and a height of 10 cm. It was transferred and solidified by cooling (Table 2, No. 7). The analysis results are shown in Table 3.

【0034】実施例8 表1に示す製鋼ダスト5kgと銅製錬熔滓スラグ5kg
に対して硫化ソーダ0.3kgを加え、温度100〜1
20℃で5分間攪拌混合し、次いでSPC2kgを加え
温度130〜140℃で加熱溶融し、充分均一になるよ
うに15分間攪拌混練を行い、直径5cm、高さ10c
mの円筒状の容器に移し冷却固化させた(表2、No,
8)。分析結果を表3に示す。
Example 8 5 kg of steelmaking dust and 5 kg of copper smelting slag shown in Table 1
Sodium sulfide 0.3kg is added to the temperature of 100-1
Stir and mix at 20 ° C. for 5 minutes, add 2 kg of SPC, heat and melt at a temperature of 130 to 140 ° C., and stir and knead for 15 minutes to obtain a sufficiently uniform mixture, diameter 5 cm, height 10 c
It was transferred to a cylindrical container of m and cooled and solidified (Table 2, No,
8). The analysis results are shown in Table 3.

【0035】以上の各実施例において得られた固化生成
物を粉砕し、総理府令に定める溶出試験方法により試験
を行った。又同じく得られた各固化生成物(直径5c
m、高さ10cm)についてJISA1108に定める
圧縮強度試験方法により試験を行った。表3に示すよう
に実施例1〜8によって得られる産業廃棄物の固化生成
物からの有害金属の溶出値は全て環境基準以下であっ
た。
The solidified product obtained in each of the above examples was pulverized and tested by the dissolution test method stipulated by the Prime Minister's Ordinance. Each solidified product (diameter 5c
m, height 10 cm) was tested by the compressive strength test method defined in JIS A1108. As shown in Table 3, the elution values of harmful metals from the solidified products of the industrial wastes obtained in Examples 1 to 8 were all below the environmental standard.

【0036】また各実施例によって得られる固化生成物
の一軸圧縮強度は全ての場合について150〜200kg
/cm2 以上であり、実際の製品として用いる場合には加
圧、圧縮成形により圧縮強度がさらに上昇することが予
想される。また本発明により処理加工された固化生成品
は経過時間と共にその圧縮密度又は安定性が更に増大す
る傾向にある。尚、表3中の各金属の数値はppmであ
り、NDは検出されなかったことを示している。また圧
縮強度の単位はkg/cm2 である。
The uniaxial compressive strength of the solidified product obtained in each example is 150 to 200 kg in all cases.
/ Cm 2 or more, and when used as an actual product, it is expected that the compression strength will be further increased by pressing and compression molding. Further, the solidified product processed according to the present invention tends to further increase its compression density or stability with the passage of time. The numerical value of each metal in Table 3 is ppm, indicating that ND was not detected. The unit of compressive strength is kg / cm 2 .

【0037】[0037]

【表1】 製鋼ダスト 鉄製錬スラグ 銅製錬スラグ (%) (%) (%) Fe 28 27 35 Zn 14 ー 1 Cd 3 ー ー Mn 2 7 ー Pb 2 ー 0.2 Cr 1 0.5 ー Cu 1 0.1 0.7 SiO2 ー 12 34 Al2 3 ー 4 5 粒度 0.5 〜3μm 0.5 〜5mm 0.5 〜5mm 嵩密度 0.5 〜 0.9 1.0 〜 1.5 1.5 〜 2.0 [Table 1] Steelmaking dust Iron smelting slag Copper smelting slag (%) (%) (%) Fe 28 27 35 Zn 14-1 Cd 3 -Mn 2 7 -Pb 2 -0.2 Cr 1 0.5 -Cu 1 0.1 0.7 SiO 2-12 34 Al 2 0 3 - 4 5 particle size 0.5 ~3μm 0.5 ~5mm 0.5 ~5mm bulk density 0.5-0.9 1.0-1.5 1.5-2.0

【0038】[0038]

【表2】 実施例 1 2 3 4 5 6 7 8 (kg) 製鋼 ダスト 10 7 6 5 10 7 6 5 鉄鋼 スラグ ー ー 4 ー ー ー 4 ー 銅鋼 スラグ ー 3 ー 5 ー 3 ー 5 珪酸 ソーダ 0.5 ー 0.4 ー 0.5 ー 0.4 ー 硫化 ソーダ ー 0.5 ー 0.3 ー 0.5 ー 0.3 硫黄 4 4 3.2 3 ー ー ー ー SPC ー ー ー ー 3 3 2.2 2 [Table 2] Example 1 2 3 4 5 6 7 8 (kg) Steelmaking dust 10 7 6 5 10 7 6 5 Iron and steel slag 4 5 4 5 Copper steel slag 3 5 3 5 Sodium silicate 0.5 ー 0.4 ー 0.5 ー 0.4 ー Sodium sulfide 0.5 ー 0.3 ー 0.5 ー 0.3 Sulfur 4 4 3.2 3 ー ー SPC ー ー 3 3 3 2.2 2

【0039】[0039]

【表3】 実施例 1 2 3 4 5 6 7 8 項目 Fe ND ND ND ND ND ND ND ND Zn <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Cd <0.1 <0.1 <0.1 <0.1 <0.03 <0.03 <0.03 <0.03 Mn ND ND ND ND ND ND ND ND Pd <0.4 <0.4 <0.4 <0.4 <0.3 <0.3 <0.3 <0.3 Cr <0.2 <0.2 <0.2 <0.2 <0.15 <0.15 <0.15 <0.15 Cu ND ND ND ND ND ND ND ND 圧縮 強度 >150 >150 >200 >300 >200 >250 >300 >400 密度 3.4 3.3 3.2 3.2 3.5 3.5 3.2 3.1 [Table 3] Example 1 2 3 4 5 6 7 8 Item Fe ND ND ND ND ND ND ND ND Zn Zn <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Cd <0.1 <0.1 <0.1 <0.1 <0.03 <0.03 <0.03 <0.03 Mn ND ND ND ND ND ND ND ND Pd <0.4 <0.4 <0.4 <0.4 <0.3 <0.3 <0.3 <0.3 Cr <0.2 <0.2 <0.2 <0.2 <0.15 <0.15 <0.15 < 0.15 Cu ND ND ND ND ND ND ND ND Compressive strength > 150 > 150 > 200 > 300 > 200 > 250 > 300 > 400 Density 3.4 3.3 3.2 3.2 3.5 3.5 3.2 3.1

【0040】[0040]

【発明の効果】本発明においては、有害重金属含有廃棄
物に硫黄又は硫黄ポリマセメント(SPC)および重金
属封鎖安定材を配合して加熱溶融混練し次いで冷却固化
させることにより自然環境下におかれても物理的および
化学的経時変化のほとんどない安定した固化生成物が得
られ、廃棄物中に含有されていた有害重金属の溶出がい
ずれも法的規制値を充分に下まわる。硫黄分の処理量が
低減されまた特に有害重金属含有廃棄物として処理の困
難な微粉末状の製鋼ダスト等とこれも同系の比較的粗粒
の熔滓スラグとを組合せて処理することにより、その密
度および圧縮強度等の物性が一層優れたものとなるので
そのままで土木建築用塗料として用いることができる。
また得られた生成物を適当な形状および寸法に破砕する
ことにより従来の砂利等の代替品としてセメント等と配
合することによりコンクリート製品として利用すること
もできる。
INDUSTRIAL APPLICABILITY In the present invention, harmful heavy metal-containing waste is mixed with sulfur or sulfur polymer cement (SPC) and heavy metal sequestering stabilizer, heated, melted and kneaded, and then cooled and solidified to be placed in a natural environment. A stable solidified product with almost no physical or chemical aging is obtained, and the elution of harmful heavy metals contained in the waste is well below legally regulated values. By treating with a combination of fine powdery steel-making dust, which is difficult to treat as a hazardous heavy metal-containing waste, and a relatively coarse-grained molten slag, which can reduce the treatment amount of sulfur content, Since the physical properties such as density and compressive strength are further excellent, it can be used as it is as a paint for civil engineering and construction.
Further, the obtained product can be used as a concrete product by crushing it into an appropriate shape and size to mix it with cement or the like as a substitute for conventional gravel or the like.

【0041】本発明によれば特に各種金属製錬施設から
のダスト・フライアッシュ、スラグ等、有害金属を含有
する産業廃棄物に対する安全処理の問題が効果的に解決
され、しかもこれら処理生成物を土木建築材料として再
利用することによって天然資源の枯渇およびそれらの保
護に対する方策が併せて与えられる。
According to the present invention, the problem of safe treatment of industrial waste containing harmful metals such as dust, fly ash, slag, etc. from various metal smelting facilities can be effectively solved, and these treated products can be effectively treated. Reusing as a civil engineering building material also provides a strategy for the depletion of natural resources and their protection.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有害重金属含有廃棄物100重量部と、
硫黄5〜100重量部と、硅酸ソーダ、硫化ソーダ及び
/又はキレート剤からなる重金属封鎖安定剤1〜30重
量部とからなる混合物よりなり、前記混合物を約120
〜150℃の温度で加熱溶融混練し次いで冷却固化させ
て得られる土木建築用材料。
1. 100 parts by weight of hazardous heavy metal-containing waste,
A mixture comprising 5 to 100 parts by weight of sulfur and 1 to 30 parts by weight of a heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent, wherein the mixture is about 120 parts by weight.
A material for civil engineering and construction obtained by heating, melting and kneading at a temperature of 150 ° C and then cooling and solidifying.
【請求項2】 有害重金属含有廃棄物100重量部と、
硫黄と石油系炭化水素との反応によって生成する硫黄ポ
リマーセメント(SPC)5〜100重量部と、硅酸ソ
ーダ、硫化ソーダおよび/又はキレート剤からなる重金
属封鎖安定剤1〜30重量部とからなる混合物よりな
り、前記混合物を約120〜150℃の温度で加熱溶融
混練し次いで冷却固化させて得られる土木建築用材料
2. 100 parts by weight of hazardous heavy metal-containing waste,
Consists of 5 to 100 parts by weight of a sulfur polymer cement (SPC) produced by the reaction of sulfur and petroleum hydrocarbons, and 1 to 30 parts by weight of a heavy metal sequestering stabilizer composed of sodium silicate, sodium sulfide and / or a chelating agent. A material for civil engineering and construction, which comprises a mixture, and is obtained by heating, melting and kneading the mixture at a temperature of about 120 to 150 ° C., and then cooling and solidifying the mixture.
【請求項3】 有害重金属含有廃棄物および熔滓スラグ
の1:0.5 〜2重量比の混合物100重量部と、硫黄5
〜100重量部と、硅酸ソーダ、硫化ソーダ及び/又は
キレート剤からなる重金属封鎖安定剤1〜30重量部と
からなる混合物よりなり、前記混合物を約120〜15
0℃の温度で加熱溶融混練し次いで冷却固化させて得ら
れる土木建築用材料
3. 100 parts by weight of a mixture of hazardous heavy metal-containing waste and slag slag in a ratio of 1: 0.5 to 2 and sulfur 5
˜100 parts by weight and 1 to 30 parts by weight of a heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent, and the mixture is about 120 to 15 parts by weight.
Materials for civil engineering and construction obtained by heating, melting and kneading at a temperature of 0 ° C and then cooling and solidifying
【請求項4】 有害重金属含有廃棄物および熔滓スラグ
の1:0.5 〜2重量比の混合物100重量部と、硫黄と
石油系炭化水素との反応によって生成する硫黄ポリマー
セメント(SPC)5〜100重量部と、硅酸ソーダ、
硫化ソーダおよび/又はキレート剤からなる重金属封鎖
安定剤1〜30重量部とからなる混合物よりなり、前記
混合物を約120〜150℃の温度で加熱溶融混練し次
いで冷却固化させて得られる土木建築用材料
4. Sulfur polymer cement (SPC) 5-100 produced by the reaction of sulfur with petroleum hydrocarbons, and 100 parts by weight of a mixture of hazardous heavy metal-containing waste and slag slag in a ratio of 1: 0.5 to 2 by weight. Parts by weight, sodium silicate,
A mixture of 1 to 30 parts by weight of a heavy metal sequestering stabilizer composed of sodium sulfide and / or a chelating agent, which is obtained by heating, melting and kneading the mixture at a temperature of about 120 to 150 ° C. and then cooling and solidifying the mixture. material
JP11016694A 1994-04-27 1994-04-27 Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste Pending JPH07290024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016694A JPH07290024A (en) 1994-04-27 1994-04-27 Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11016694A JPH07290024A (en) 1994-04-27 1994-04-27 Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste

Publications (1)

Publication Number Publication Date
JPH07290024A true JPH07290024A (en) 1995-11-07

Family

ID=14528731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016694A Pending JPH07290024A (en) 1994-04-27 1994-04-27 Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste

Country Status (1)

Country Link
JP (1) JPH07290024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001236A1 (en) * 1997-07-01 1999-01-14 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
US6083431A (en) * 1995-05-26 2000-07-04 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
KR100460096B1 (en) * 2002-04-01 2004-12-04 주식회사 한테크 Waste treatment method and solidified material obtained by the same method
KR100738905B1 (en) * 2005-12-29 2007-07-12 (주)서우 The concrete manufacturing method which uses the sulfur and Manufacturing method of the engineering works infrastructure which uses the concrete
WO2010012601A1 (en) * 2008-08-01 2010-02-04 Shell Internationale Research Maatschappij B.V. Processes for preparing sulphur composites and organosilane coupling agents
GB2480686A (en) * 2010-05-28 2011-11-30 Philip Sutton Construction products made from sulfur polymer cement
WO2011149368A1 (en) * 2010-05-28 2011-12-01 Mysłowski Włodzimierz Polymeric construction material on the basis of flotation waste from copper ore flotation and waste sulfur

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083431A (en) * 1995-05-26 2000-07-04 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
US6547712B1 (en) 1995-05-26 2003-04-15 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
WO1999001236A1 (en) * 1997-07-01 1999-01-14 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
US6638204B2 (en) 1997-07-01 2003-10-28 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal
KR100460096B1 (en) * 2002-04-01 2004-12-04 주식회사 한테크 Waste treatment method and solidified material obtained by the same method
KR100738905B1 (en) * 2005-12-29 2007-07-12 (주)서우 The concrete manufacturing method which uses the sulfur and Manufacturing method of the engineering works infrastructure which uses the concrete
WO2010012601A1 (en) * 2008-08-01 2010-02-04 Shell Internationale Research Maatschappij B.V. Processes for preparing sulphur composites and organosilane coupling agents
GB2480686A (en) * 2010-05-28 2011-11-30 Philip Sutton Construction products made from sulfur polymer cement
WO2011149368A1 (en) * 2010-05-28 2011-12-01 Mysłowski Włodzimierz Polymeric construction material on the basis of flotation waste from copper ore flotation and waste sulfur
EA023085B1 (en) * 2010-05-28 2016-04-29 Влодзимеж Мысловский Polymeric construction material on the basis of flotation waste from copper ore flotation and waste sulfur

Similar Documents

Publication Publication Date Title
Mombelli et al. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability
JP2010036178A (en) Inorganic powdery solidified material and solidification treatment method of concrete sludge
Mauthoor et al. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
JPH07290024A (en) Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste
JP3421688B2 (en) Sulfur polymer cement, its production method and waste treatment method
US5935618A (en) Apparatus for manufacturing molded materials solidified by sulfur
JPH082949A (en) Method for modifying steelmaking slag
JPH0788458A (en) Treatment of harmful heavy metal-containing waste
JPH0327597B2 (en)
JP2003183718A (en) Method for controlling elution of fluorine from steel smelting slag
Baricova et al. Recycling possibilities of the slag from cupola furnace
EP0766653B1 (en) Production of mineral fibres
JPH02160895A (en) Foundation conditioner
JPH03177330A (en) Silicate glass building material
Pribulová et al. Utilization of slags from foundry process
JP2002097060A (en) Method for manufacturing sulfur material
KR100460096B1 (en) Waste treatment method and solidified material obtained by the same method
JP3786872B2 (en) Concrete composition and concrete using the same
KR20010020594A (en) Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
JP3443653B2 (en) Civil engineering and construction materials
RU2031875C1 (en) Method of building material making
JP2005179114A (en) Method for producing sulfur concrete
Zhu et al. Cement Stabilization/Solidification of Heavy Metal-Contaminated Sediments Aided by Coal Fly Ash
JPS60231444A (en) Use of highly basic steel slag