JPS62267699A - Method of solidifying and processing radioactive waste - Google Patents

Method of solidifying and processing radioactive waste

Info

Publication number
JPS62267699A
JPS62267699A JP11194186A JP11194186A JPS62267699A JP S62267699 A JPS62267699 A JP S62267699A JP 11194186 A JP11194186 A JP 11194186A JP 11194186 A JP11194186 A JP 11194186A JP S62267699 A JPS62267699 A JP S62267699A
Authority
JP
Japan
Prior art keywords
radioactive waste
solidifying
solidified
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11194186A
Other languages
Japanese (ja)
Other versions
JPH0727074B2 (en
Inventor
尚実 豊原
多賀 純一
正和 太田
川西 宣夫
杉野 太加夫
和昭 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP61111941A priority Critical patent/JPH0727074B2/en
Publication of JPS62267699A publication Critical patent/JPS62267699A/en
Publication of JPH0727074B2 publication Critical patent/JPH0727074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、核燃料再処理施設等の放射性物質取扱い!I
で発生する中レベルないし低レベルの放射性廃棄物の処
理方法に係り、特に、長期にわたる安定性、耐久性、耐
火性に優れた放射性廃棄物の固化処理方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to handling of radioactive materials in nuclear fuel reprocessing facilities, etc.! I
The present invention relates to a method for treating medium- to low-level radioactive waste generated in Japan, and particularly to a method for solidifying radioactive waste that has excellent long-term stability, durability, and fire resistance.

(従来の技術〉 従来より、核燃料再処理施設等の放射性物質取扱い!股
で発生する、例えば放射性濃縮廃液やスラッジ等の放射
性廃棄物処理方法として、濃縮廃液についてはアスファ
ルト固化処理が行われ、スラッジ類についてはそのまま
貯蔵することが行われている。
(Conventional technology) Conventionally, as a method for treating radioactive waste such as radioactive concentrated waste liquid and sludge generated in nuclear fuel reprocessing facilities, etc., where radioactive materials are handled, concentrated waste liquid is subjected to asphalt solidification treatment, and sludge Types of waste are stored as is.

この固化処理方法においては、放射性廃液は濃縮乾燥さ
れ、主として硝酸ナトリウムからなる粉体とされた後、
この放射性廃棄物はアスファルトからなる固化材により
固化される。
In this solidification treatment method, the radioactive waste liquid is concentrated and dried to form a powder mainly consisting of sodium nitrate.
This radioactive waste is solidified using a solidifying material made of asphalt.

しかし、これらの方法により処理されて放射性廃棄物の
固化体が得られたとしても、現在のところその多くは最
終処分の方法が未だ確立されていない状態にある。
However, even if solidified radioactive waste is obtained by processing these methods, the final disposal method for most of it has not yet been established.

一方、BWR発電所から発生する放射性廃棄物について
は中間貯蔵体の状態で暫定貯蔵する方法も近年提案され
ている。
On the other hand, methods have recently been proposed for temporarily storing radioactive waste generated from BWR power plants in the form of intermediate storage bodies.

この方法は放射性廃棄物を乾燥処理し大幅に減容した後
、これをペレット化処理して安定な中間貯蔵体を製造し
、原子力施設内の貯蔵タンクに一時貯蔵する方法である
。この方法によれば乾燥処理後の粉体放射性廃棄物に圧
縮力が加えられペレット化されるので高い減容率が得ら
れる。
This method involves drying radioactive waste to significantly reduce its volume, then pelletizing it to produce a stable intermediate storage body, which is then temporarily stored in a storage tank within a nuclear facility. According to this method, a compressive force is applied to the powdered radioactive waste after drying and the waste is pelletized, resulting in a high volume reduction rate.

しかし核燃料再処理施設で発生する” c s、93 
rでは放射能の半減期が約30年であり、このような方
法で放射能を減衰させることは事実上不可能であり、仮
にできたとしても一定期間貯蔵されて放射能が減衰した
後に改めて安定な固化体パッケージとして一体に固化さ
せる必要がある。
However, it occurs in nuclear fuel reprocessing facilities,” cs, 93.
The half-life of radioactivity in R is approximately 30 years, so it is virtually impossible to attenuate the radioactivity in this way, and even if it were possible, it would be stored for a certain period of time and the radioactivity would decay before it could be used again. It is necessary to solidify them into a stable solidified package.

また核燃料再処理施設からは、このような廃棄物以外に
、金属、コンクリートおよび断熱材等の雑固体廃棄物が
発生する。これらはその種類が非常に多種にわたりかつ
形状も不定であるため現時点では必要に応じて適当に切
断され、貯蔵容器中に入れられている。このような雑固
体も安定な固化体パッケージとして一体に固化させる必
要がある。
In addition to these wastes, nuclear fuel reprocessing facilities also generate miscellaneous solid wastes such as metals, concrete, and insulation materials. Since there are a wide variety of these materials and their shapes are indeterminate, at present they are cut appropriately as needed and placed in storage containers. Such miscellaneous solids also need to be solidified into a stable solidified package.

このような放射性廃棄物を固化体パッケージ化する方法
としては、従来より用いられている前述の固化材による
処理が考えられる。
As a method of solidifying and packaging such radioactive waste, treatment using the aforementioned solidifying material, which has been conventionally used, can be considered.

(発明が解決しようとする問題点) しかし、前述したアスファルト固化法では固化材が有鳴
物であるため数百年あるいはそれ以上の長期にわたる安
定性という点で問題がある。
(Problems to be Solved by the Invention) However, in the above-mentioned asphalt solidification method, since the solidification material is a solid material, there is a problem in terms of stability over a long period of several hundred years or more.

また固化材としてセメントを用いる方法も考えられるが
、この場合多山の水が必要なため固化処理の際にその水
分により、特にペレット状の放射性廃棄物を固化する時
に、ペレットの吸水、膨潤によるペレットおよび固化材
の劣化が生じる可能性があり、硬化に必要な水を最小限
度伍まで押えたセメントを用いた場合には、ペレットお
よび固化材の劣化は防止することが可能であるが、固化
材の粘性が大きくなり、そのため緻密にペレットを充填
することが難しくなるという問題がある。
Another option is to use cement as a solidifying agent, but in this case, a large amount of water is required, and the moisture will cause the pellets to absorb water and swell, especially when solidifying pellet-shaped radioactive waste. Deterioration of the pellets and hardening agent may occur. If cement is used that suppresses the water necessary for hardening to the minimum level, it is possible to prevent the deterioration of the pellets and hardening agent, but There is a problem in that the viscosity of the material increases, making it difficult to densely fill the pellets.

また形成された放射性廃棄物の固化体は、長期間にわた
って化学的にも機械的にも安定で、固化体からの放射性
物質の放出が可能な限り防止されることが望ましい。し
かし従来のポルトランドセメント等の水硬性結合材を固
化材に用いて固化体を生成する場合、固化体中に存在す
る水分は、結合材との反応により化学結合した結晶水や
固化体中の微小な空隙に存在する自由水として合釘され
るが、この自由水が存在することにより放射性核種の固
化体中での拡散による移動が容易になり、放射性物質の
浸出が大きくなり、さらに固化体の固化時に必要な量以
上の水分が固化体中に存在すると、この余分な水分が乾
燥などにより蒸発し、固化体が微視的にはポーラス状に
なってしまう可能性がある。この結果、固化体の安定性
、耐久性を著しく低下させることになる。またざらに、
固化体が火災等により長時間高温下にさらされた場合に
は固化体中の水分の外部への蒸発がおこるが、この時水
分の蒸発に伴って放射性物質が固化体から放出され、か
つ機械的強度が低下するという問題もある。このため固
化体からの放射性物質の放出を防止するためにも固化材
の含水Mは可能な限り少量であることが望ましい。しか
し含水量が少なく、かつ粘度が低いという相反する条件
を同時に満足させる固化材を製造することは非常に困難
であった。
Furthermore, it is desirable that the formed solidified body of radioactive waste is chemically and mechanically stable for a long period of time, and that release of radioactive substances from the solidified body is prevented as much as possible. However, when a conventional hydraulic binder such as Portland cement is used as a solidifying agent to produce a solidified material, the water present in the solidified material is mixed with water of crystallization chemically bonded by reaction with the binding material and minute particles in the solidified material. However, the presence of this free water facilitates the movement of radionuclides through diffusion within the solidified material, increasing the leaching of radioactive materials and further increasing the amount of radioactive material in the solidified material. If more water exists in the solidified material than is necessary during solidification, this excess water may evaporate by drying or the like, and the solidified material may become microscopically porous. As a result, the stability and durability of the solidified product are significantly reduced. Also Zara,
If the solidified material is exposed to high temperatures for a long period of time due to fire, etc., the moisture in the solidified material will evaporate to the outside. There is also the problem that the target strength decreases. Therefore, in order to prevent the release of radioactive substances from the solidified material, it is desirable that the amount of water M in the solidified material be as small as possible. However, it has been extremely difficult to produce a solidifying material that simultaneously satisfies the contradictory conditions of low water content and low viscosity.

本発明はこのような問題を解決するためになされたもの
で、核燃料再処理施設等から発生する放射性廃棄物を固
化処理する方法において、放射性廃棄物を、耐火性に優
れ、長期間にわたって化学的にも機械的にも安定であり
、放射性物質の放出を防止した固化体パッケージとして
一体に固化させる方法を提供するものである。
The present invention was made to solve such problems, and is a method for solidifying radioactive waste generated from nuclear fuel reprocessing facilities, etc., in which radioactive waste is chemically treated for a long period of time with excellent fire resistance. The object of the present invention is to provide a method for solidifying the materials into a solidified package that is both mechanically and mechanically stable and prevents the release of radioactive substances.

[発明の構成] (問題点を解決するための手段) 本発明の放射性廃棄物の固化処理方法は、原子力施設で
発生した放射性廃棄物を、(イ)アルミナセメン1−と
、(ロ)骨材と、〈ハ)無機質流動化材と、(ニ)分散
剤とを混合した水硬性固化材によって一体に固化させる
ことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The method for solidifying radioactive waste of the present invention is to process radioactive waste generated at a nuclear facility into (a) alumina cement 1- and (b) bones. (c) an inorganic fluidizing agent; and (d) a dispersing agent.

本発明で使用される(口)成分の骨材としては、例えば
アルミナ粒、シャモット粒、天然に存在する砂、砂利、
岩石の破砕物およびこれらの混合物が使用可能である。
The (oral) component aggregates used in the present invention include, for example, alumina grains, chamotte grains, naturally occurring sand, gravel,
Crushed rocks and mixtures thereof can be used.

また(ハ)成分の無機質流動化材としては、半径5μm
以下のアルミナ質微粉、シリカ質微粉の無機質酸化物お
よびこれらの混合物が使用可能である。
In addition, as the inorganic fluidizing material of component (c), the radius is 5 μm.
The following inorganic oxides of alumina fine powder, siliceous fine powder, and mixtures thereof can be used.

(ニ)成分の分散剤としては、縮合リン酸塩、ポリカル
ボン酸型高分子界面活性剤、珪酸アルカリおよびこれら
の混合物が使用可能である。上記の縮合リン酸塩として
は、例えばビロリン酸ソーダ、酸性ビロリン酸ソーダ、
トリポリリン酸ソーダ、テ1〜ラボリリン酸ソーダ、メ
タリン酸ソーダ、β−ナフタリンスルホン酸ホルマリン
高縮合物ナトリウム塩等が例示される。
As the dispersant for component (d), condensed phosphates, polycarboxylic acid type polymeric surfactants, alkali silicates, and mixtures thereof can be used. Examples of the above condensed phosphates include sodium birophosphate, acidic sodium birophosphate,
Examples include sodium tripolyphosphate, sodium te1-laboriphosphate, sodium metaphosphate, and β-naphthalenesulfonic acid formalin high condensate sodium salt.

これらの成分の配合量は、(イ)成分のアルミナセメン
トが15〜50重間部、(ロ)成分の骨材が30〜75
重色部、(ハ)成分の無機質流動化材が10〜20重量
部の合計100重量部に対し、分散剤0,05〜0.5
重足部および添加水8〜20重量部が適当である。この
構成により、添加水の伍を可能な限り少量とし、固化体
強度等の物性の良好な固化体を得ることができる。
The blending amounts of these components are (a) 15 to 50 parts of alumina cement, and 30 to 75 parts of aggregate (b).
0.05 to 0.5 parts by weight of the dispersant per 100 parts by weight of the heavy colored part and 10 to 20 parts by weight of the inorganic fluidizing agent component (c).
8 to 20 parts by weight of the heavy foot and added water is suitable. With this configuration, the amount of added water can be kept as small as possible, and a solidified body with good physical properties such as solidified body strength can be obtained.

アルミナセメントの配合量が15重量部未満では固化体
の十分な強度および早硬性が得られず、50重R部を越
えるとアルミナセメント硬化時の収縮によるクラックが
発生したり、固化材中の水分量が多くなるという問題が
起こるようになる。
If the amount of alumina cement is less than 15 parts by weight, the solidified product will not have sufficient strength and quick hardening properties, and if it exceeds 50 parts by weight, cracks may occur due to shrinkage during hardening of the alumina cement, or moisture in the solidifying material may occur. Problems arise as the amount increases.

骨材の配合量が30重退部未満では同様にクラックが発
生しやすく、逆に75重量部を越えると十分な固化体強
度が得られず、また流動性も低下するJ:うになる。
If the amount of aggregate is less than 30 parts by weight, cracks are likely to occur, and if it exceeds 75 parts by weight, sufficient solidified strength cannot be obtained and fluidity is also reduced.

また無機質流動化材の配合量は、10重量部未満でも2
0重世部を越えても固化材の流動性が低下し、また20
重退部を越えると収縮によるクラックが発生するように
なる。
In addition, even if the amount of inorganic fluidizing agent is less than 10 parts by weight,
The fluidity of the solidified material decreases even if the temperature exceeds 0.
Cracks begin to occur due to shrinkage beyond the overlapped part.

分散剤添加値の配合aは0.05重量部未満では分散効
果が低下し、また0、5重量部を越えると固化材に適度
の粘性が得られず、また十分な流動性が得られなくなる
If the dispersant addition value of formulation a is less than 0.05 parts by weight, the dispersion effect will decrease, and if it exceeds 0.5 parts by weight, the solidifying material will not have adequate viscosity or sufficient fluidity. .

(作用) 本発明において無機質結合材として用いたアルミナセメ
ントは、カルシウムアルミネートを主成分とするセメン
トであり耐火性と化学薬品に対でる抵抗性に優れている
ので、このアルミナセメントを用いた固化材で固化体を
生成することによって、耐火性および化学薬品に対する
抵抗性に浸れた放射性廃棄物の固化体を得ることができ
る。またアルミナセメントの早硬性により短時間で固化
体を形成することかできる。そのため固化材の凝結時間
が短く、ペレットが固化材中の水分を吸収して膨潤した
りペレットから塩が溶出したりする等の現象が起こりに
くい。
(Function) The alumina cement used as the inorganic binder in the present invention is a cement whose main component is calcium aluminate and has excellent fire resistance and chemical resistance. By producing a solidified body with materials, it is possible to obtain a solidified body of radioactive waste imbued with fire resistance and resistance to chemicals. Furthermore, due to the quick hardening properties of alumina cement, a solidified product can be formed in a short period of time. Therefore, the coagulation time of the solidifying material is short, and phenomena such as swelling of the pellets due to absorption of moisture in the solidifying material and salt elution from the pellets are unlikely to occur.

また骨材は、アルミナセメントが硬化する際の収縮を防
止し、得られた固化体の強度を向上させて、固化体中で
は粒子のまま存在する。そしてこの骨材の添加によりア
ルミナセメント使用匠を少聞にすることができ、その結
果アルミナセメントを硬化させるために固化材中に含ま
れる水分量も少量にすることができる。
Moreover, the aggregate prevents shrinkage when the alumina cement hardens, improves the strength of the obtained solidified body, and exists as particles in the solidified body. By adding this aggregate, the amount of alumina cement used can be reduced, and as a result, the amount of water contained in the hardening agent for hardening the alumina cement can also be reduced.

分散剤と無機質流動化材は、本発明の固化材を用いて固
化体を生成する場合に、無機質流動化材の粒子−個一個
が分散剤の作用により分散され、アルミナセメントと骨
材の粒子との間に入り込み、これらの粒子間の滑りを向
上させる。また同時にアルミナセメント粒子のうちの微
細粒子も同様に分散され、他の大粒径のアルミナセメン
ト粒子と骨材粒子の間に入り込む。その結果スラリー状
の固化材中の粒子は分散剤の作用により均一分散し、動
きやすい状態となる。従って、例えば容器中に予め放射
性廃棄物を充填した後に上記スラリー状固化材を注入し
固化させるような、隙間なく充填することが難しい場合
でも、固化材は廃棄物の表面を流れ易く容易に容器内を
完全に隙間なく充填することができる。
The dispersant and the inorganic fluidizing agent are used to form a solidified body using the solidifying agent of the present invention, in which individual particles of the inorganic fluidizing agent are dispersed by the action of the dispersing agent, and particles of the alumina cement and aggregate are dispersed. and improves the sliding between these particles. At the same time, fine particles among the alumina cement particles are similarly dispersed and enter between other large-sized alumina cement particles and aggregate particles. As a result, the particles in the slurry-like solidified material are uniformly dispersed by the action of the dispersant and become easily movable. Therefore, even in cases where it is difficult to fill the container without gaps, such as by filling radioactive waste in advance into a container and then injecting and solidifying the slurry-like solidifying material, the solidifying material flows easily over the surface of the waste and is easily inserted into the container. The interior can be completely filled without any gaps.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1〜4 第1表に示す組成で、アルミナセメンi・と骨材および
無機質流動化剤とを均一に混合し、分散剤を添加水に溶
かした水溶液を加えこれらを混練し、4種類のスラリー
状固化材を得た。第1表の数値は重量品で示しである。
Examples 1 to 4 With the composition shown in Table 1, alumina cement i., aggregate, and an inorganic fluidizing agent were uniformly mixed, an aqueous solution of a dispersant dissolved in added water was added, and these were kneaded. A slurry solidified material was obtained. The values in Table 1 are based on weight.

なお表中の比較例は、ポルトランドセメントを結合剤と
して用い、第1表に示す組成で同様にしてスラリー状の
固化材としたものである。この時分散剤としてβ−ナフ
タリンスルホン酸ホルマリン高縮合物ナトリウム塩水溶
液を用いた。この時使用したアルミナセメントおよびポ
ルトランドセメントの化学成分を第2表に示ず。
In the comparative example in the table, a solidified material in the form of slurry was similarly prepared using Portland cement as a binder and having the composition shown in Table 1. At this time, a β-naphthalene sulfonic acid formalin high condensate sodium salt aqueous solution was used as a dispersant. The chemical components of the alumina cement and portland cement used at this time are not shown in Table 2.

(以下余白) まず核燃料再処理工場から発生する濃縮廃液を模擬した
硝酸ソーダ主成分の模擬濃縮廃液を乾燥後、造粒して得
られたペレットを予め容器に充填し、この容器内に上述
した各固化材を室温にて注入充填した。このときの各固
化材の粘度は第3表に示す通りであった。いずれも流動
性が良好で充填状況は良好であった。また各固化材の凝
結時開も合せて第3表に示した。
(Left below) First, after drying a simulated concentrated waste liquid containing sodium nitrate as its main component, which simulates the concentrated waste liquid generated from a nuclear fuel reprocessing plant, the pellets obtained by granulation are filled into a container in advance, and the above-mentioned Each solidifying material was injected and filled at room temperature. The viscosity of each solidifying agent at this time was as shown in Table 3. All had good fluidity and good filling conditions. Table 3 also shows the opening rate of each solidifying material upon setting.

第3表に示したように、アルミナセメントを結合剤とし
て用いた固化材は短時間で凝結が始まり、従って短時間
で凝結が終了した。このようにアルミナセメントを用い
た実施例の固化材は早硬性であって短時間でペレット等
の放射性廃棄物を固化することができ、凝結中にペレッ
トが固化材中の水分を吸収して膨潤したりペレットから
塩が溶出するような現象が起こりにくい。また、放射性
廃棄物の固化体パッケージを運搬、移動の際には、固化
体パッケージが転倒しても容器内の放射性物質がこぼれ
出て周囲を汚染してしまうことがないよう、完全に固化
体の硬化が終了するまで固化体パッケージを一時貯蔵す
る必要があるが、短時間で固化材の硬化が終了すれば、
貯蔵時間も短くてすみその結果貯蔵に必要なスペースを
縮小することができ、経済的な節約にもなる。
As shown in Table 3, the solidifying material using alumina cement as a binder started setting in a short time, and therefore finished setting in a short time. In this way, the solidification material of the example using alumina cement has quick hardening properties and can solidify radioactive waste such as pellets in a short time, and during solidification, the pellets absorb moisture in the solidification material and swell. Phenomena such as salt leaching or salt elution from the pellets are less likely to occur. In addition, when transporting or moving solidified radioactive waste packages, we ensure that they are completely solidified so that even if the solidified package falls over, the radioactive material inside the container will not spill out and contaminate the surrounding area. It is necessary to temporarily store the solidified package until the hardening of the solidified material is completed, but if the hardening of the solidified material is completed in a short time,
The storage time is also short, and as a result the space required for storage can be reduced, resulting in economic savings.

そして形成された固化体はブリージングやクラックの発
生もなく良好な外観の強固な固化体であった。
The formed solidified body was a strong solidified body with good appearance and no bleeding or cracking.

さらに固化体の一軸圧縮強度について調べるために、実
施例および比較例の固化材について、模擬廃棄物のペレ
ットを含まない固化材のみを50M(直径) x 10
0m (高さ)の寸法にて固化したところ第4表に示す
通りであった。
Furthermore, in order to investigate the unconfined compressive strength of the solidified materials, for the solidified materials of Examples and Comparative Examples, only the solidified materials that do not contain simulated waste pellets were tested at 50M (diameter) x 10.
When solidified at a size of 0 m (height), the results were as shown in Table 4.

第4表 次に形成された固化体の耐火性を評価するために、実施
例および比較例の固化材を、200J2ドラム缶に充填
して固化体を作り、800℃に加熱された焼成炉中に保
持し固化体の変化を観察した。その結果を第5表に示す
Table 4 In order to evaluate the fire resistance of the solidified bodies formed, the solidified bodies were prepared by filling a 200J2 drum with the solidifying materials of Examples and Comparative Examples, and placed in a firing furnace heated to 800°C. The sample was held and changes in the solidified material were observed. The results are shown in Table 5.

(以下余白) 第5表 実施例の固化材から形成した固化体には亀裂や破損によ
る脱落は見られなかったが、比較例の固化材から形成し
た固化体は、加熱面に亀裂が発生し表面が塊状になって
脱落した。この結果かられかるように、アルミナセメン
トを結合剤として用いることにより耐火性に優れた固化
材を得ることができ、放射性廃棄物を耐火性に優れた固
化体パッケージとして処理することができる。その結果
、放射性廃棄物の固化体の輸送保管や貯蔵あるいは処分
等の際に火災が起きた場合にも、固化体はほとんど劣化
せず、放射性廃棄物を安全に取扱いおよび管理すること
ができる。
(Margins below) Table 5: No cracks or breakage were observed in the solidified bodies formed from the solidified materials of Examples, but cracks occurred on the heated surface of the solidified bodies formed from the solidified materials of Comparative Examples. The surface became lumpy and fell off. As can be seen from these results, by using alumina cement as a binder, a solidified material with excellent fire resistance can be obtained, and radioactive waste can be processed as a solidified package with excellent fire resistance. As a result, even if a fire occurs during transportation, storage, or disposal of solidified radioactive waste, the solidified material will hardly deteriorate, and radioactive waste can be safely handled and managed.

実施例5 次に第6表に示す組成で実施例および比較例と同様にし
てスラリー状の固化材を得た。
Example 5 Next, a slurry solidified material was obtained using the composition shown in Table 6 in the same manner as in the Examples and Comparative Examples.

そして第7表に示した内容の模擬雑固体廃棄物148K
gをドラム缶に入れた後、上述した固化材を注入し固化
させた。
and 148K of simulated miscellaneous solid waste with the contents shown in Table 7.
After putting g into a drum, the above-mentioned solidifying material was injected and solidified.

(以下余白) 第7表 このとき使用したアルミナセメントの化学成分は第2表
に示したものと同じである。また充填に要した固化材量
は335kgであった。この結果、固化材注入後4時間
にて凝結が終了し隙間のない緻密な固化体が得られた。
(Left below) Table 7 The chemical components of the alumina cement used at this time are the same as those shown in Table 2. The amount of solidified material required for filling was 335 kg. As a result, coagulation was completed 4 hours after the injection of the solidifying material, and a dense solidified body with no gaps was obtained.

この結果かられかるように、無機質流動化材と分散材を
加えた固化材は低粘性で流動性が大きいので、雑固体等
の放射性廃棄物を隙間のない緻密な固化体パッケージと
して処理することができる。
As can be seen from this result, the solidification material containing an inorganic fluidization agent and a dispersion material has low viscosity and high fluidity, so it is possible to treat radioactive waste such as miscellaneous solids as a dense solidified package with no gaps. Can be done.

[発明の効果〕 以上説明したように、本発明によれば放射性廃棄物を耐
火性に優れ、長期にわたって化学的にも機械的にも安定
で、かつ放射性物質の放出を防止した固化体パッケージ
として短時間で一体に固化することができる。
[Effects of the Invention] As explained above, according to the present invention, radioactive waste can be converted into a solidified package that has excellent fire resistance, is chemically and mechanically stable over a long period of time, and prevents the release of radioactive substances. It can be solidified in a short time.

Claims (6)

【特許請求の範囲】[Claims] (1)原子力施設で発生した放射性廃棄物を、(イ)ア
ルミナセメントと、 (ロ)骨材と、 (ハ)無機質流動化材と、 (ニ)分散剤と を混合した水硬性固化材によって、一体に固化させるこ
とを特徴とする放射性廃棄物の固化処理方法。
(1) Radioactive waste generated at nuclear facilities is treated with a hydraulic solidifying agent that is a mixture of (a) alumina cement, (b) aggregate, (c) inorganic fluidizing agent, and (d) dispersant. , a method for solidifying radioactive waste characterized by solidifying it in one piece.
(2)放射性廃棄物が、ペレットおよび雑固体から選ば
れた1種または2種以上からなることを特徴とする特許
請求の範囲第1項記載の放射性廃棄物の固化処理方法。
(2) The method for solidifying radioactive waste according to claim 1, wherein the radioactive waste is composed of one or more selected from pellets and miscellaneous solids.
(3)骨材が、アルミナ粒、シャモット粒、天然に存在
する砂、砂利および岩石の破砕物から選ばれた1種また
は2種以上からなることを特徴とする特許請求の範囲第
1項または第2項記載の放射性廃棄物の固化処理方法。
(3) The aggregate consists of one or more types selected from alumina grains, chamotte grains, naturally occurring sand, gravel, and crushed rock materials; The method for solidifying radioactive waste as described in paragraph 2.
(4)無機質流動化材が、粒径5μm以下の、アルミナ
質微粉およびシリカ質微粉等の無機質酸化物のうちから
選ばれた1種または2種以上からなることを特徴とする
特許請求の範囲第1項ないし第3項のいずれか1項記載
の放射性廃棄物の固化処理方法。
(4) Claims characterized in that the inorganic fluidizing agent is made of one or more inorganic oxides selected from inorganic oxides such as alumina fine powder and silica fine powder with a particle size of 5 μm or less. The method for solidifying radioactive waste according to any one of paragraphs 1 to 3.
(5)分散剤が、縮合リン酸塩、ポリカルボン酸型高分
子界面活性剤、ケイ酸アルカリおよびβ−ナフタリンス
ルホン酸ホルマリン高縮合物ナトリウム塩から選ばれた
1種または2種以上からなることを特徴とする特許請求
の範囲第1項ないし第4項のいずれか1項記載の放射性
廃棄物の固化処理方法。
(5) The dispersant consists of one or more selected from condensed phosphates, polycarboxylic acid-type polymer surfactants, alkali silicate, and formalin high condensate sodium salt of β-naphthalenesulfonic acid. A method for solidifying radioactive waste according to any one of claims 1 to 4, characterized in that:
(6)固化材の配合量が、(イ)のアルミナセメントが
15〜50重量部、(ロ)の骨材が30〜75重量部、
(ハ)の無機質流動化材が10〜20重量部の合計10
0重量部に対し、分散剤が0.05〜0.5重量部、添
加水が8〜20重量部であることを特徴とする特許請求
の範囲第1項ないし第5項のいずれか1項記載の放射性
廃棄物の固化処理方法。
(6) The blending amount of the solidifying agent is (a) 15 to 50 parts by weight of alumina cement, and (b) 30 to 75 parts by weight of aggregate.
The inorganic fluidizing agent (c) is 10 to 20 parts by weight, a total of 10
0 parts by weight, the dispersant is 0.05 to 0.5 parts by weight, and the added water is 8 to 20 parts by weight. The solidification treatment method for radioactive waste described.
JP61111941A 1986-05-16 1986-05-16 Method for solidifying radioactive waste Expired - Lifetime JPH0727074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111941A JPH0727074B2 (en) 1986-05-16 1986-05-16 Method for solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111941A JPH0727074B2 (en) 1986-05-16 1986-05-16 Method for solidifying radioactive waste

Publications (2)

Publication Number Publication Date
JPS62267699A true JPS62267699A (en) 1987-11-20
JPH0727074B2 JPH0727074B2 (en) 1995-03-29

Family

ID=14573981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111941A Expired - Lifetime JPH0727074B2 (en) 1986-05-16 1986-05-16 Method for solidifying radioactive waste

Country Status (1)

Country Link
JP (1) JPH0727074B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167297A (en) * 1986-12-29 1988-07-11 株式会社東芝 Solidifying processing method of radioactive waste
WO1989011149A1 (en) * 1988-05-02 1989-11-16 Hitachi, Ltd. Process for cementing radioactive waste and product of cementation
JPH09211194A (en) * 1996-01-30 1997-08-15 Toshiba Corp Method for solidifying radioactive waste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215999A (en) * 1985-03-22 1986-09-25 電気化学工業株式会社 Solidifying agent for radioactive waste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215999A (en) * 1985-03-22 1986-09-25 電気化学工業株式会社 Solidifying agent for radioactive waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167297A (en) * 1986-12-29 1988-07-11 株式会社東芝 Solidifying processing method of radioactive waste
WO1989011149A1 (en) * 1988-05-02 1989-11-16 Hitachi, Ltd. Process for cementing radioactive waste and product of cementation
US5114622A (en) * 1988-05-02 1992-05-19 Hitachi, Ltd. Method of cementing radioactive waste and cemented body
JPH09211194A (en) * 1996-01-30 1997-08-15 Toshiba Corp Method for solidifying radioactive waste

Also Published As

Publication number Publication date
JPH0727074B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US4363757A (en) Method for noncontaminating solidification for final storage of aqueous, radioactive waste liquids
EP0719243B1 (en) Grouting materials and their use
EP0709859B1 (en) Process for solidifying radioactive wastes
JPS58155398A (en) Method of solidifying radioactive waste
US4173546A (en) Method of treating waste material containing radioactive cesium isotopes
JPS645678B2 (en)
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPS58195200A (en) Method of improving reservation of radioactive nuclide at solidifying radioactive waste
FI129112B (en) Method for treating and solidifying liquid waste
JPS62267700A (en) Method of solidifying and processing radioactive waste
JP2003502623A (en) Radioactive waste disposal
JPS61178698A (en) Method of hardening water glass
JPH03150499A (en) Solidification of radioactive waste
JP2993486B2 (en) Radioactive waste filling container and solidified radioactive waste
JP3833294B2 (en) Solidification method of radioactive waste
JPS63243798A (en) Solidifying processing method of radioactive waste
JPS623698A (en) Solidifying processing method of radioactive waste
JPH06300893A (en) Solidifying material for radioactive waste
JP2521697B2 (en) Method for solidifying radioactive waste
JPS63115099A (en) Method of processing radioactive waste
JP2993485B2 (en) Solidification material for radioactive waste and method for solidifying radioactive waste
JPS63167297A (en) Solidifying processing method of radioactive waste
JPH10104393A (en) Solidifying material for radioactive material, solidification processing method for radioactive material and solid
JPS63121799A (en) Solidifying processing method of high-level radioactive waste
JPH0252999B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term