JPS598694A - Apparatus for crystal growth - Google Patents

Apparatus for crystal growth

Info

Publication number
JPS598694A
JPS598694A JP11890382A JP11890382A JPS598694A JP S598694 A JPS598694 A JP S598694A JP 11890382 A JP11890382 A JP 11890382A JP 11890382 A JP11890382 A JP 11890382A JP S598694 A JPS598694 A JP S598694A
Authority
JP
Japan
Prior art keywords
raw material
inner tube
crucible
holes
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11890382A
Other languages
Japanese (ja)
Other versions
JPS5933552B2 (en
Inventor
Kiyoshi Yoshikawa
吉川 清
Toshiro Matsui
松井 都四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11890382A priority Critical patent/JPS5933552B2/en
Publication of JPS598694A publication Critical patent/JPS598694A/en
Publication of JPS5933552B2 publication Critical patent/JPS5933552B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the diffusion of air in a crystal growth furnace, and to enable continuous replenishing of the raw material for a long period, by using a raw material feed pipe having double-wall structure, boring a plurality of holes to the wall of the inner tube near the opening end to the crucible, and feeding inert gas through the holes to the furnace. CONSTITUTION:About 3min after the diameter of the crystal 17 has reached the target level, i.e. about 100mm., granular polycrystalline silicon is charged into the crucible at a rate of about 18g/min. At the same time, argon gas having a pressure higher than the atmospheric pressure by about 0.1kg/cm<2> is introduced through the gas inlet 22 and discharged from both ends of the inner tube 201. The granular polycrystalline silicon is scattered by the jet flow of the gas and dropped into the crucible 11. The diffusion of air in the furnace and the choke of the inner tube 201 can be prevented and the continuous replenish of the raw material becomes possible by adjusting the size and the number of the holes 21 bored to the inner tube 201 to proper levels in connection with the diameter of the inner tube 201 of the raw material feed pipe 20.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は結晶成長装置に係り、特にそのルツボに成長
すべき結晶の原料を補給する手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a crystal growth apparatus, and particularly to a means for supplying raw materials for crystals to be grown into a crucible thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よシ、Vリコン等の結晶成長には第1図のようなチ
ョクラルスキー型の結晶引上げ装置が用いられている。
Conventionally, a Czochralski type crystal pulling apparatus as shown in FIG. 1 has been used for crystal growth of V recon and the like.

この結晶引上げ装置では、たとえば原料となる多結晶シ
リコンをルツボ11に入れた後ヒータ(加熱装置)12
によって多結晶シリコンを溶解してシリコン融液16を
形成し、ルツボ11の上方に設けた引上げ軸130種結
晶チャック部14にシリコン結晶からがる細い種結晶1
5を取り付けた後、引上げ軸13を降下させて種結I&
15の下端をルツボ11内のシリコン融液16に浸し、
ついで引上軸13をルツボ11に対して相対的に回転さ
せながら徐々に引上げることにより、種結晶15の下端
にvリコン結晶17を成長させ所望のインゴットを製造
する。
In this crystal pulling apparatus, for example, after polycrystalline silicon as a raw material is placed in a crucible 11, a heater (heating device) 12 is used.
The polycrystalline silicon is melted to form a silicon melt 16, and a thin seed crystal 1 from a silicon crystal is attached to a pulling shaft 130 provided above the crucible 11 and a seed crystal chuck part 14.
5, lower the pulling shaft 13 and set the seed I&
15 is immersed in the silicon melt 16 in the crucible 11,
Next, by gradually pulling up the pulling shaft 13 while rotating it relative to the crucible 11, a v-recon crystal 17 is grown at the lower end of the seed crystal 15, and a desired ingot is manufactured.

従来の一般的な装置では、多結晶シリコンを引上げ工程
の仕込み段階でルツボに入れるだけであるため、原料を
一回の引上げ相当分のみしか溶かすことしか出来ない。
With conventional general equipment, polycrystalline silicon is only put into the crucible at the preparation stage of the pulling process, so it is only possible to melt the raw material equivalent to one pulling process.

これでは著しく不経済である。このため、第2図に示す
ように容器18を貫通して粒状原料を補給する原料導入
管19を設けることが提案されでいる。この装置では、
結晶17が所定の直径に達した時点よシ、結晶成長重量
と同量の粒状多結晶シリコンを容器1B功外部より原料
導入管1gを介してルツボ11内に補給する。
This is extremely uneconomical. For this reason, it has been proposed to provide a raw material introduction pipe 19 that penetrates the container 18 and supplies the granular raw material, as shown in FIG. With this device,
When the crystal 17 reaches a predetermined diameter, granular polycrystalline silicon in an amount equal to the crystal growth weight is supplied into the crucible 11 from the outside of the container 1B through the raw material introduction pipe 1g.

しかしながらこの方式では次のようか欠点があった。However, this method had the following drawbacks.

■ 原料導入管より炉内に空気が拡散されるため、シ゛
リコン融液16の酸化及びカーボン部材の劣化が生じる
(2) Since air is diffused into the furnace from the raw material introduction pipe, oxidation of the silicon melt 16 and deterioration of the carbon member occur.

■ 原料導入管が煙突作用をする事により容器18内の
ガス及び酸化物が容器18の外部に搬出されると同時に
酸化物は原料導入管内壁に付着する。この状態で長時間
使用すると原料導入管は酸化物により塞がれ粒状多結晶
シリコンの補給が出来なくなる。
(2) As the raw material introduction pipe acts as a chimney, the gas and oxides in the container 18 are carried out to the outside of the container 18, and at the same time, the oxides adhere to the inner wall of the raw material introduction pipe. If it is used for a long time in this state, the raw material introduction pipe will be blocked by oxides, making it impossible to replenish the granular polycrystalline silicon.

このような欠点を取り除く方法として、原料導入管の導
入口に閉塞用の栓又はコックを設けることも考えられて
いる(例えば特開昭56−164096号公報)。しか
し力から、栓又はコックによる空気の遮断や酸化物付着
防止法では連続的た原料供給ができず、閉塞の度に原料
供給が停止される間欠供給にならざるを得ない。
As a method of eliminating such drawbacks, it has been considered to provide a plug or cock for closing the inlet of the raw material inlet pipe (for example, Japanese Patent Application Laid-Open No. 164096/1982). However, due to the force, it is not possible to continuously supply the raw material by blocking the air with a stopper or cock or using methods to prevent oxide adhesion, and the raw material supply must be stopped intermittently every time there is a blockage.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に嫉み、原料導入管を介して空気が炉
内に拡散することを防止し、また原料導入管が酸化物等
により閉塞されることを防止して、しかも長時間のiψ
続的な原料補給を可能とした結晶成長装置を提供するも
のである。
In view of the above points, the present invention prevents air from diffusing into the furnace through the raw material inlet pipe, prevents the raw material inlet pipe from being blocked by oxides, etc.
The present invention provides a crystal growth apparatus that enables continuous supply of raw materials.

〔発明の概要〕[Summary of the invention]

本発明において1・工、原料導入管を二重g構造とする
。円管が粒状原料を補給するためのものであって、その
ルツボ側開口端近傍の管壁には複数の孔が設けられてい
る。そして外管に不活性ガスを供給し、これを上記複数
の孔を通して内管内に放出させる・ようにする。
In the present invention, 1. The raw material introduction pipe has a double G structure. A circular tube is used to supply the granular raw material, and a plurality of holes are provided in the tube wall near the open end on the crucible side. Then, an inert gas is supplied to the outer tube and released into the inner tube through the plurality of holes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、内管の径と、内管に設けられる複数の
孔の径および密度を適肖な条件に設定することによって
、空気の炉内への拡散を防止し、また内管が酸化物等に
より閉塞されるのを防止しながら、連続的な原料補給に
よる連続的な結晶成長が可能となる。
According to the present invention, by setting the diameter of the inner tube and the diameter and density of the plurality of holes provided in the inner tube to appropriate conditions, diffusion of air into the furnace is prevented, and the inner tube is Continuous crystal growth is possible by continuous supply of raw materials while preventing blockage by oxides and the like.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例装置を示す縦断面図である。 FIG. 3 is a longitudinal sectional view showing an apparatus according to an embodiment of the present invention.

第2図と対応する部分には第2図と同一符号を付して詐
細な説明は省く。第2図と基本的に異なるのは、粒状原
料を補給する原料導入管20として内管20□と外管2
0!からなる二重管構造を用いていることである。原料
導入管20の材質は石英ガラスである。内管20、はそ
の原料投入口23が漏斗状に開口し、ルツボ11側の開
口端近傍の管壁には複数の孔21が設けられている。外
管20.はその両端部が内管201の両端部にシールさ
れており、原料投入口23側の端部にガス導入口22が
設けられている。外管20.には、ガス導入口22から
、容器18内に導入している非反応性のアルゴンが不と
同種のアルゴンガスが送られ、同ガスは内管201内に
孔21を通して放出されてルツボ11側と原料投入口2
Jの両方に流出するように設計されている。
Portions corresponding to those in FIG. 2 are given the same reference numerals as in FIG. 2, and detailed explanations will be omitted. The basic difference from Fig. 2 is that the inner pipe 20□ and the outer pipe 2 are used as the raw material introduction pipe 20 for replenishing granular raw materials.
0! It uses a double tube structure consisting of. The material of the raw material introduction tube 20 is quartz glass. The inner tube 20 has a raw material inlet 23 opened in the shape of a funnel, and a plurality of holes 21 are provided in the tube wall near the open end on the crucible 11 side. Outer tube 20. Both ends thereof are sealed to both ends of the inner tube 201, and a gas introduction port 22 is provided at the end on the raw material input port 23 side. Outer tube 20. Argon gas, which is the same type as the non-reactive argon introduced into the container 18, is sent from the gas inlet 22 to the crucible 11 side through the hole 21 in the inner tube 201. and raw material input port 2
It is designed to flow into both J.

このような構成として、結晶引上げ開始後、結晶17の
直径が目標値の100關に々り、その後3分経過した時
点よ多粒状の多結晶シリコンを毎分18gr投入する。
With such a configuration, after the diameter of the crystal 17 reaches the target value of 100 degrees after starting crystal pulling, 18 gr of multi-grain polycrystalline silicon is injected per minute after 3 minutes have elapsed.

これと同時にガス導入口22からアルゴンガスを大気圧
より0.1にツカ1だけ増圧して供給し、内管20□の
両端へ放出させる。これによ〕、粒状多結晶シリコンは
、ガスの噴流によ)舞い上がりながらもルツボ11へ落
下していく。
At the same time, argon gas is supplied from the gas inlet 22 at a pressure increased by 1 to 0.1 from the atmospheric pressure, and is discharged to both ends of the inner tube 20□. As a result, the granular polycrystalline silicon falls into the crucible 11 while flying up (by the gas jet).

このようにして、長時間の連続的が結晶成長を可能とす
るKは、原料導入管20の円管201の中間に酸化物の
付着や生成物質の堆積が起こらkいことが必要である。
In this way, K, which enables continuous crystal growth over a long period of time, must not cause oxide adhesion or product deposition in the middle of the circular pipe 201 of the raw material introduction pipe 20.

その最適条件についての実験データを以下に説明する。Experimental data regarding the optimum conditions will be explained below.

ガス放出を行う孔21の直径と孔数を種々変えて実験を
行った。孔21の直径は0.1111よシo、 1鶴毎
に1.211まで実験対象とし、孔数は1♂またり3個
より12個までを採用した。ガス圧および容器18内温
度、原料投入量を同一とすると、内管20、が閉塞しな
い条件は非常に限定されたものであることが判明した。
Experiments were conducted by varying the diameter and number of holes 21 through which gas is released. The diameter of the hole 21 was from 0.1111 to 1.211 for each crane, and the number of holes was from 3 to 12 for each crane. It has been found that when the gas pressure, the temperature inside the container 18, and the amount of raw material input are the same, the conditions under which the inner tube 20 does not become clogged are very limited.

第4図はこの実験の結果であって、縦軸に孔21の直径
、横軸に孔の分布密度をとったものである。○印は連続
供給を行っても内管201が閉塞しないところ、X印は
内管201が閉塞して原料供給が不可能となった点であ
る。図から明らかなように、○印はほぼ直線上にあり、
この直線上またはその近傍に孔21の径と密度を設定す
ることによシ、連続的な原料供給が可能である。彦お、
内管20.の径を大きくすると、第4図の破線で示す直
線は上方に平行移動することが確認された。
FIG. 4 shows the results of this experiment, with the diameter of the holes 21 plotted on the vertical axis and the distribution density of the holes plotted on the horizontal axis. The circle mark indicates a point where the inner tube 201 is not blocked even if continuous supply is performed, and the X mark indicates a point where the inner tube 201 is blocked and raw material supply becomes impossible. As is clear from the figure, the ○ marks are almost on a straight line,
By setting the diameter and density of the holes 21 on or near this straight line, continuous raw material supply is possible. Hikoo,
Inner tube 20. It was confirmed that when the diameter of the straight line is increased, the straight line shown by the broken line in FIG. 4 moves upward in parallel.

こうして本実施例によれば、原料導入管20の内管20
.の径との関係で内管20.に設ける孔21の径および
密度を適当な値に設定することにより、空気の炉内への
拡散や内管20゜の閉塞を防止して、連続的な原料補給
が可能となる。
Thus, according to this embodiment, the inner pipe 20 of the raw material introduction pipe 20
.. Inner tube 20. By setting the diameter and density of the holes 21 to appropriate values, it is possible to prevent air from diffusing into the furnace and from clogging the inner tube 20°, making it possible to continuously replenish raw materials.

なお、原料導入管20の材料として、石英ガラスの代り
に高純度アルミナや焼結窒化ケイ累などを用いることも
できる。
Note that as the material for the raw material introduction tube 20, high-purity alumina, sintered silicon nitride, or the like may be used instead of quartz glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な結晶成長装置を示す図、第2図
はこれに原料導入管を設けた従来の結晶成長装置を示す
図、第3図は本発明の一実施例の結晶成長装置を示す図
、第4図は原料の連続補給を可能とする条件を求める実
験データを示す図である。 1ノ・・・ルツボ、12・・・ヒータ、13・・・引上
げ軸、14・・・種結晶チャック部、15・・・種結晶
、16・・・シリコンM液、17・・・シリコン結晶、
18・・・容器、20・・・原料導入管、20.−8.
内管、20、・・・外管、21・・・孔、22・・・ガ
ス導入口、23・・・原料投入口。 出顧人代理人 弁珈士 鈴 江 武 音電1図 才2vA 3 419 8 16 オ3図
Fig. 1 is a diagram showing a conventional general crystal growth apparatus, Fig. 2 is a diagram showing a conventional crystal growth apparatus equipped with a raw material introduction pipe, and Fig. 3 is a diagram showing a crystal growth apparatus according to an embodiment of the present invention. A diagram showing the apparatus and FIG. 4 are diagrams showing experimental data for determining conditions that enable continuous replenishment of raw materials. 1 No... Crucible, 12... Heater, 13... Pulling shaft, 14... Seed crystal chuck part, 15... Seed crystal, 16... Silicon M liquid, 17... Silicon crystal ,
18... Container, 20... Raw material introduction pipe, 20. -8.
Inner pipe, 20,... Outer pipe, 21... Hole, 22... Gas inlet, 23... Raw material input port. Investor's agent Takeshi Suzue Sound Den 1 diagram 2vA 3 419 8 16 O3 diagram

Claims (1)

【特許請求の範囲】[Claims] 原料融液を収容したルツボに容器外から粒状原料を補給
する原料導入管を備えた結晶成長装置において、前記原
料導入管を二重管構造とし、粒状原料を導入する内管の
ルツボ側開口端近傍の管壁に複数個の孔を設け、外管に
不活性ガスを供給してこれを前記複数の孔から内管内に
導入するように構成したことを特徴とする結晶成長装置
In a crystal growth apparatus equipped with a raw material introduction pipe for supplying granular raw materials from outside the container to a crucible containing a raw material melt, the raw material introduction pipe has a double pipe structure, and an open end on the crucible side of the inner pipe for introducing the granular raw materials. A crystal growth apparatus characterized in that a plurality of holes are provided in a wall of a nearby tube, and an inert gas is supplied to an outer tube and introduced into the inner tube through the plurality of holes.
JP11890382A 1982-07-08 1982-07-08 crystal growth equipment Expired JPS5933552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11890382A JPS5933552B2 (en) 1982-07-08 1982-07-08 crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11890382A JPS5933552B2 (en) 1982-07-08 1982-07-08 crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS598694A true JPS598694A (en) 1984-01-17
JPS5933552B2 JPS5933552B2 (en) 1984-08-16

Family

ID=14748016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11890382A Expired JPS5933552B2 (en) 1982-07-08 1982-07-08 crystal growth equipment

Country Status (1)

Country Link
JP (1) JPS5933552B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437491A (en) * 1987-08-03 1989-02-08 Toshiba Ceramics Co Silicon single crystal pulling-up apparatus
EP0945528A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
EP0945529A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
DE102011078511A1 (en) * 2011-07-01 2013-01-03 Siltronic Ag Device useful for filling crucible with polycrystalline silicon, comprises a tube for receiving polycrystalline silicon, comprising tube wall, lower end and upper end, a shutter for closing lower end of tube, and an aperture in tube wall
KR20180073961A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Material Supplying Device and Vacuum Evaporation Coating Apparatus Having The Device
TWI767814B (en) * 2021-08-05 2022-06-11 環球晶圓股份有限公司 Crystal growth doping equipment and crystal growth doping method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609056A1 (en) * 1985-03-18 1986-09-18 Nec Corp., Tokio/Tokyo COUNTER CIRCUIT

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437491A (en) * 1987-08-03 1989-02-08 Toshiba Ceramics Co Silicon single crystal pulling-up apparatus
EP0945528A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
EP0945529A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
DE102011078511A1 (en) * 2011-07-01 2013-01-03 Siltronic Ag Device useful for filling crucible with polycrystalline silicon, comprises a tube for receiving polycrystalline silicon, comprising tube wall, lower end and upper end, a shutter for closing lower end of tube, and an aperture in tube wall
KR20180073961A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Material Supplying Device and Vacuum Evaporation Coating Apparatus Having The Device
TWI767814B (en) * 2021-08-05 2022-06-11 環球晶圓股份有限公司 Crystal growth doping equipment and crystal growth doping method
US11982019B2 (en) 2021-08-05 2024-05-14 Globalwafers Co., Ltd. Crystal growth doping apparatus and crystal growth doping method

Also Published As

Publication number Publication date
JPS5933552B2 (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
KR100441357B1 (en) Single Crystal Pulling Method and Apparatus for its Implementation
CN107709634B (en) Method for producing silicon single crystal
JPH09142988A (en) Method and apparatus for forming silicon single crystal
JPH01215788A (en) Method for pulling up crystal
JPS598694A (en) Apparatus for crystal growth
WO1999046433A1 (en) Auxiliary apparatus for melting single crystal raw material and method of melting single crystal raw material
JPS58130195A (en) Pulling apparatus for single crystalline silicon
JP6627737B2 (en) Single crystal pulling device
EP0494307A1 (en) Apparatus for making silicon single crystal
JPH0523580Y2 (en)
JPS5832100A (en) Device for pulling up silicon single crystal
JPH0532540Y2 (en)
JP2567312B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JP3885245B2 (en) Single crystal pulling method
JPH08151299A (en) Methods for synthesizing compound semiconductor and growing single crystal and apparatuses for synthesizing compound semiconductor and growing single crystal
JPH038791A (en) Production of silicon single crystal and production device therefor
JPH11240789A (en) Apparatus for producing single crystal
JPH04202084A (en) Single crystal producing apparatus
JPH0280392A (en) Single crystal production device
JP2615968B2 (en) Single crystal pulling method
JPS5836997A (en) Producing device for single crystal
JPH0297481A (en) Pulling up device for silicon single crystal
JPH022839B2 (en)
JPH07206584A (en) Production of compound semiconductor single crystal