JP2615968B2 - Single crystal pulling method - Google Patents
Single crystal pulling methodInfo
- Publication number
- JP2615968B2 JP2615968B2 JP2519189A JP2519189A JP2615968B2 JP 2615968 B2 JP2615968 B2 JP 2615968B2 JP 2519189 A JP2519189 A JP 2519189A JP 2519189 A JP2519189 A JP 2519189A JP 2615968 B2 JP2615968 B2 JP 2615968B2
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- concentration
- pulling
- dopant
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、単結晶の引き上げ方法に関し、特に、引
き上げ初期におけるドーパント濃度の不均一な部分の量
を最小限に抑えることができるような単結晶の引き上げ
方法に関する。Description: FIELD OF THE INVENTION The present invention relates to a method for pulling a single crystal, and more particularly, to a single crystal pulling method capable of minimizing the amount of a portion having an uneven dopant concentration at the initial stage of pulling. The present invention relates to a method for pulling a crystal.
[従来の技術とその課題] チョクラルスキー法によって、ルツボ内の溶融液から
半導体などの単結晶を引き上げ、成長させる場合に、第
1図に示すような、相互に連通する外側ルツボ及び内側
ルツボからなる二重ルツボが用いられる場合がある。こ
のような二重ルツボにより単結晶の引き上げを行う場合
には、内側ルツボの溶液表面から結晶の引き上げを行い
つつ、外側ルツボに原料とドーパントを供給して減少量
を補うことにより、連続的な結晶引き上げが行える。こ
の場合、両ルツボの液の流れは内側ルツボの連通孔を通
して行われるため、原料添加に起因する温度変動や液面
の振動が結晶引き上げ面に直接伝わらず、安定した操業
と良好な品質が得られるという利点がある。[Prior art and its problems] When a single crystal such as a semiconductor is pulled up from a melt in a crucible and grown by the Czochralski method, an outer crucible and an inner crucible communicate with each other as shown in FIG. May be used. When a single crystal is pulled by such a double crucible, while pulling the crystal from the solution surface of the inner crucible, the raw material and the dopant are supplied to the outer crucible to compensate for the reduced amount, so that the continuous amount is reduced. Crystal pulling can be performed. In this case, since the flow of the liquid in both crucibles is performed through the communication hole of the inner crucible, temperature fluctuations and vibrations of the liquid surface caused by the addition of the raw materials are not directly transmitted to the crystal pulling surface, and stable operation and good quality are obtained. There is an advantage that it can be.
ところで、引き上げられた単結晶のドーパント濃度
は、溶融原料中の濃度をCとすればkCとなる(kは偏析
係数で、通常1より小さい値である)ので、引き上げに
伴い溶融原料が供給されない場合には、溶融原料中のド
ーパントが漸次濃化し、結晶中のドーパントも濃化する
ことになる(第4図参照)。しかし、上記の二重ルツボ
を用いる連続引き上げの場合には、逐次供給する原料の
ドーパント濃度を引き上げられる結晶のドーパント濃度
と同じにするとともに、単位時間当たりの結晶引き上げ
量と原料供給量を同一にすることによって、ドーパント
の出入り量をバランスさせ、内側ルツボと外側ルツボの
濃度比を常にC:kCに保つことができ(第5図参照)、溶
融原料の濃化を防ぎ濃度を一定にすることができる。従
って、成長方向に濃度偏析のない単結晶を製造すること
が可能となる。By the way, the dopant concentration of the pulled single crystal is kC when the concentration in the molten raw material is C (k is a segregation coefficient, usually smaller than 1). In this case, the dopant in the molten raw material gradually increases, and the dopant in the crystal also increases (see FIG. 4). However, in the case of the continuous pulling using the above double crucible, the dopant concentration of the sequentially supplied raw material is set to be the same as the dopant concentration of the crystal to be pulled, and the crystal pulling amount per unit time and the raw material supply amount are the same. By doing so, it is possible to balance the inflow and outflow of the dopant and to always maintain the concentration ratio between the inner crucible and the outer crucible at C: kC (see FIG. 5), to prevent the concentration of the molten raw material and to keep the concentration constant. Can be. Therefore, it becomes possible to produce a single crystal without concentration segregation in the growth direction.
しかしながら、このような装置を用いた場合でも、引
き上げ開始の直後の部分においては、濃度の偏析が起こ
ってしまい、かなりの部分が不良品として廃棄されるこ
とになった。すなわち、二重ルツボを用いて連続引き上
げをする場合、外側ルツボ内への単位時間当たりの原料
供給量を結晶の単位時間当たりの引き上げ量と等しく
し、融液全体量を変化させないようにしているが、こう
すると、引き上げ当初の濃度を、内外ルツボともにC、
後から供給する原料の濃度をkCとしても、引き上げの初
期に内側ルツボ内で濃化が起き、製品の長さ方向に、第
6図に示すような「やま」ができてしまうことが判って
いる。そして、この「やま」が結晶の直胴部にもかなり
及び、濃度の不良な部分が多くなってしまう。このよう
な部分を少なくするためには、引き上げ開始後早期に第
5図に示すような濃度比の状態を作ってしまう必要があ
る。However, even when such an apparatus is used, concentration segregation occurs immediately after the start of pulling, and a considerable part is discarded as defective. That is, in the case of continuous pulling using a double crucible, the amount of raw material supplied into the outer crucible per unit time is equal to the amount of crystal pulled per unit time, so that the total amount of the melt is not changed. However, when this is done, the initial concentration is raised to C,
Even if the concentration of the raw material supplied later is kC, it is found that the concentration occurs in the inner crucible in the early stage of the withdrawal, and "yama" as shown in Fig. 6 is formed in the length direction of the product. I have. This “yama” considerably extends to the straight body portion of the crystal, and a portion having a poor concentration increases. In order to reduce such a portion, it is necessary to make the state of the concentration ratio as shown in FIG.
[課題を解決するための手段] 上記のような課題を解決するために、この発明は、引
き上げの初期に外側ルツボに定常状態において供給する
原料より低濃度のドーパントを有する原料を、引き上げ
に伴う減少量よりも多く供給して、外側ルツボ及び内側
ルツボのドーパント濃度比を目標値に速く到達せしめる
ようにしたものである。Means for Solving the Problems In order to solve the problems as described above, the present invention relates to a method in which a raw material having a lower concentration of a dopant than a raw material supplied in a steady state to an outer crucible at the beginning of pulling is used. By supplying more than the reduced amount, the dopant concentration ratio of the outer crucible and the inner crucible can quickly reach the target value.
[作用] このような単結晶の引き上げ方法においては、内外ル
ツボ内の溶融原料のドーパント濃度を、引き上げ当初に
おいては、定常状態における濃度Cより高くしておき、
引き上げ開始とともに低ドーパント濃度(濃度0でよ
い)の原料を外側ルツボに供給する。これにより、引き
上げ開始直後の凝固部(いわゆる肩部)におけるドーパ
ントの濃化もほとんどなく、外側ルツボの溶融原料が内
側ルツボ内に流入するに従って内側ルツボ内の濃度が低
下して定常濃度Cに近付き、一方、外側ルツボには低濃
度の原料が供給されるために内側ルツボよりさらに定常
濃度kCに近付く。常に外側から内側への流れが形成され
ているため逆流が生じず、内側から外側へのドーパント
拡散による濃度の均一化は起きない。ドーパントの高濃
度部を少なくするためには、内外ルツボの濃度比を早い
時期の1:kに設定してしまえば良く、そのために、当初
の溶融原料の量を比較的少なくしておき、引き上げの初
期において低濃度原料を引き上げによる減少量より多く
供給してルツボ内の液面レベル自体を上昇するようにす
る。融液量全全体が増加するほど低濃度原料を加えるの
で、内外ルツボの濃度比が速く目的値に近付くのであ
る。1:kの内外濃度比が得られた後に定常引き上げにな
り、供給する原料中のドーパント濃度を、引き上げられ
る結晶中の濃度kCと等しいものとすれば、その後はずっ
と一定濃度の結晶が引き上げられることとなる。[Operation] In such a method for pulling a single crystal, the dopant concentration of the molten raw material in the inner and outer crucibles is initially set higher than the concentration C in the steady state at the beginning of the pulling.
A raw material having a low dopant concentration (concentration may be 0) is supplied to the outer crucible at the start of the pulling. As a result, the concentration of the dopant in the solidified portion (the so-called shoulder portion) immediately after the start of the pulling is scarcely increased, and as the molten raw material of the outer crucible flows into the inner crucible, the concentration in the inner crucible decreases and approaches the steady concentration C. On the other hand, since the low-concentration raw material is supplied to the outer crucible, the outer crucible further approaches the steady concentration kC than the inner crucible. Since the flow is always formed from the outside to the inside, the backflow does not occur, and the concentration is not made uniform by the diffusion of the dopant from the inside to the outside. In order to reduce the high-concentration part of the dopant, the concentration ratio of the inner and outer crucibles should be set to 1: k in the early stage. In the initial stage of the process, the low-concentration raw material is supplied in an amount larger than the amount reduced by pulling, so that the liquid level itself in the crucible is raised. The lower the concentration of the raw material is, the more the total amount of the melt increases, so that the concentration ratio between the inner and outer crucibles approaches the target value quickly. After the internal / external concentration ratio of 1: k is obtained, steady pulling is performed.If the dopant concentration in the supplied raw material is equal to the concentration kC in the crystal to be pulled, a crystal with a constant concentration is pulled thereafter. It will be.
[実施例] 以下、図面を参照してこの発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.
第1図は、結晶育成装置の一実施例を示す縦断面図で
あり、符号1は炉体、2は断熱材、3は加熱ヒータ、4
は回転軸5の上端に固定された黒鉛サセプタ、6は黒鉛
サセプタ4に嵌め込まれた石英からなる二重ルツボ、7
は下端にシードSを固定した引上軸である。上記二重ル
ツボ6は、底部近傍に互いに対向する一対の連通孔8を
有する円筒状の隔壁9により外側ルツボ10と内側ルツボ
11に分けられている。ルツボ6の上方には、上記引上軸
7を回転させながら昇降させる引上機構(図示略)が設
けられており、また、半導体原料及びドーパントを外側
ルツボ10に投入するためのシュート12が設けられてい
る。FIG. 1 is a longitudinal sectional view showing one embodiment of a crystal growing apparatus, wherein reference numeral 1 denotes a furnace body, 2 denotes a heat insulating material, 3 denotes a heater, 4
Is a graphite susceptor fixed to the upper end of the rotating shaft 5; 6 is a double crucible made of quartz fitted into the graphite susceptor 4;
Is a pulling shaft having a seed S fixed to the lower end. The double crucible 6 has an outer crucible 10 and an inner crucible 10 formed by a cylindrical partition 9 having a pair of communicating holes 8 near each other near the bottom.
It is divided into eleven. Above the crucible 6, a pulling mechanism (not shown) for raising and lowering while rotating the pulling shaft 7 is provided, and a chute 12 for charging the semiconductor material and dopant into the outer crucible 10 is provided. Have been.
上記のような結晶育成装置により、本発明の実施をす
る場合について、第2図の略図及び第3図のグラフを用
いて述べる。なお、以下の実施例においては、結晶中の
目標ドーパント濃度をkC、定常引き上げ状態でのルツボ
内の溶融原料の量をW、内側ルツボの容量の全ルツボの
容量に対する比率をαとし、初期状態においては、内側
ルツボと外側ルツボ内の濃度は等しくなっているとす
る。この場合、上述したように、定常引き上げ時におけ
る内外ルツボ内の濃度は、C及びkCである。以下、引き
上げ開始から定常状態に至る過程を述べる。A case where the present invention is carried out by the above-described crystal growing apparatus will be described with reference to the schematic diagram of FIG. 2 and the graph of FIG. In the following examples, the target dopant concentration in the crystal is kC, the amount of the molten raw material in the crucible in the steady pulling state is W, the ratio of the capacity of the inner crucible to the capacity of the entire crucible is α, and the initial state is α. In, it is assumed that the densities in the inner crucible and the outer crucible are equal. In this case, as described above, the concentrations in the inner and outer crucibles at the time of steady lifting are C and kC. Hereinafter, the process from the start of the pulling to the steady state will be described.
(1)初期状態:ルツボに原料とドーパントを投入し、
溶解して、Wより少ない量、Cより高い濃度の溶融液と
する(I段階)。(1) Initial state: Raw materials and dopant are put into a crucible,
Dissolve to form a melt having a concentration less than W and a concentration higher than C (stage I).
(2)肩部引き上げ:引上軸を上昇させて結晶の引き上
げを開始するとともに、シュートより、ドーパントを含
まない原料を連続的に供給する(II段階)。原料の供給
速度は、引き上げによる減少速度より多く設定してお
き、肩部の引き上げが終了するときには溶融液がWとな
るようにする(III段階)。この場合、シードSの引き
上げ速度よりも液面の上昇速度が大きくなるので、シー
ドSと液面との相対速度が適正な値となるように、ルツ
ボを降下させるか、あるいはシードSの上昇速度を大き
くする。(2) Pulling up the shoulder: The pulling-up axis is raised to start pulling up the crystal, and a raw material containing no dopant is continuously supplied from the chute (step II). The supply speed of the raw material is set to be higher than the reduction speed by the pulling, and the molten liquid becomes W when the pulling of the shoulder is completed (stage III). In this case, the rising speed of the liquid surface is higher than the lifting speed of the seed S, so that the crucible is lowered or the rising speed of the seed S is adjusted so that the relative speed between the seed S and the liquid surface becomes an appropriate value. To increase.
(3)定常引き上げ:肩部の引き上げが終了した時点に
おいて、溶融液量W、内側ルツボ内の溶融液濃度C、外
側ルツボ内の溶融液濃度kCとなっており、以後直胴部の
引き上げ工程が定常的に行われる。シュートから供給さ
れる原料のドーパント濃度はkCとされ、結晶引き上げに
よる減少量に見合う量が添加される(IV段階)。(3) Steady lifting: When the raising of the shoulder portion is completed, the melt amount W, the melt concentration C in the inner crucible, and the melt concentration kC in the outer crucible are obtained. Is performed regularly. The dopant concentration of the raw material supplied from the chute is kC, and an amount commensurate with the amount reduced by crystal pulling is added (IV stage).
以下、さらに、モデル計算を用いて上記の過程を詳述
する。上記の初期状態における全溶融液量をW′、外側
ルツボの溶融液量をWb、内側ルツボの溶融液量をWc、外
側ルツボ内のドーパント量をB、初期状態から肩部引き
上げ中のある時点までに供給されたドーパントなしの原
料の量をx、その時点での外側ルツボ内のドーパント濃
度をb(x)、内側ルツボ内のドーパント濃度をc
(x)とすると、b(x),c(x)は,式で与えら
れる。ただし、以下の計算においては、次の仮定を置い
ている。Hereinafter, the above process will be described in detail using model calculation. In the above initial state, the total amount of the melt is W ', the amount of the melt in the outer crucible is Wb, the amount of the melt in the inner crucible is Wc, the amount of the dopant in the outer crucible is B, and a point in time during pulling up the shoulder from the initial state. X, the dopant concentration in the outer crucible at that time is b (x), and the dopant concentration in the inner crucible is c.
Assuming (x), b (x) and c (x) are given by equations. However, the following assumptions are made in the following calculations.
(イ)外側ルツボ及び内側ルツボのそれぞれの内部で
は、対流によりドーパント濃度が均一になっている。(A) In each of the outer crucible and the inner crucible, the convection causes the dopant concentration to be uniform.
(ロ)外側ルツボと内側ルツボの間の連通孔を通しての
ドーパントの拡散の影響は無視できる(後述)。(B) The influence of the diffusion of the dopant through the communication hole between the outer crucible and the inner crucible can be neglected (described later).
(ハ)肩部の引き上げによる溶融液の減少量は、原料及
びドーパントともに少ないので無視できる。(C) The amount of decrease in the melt due to the raising of the shoulder is negligible because both the raw material and the dopant are small.
肩部引き上げの終了時点での原料供給量をx1とする
と、 c(x1):b(x1)=1:k であるので、〜式より、 式において、x=0、及びx=x1と置き、両者の比
をとると、 となる。ここで、 b(x1)=kC であるから、初期ドーパント濃度は となる。また、 W=x1+Wb+Wc Wc=Wb・α/(1−a) W′=Wb+Wc であるから、これらの式から すなわち、初期のルツボを原料の量を式で示すよう
に減量しておけばよい。 When the material supply amount at the end of the shoulder pulling and x 1, c (x 1) : b (x 1) = 1: since it is k, than to Formula, In the formula, x = 0, and x = x 1 and placed, taking the ratio of the two, Becomes Here, since b (x 1 ) = kC, the initial dopant concentration is Becomes W = x 1 + Wb + Wc Wc = Wb · α / (1−a) W ′ = Wb + Wc That is, the amount of the raw material in the initial crucible may be reduced as shown by the equation.
以下、実際の数値を入れて検討する。ルツボ全体に対
する内側ルツボの底面積の比率をα=2/3とし、原料と
してシリコンを用い、ドーパントとしてリンを使用する
と、k=0.35である。In the following, we consider the actual figures. When the ratio of the bottom area of the inner crucible to the whole crucible is α = 2, silicon is used as a raw material, and phosphorus is used as a dopant, k = 0.35.
これを、,式に代入すると、 b(0)=3.3kC=1.16C,W′/W=0.67 となる。すなわち、原料の量を定常状態より1/3減ら
し、初期ドーパント濃度を定常状態の内側ルツボの濃度
の1.16倍にすればよいことになる。例えば、内側ルツボ
内径200mmφ、外側ルツボ内径240mmφ、隔壁厚さ10mm、
連通孔径5mmφの二重ルツボにおいて、定常状態におい
て15Kgの溶融液をルツボに収容し、目標ドーパント(リ
ン)濃度kC=1.00×1015atm/cm3、直径3inchのシリコン
単結晶を、1mm/minの速度で引き上げる場合には、初期
の溶融液量を10Kg、ドーパント濃度を3.34×1015atm/cm
3とし、肩部の引き上げ完了時点までに、5Kgのドーパン
トを含まない原料を外側ルツボに供給すればよい。この
ような設定条件(ドーパント初期濃度=3.34×1015atm/
cm3)により引き上げを行った場合について、得られた
単結晶の長さ方向の濃度の実測値を第3図に○印で示
し、内側ルツボ、外側ルツボ内の溶融液及び単結晶にお
ける濃度のモデル計算値をそれぞれ実線で対比して示
す。Substituting this into the equation gives b (0) = 3.3 kC = 1.16C, W '/ W = 0.67. That is, the amount of the raw material should be reduced by one third from the steady state, and the initial dopant concentration should be 1.16 times the concentration of the inner crucible in the steady state. For example, inner crucible inner diameter 200mmφ, outer crucible inner diameter 240mmφ, partition wall thickness 10mm,
In a double crucible having a communicating hole diameter of 5 mmφ, a melt of 15 kg was contained in the crucible in a steady state, and a silicon single crystal having a target dopant (phosphorus) concentration kC = 1.00 × 10 15 atm / cm 3 and a diameter of 3 inch was obtained at 1 mm / min. When raising at the speed of, the initial melt amount is 10 kg, the dopant concentration is 3.34 × 10 15 atm / cm
It is sufficient to supply 5 kg of a raw material containing no dopant to the outer crucible by the time the pulling of the shoulder is completed. Under such setting conditions (initial dopant concentration = 3.34 × 10 15 atm /
The case of performing the pulling by cm 3), the measured value of the length direction of the concentration of the resulting single crystal shown by ○ mark in Fig. 3, the inner crucible, the concentration in the melt and the single crystal in the outer crucible The model calculation values are shown in comparison with solid lines.
また、同図に、比較例として、従来の方法で引き上げ
を行なった場合、すなわち、上記と同じ二重ルツボを用
い、初期の溶融液の総量を15Kg、溶融液のドーパント濃
度をC=2.86×1015atm/cm3とし、kC=1.00×1015atm/c
m3のドーパント含有比率を持つ原料を引き上げ量と同量
づつ外側ルツボに供給した場合に得られた単結晶の濃度
の実測値を△印で示す。この場合は、濃度の上昇による
「やま」が、肩部の引き上げの終了点(III段階)以後
に延びて直胴部にわたっており、この部分が不良品とな
ってしまう。In the same figure, as a comparative example, when the pulling-up was performed by the conventional method, that is, using the same double crucible as described above, the total amount of the initial melt was 15 kg, and the dopant concentration of the melt was C = 2.86 × and 10 15 atm / cm 3, kC = 1.00 × 10 15 atm / c
The mark Δ indicates the measured single crystal concentration obtained when the raw material having the dopant content ratio of m 3 was supplied to the outer crucible by the same amount as the amount of pulling. In this case, the “Yama” due to the increase in the density extends beyond the end point of the raising of the shoulder portion (stage III) and extends over the straight body portion, and this portion becomes defective.
なお、肩部引き上げ時、または定常引き上げ時におい
て、連通孔からの拡散の程度をフィックの法則を用いて
概算したところ、連通孔におけるドーパントの拡散速度
は、およそ9.5×10-4(cm/sec)であるのに対し、溶融
液の流入速度は、肩部引き上げ時において0.93(cm/se
c)、定常引き上げ時において0.17(cm/sec)であり、
自己拡散によるドーパント濃度の均一化はほとんど問題
にならないことが推定された。In addition, at the time of pulling up the shoulder portion or at the time of steady pulling up, when the degree of diffusion from the communication hole was roughly estimated using Fick's law, the diffusion rate of the dopant in the communication hole was approximately 9.5 × 10 −4 (cm / sec. ) While the inflow velocity of the melt is 0.93 (cm / se
c), 0.17 (cm / sec) during steady lifting,
It has been estimated that uniformization of the dopant concentration by self-diffusion hardly poses a problem.
[発明の効果] 以上詳述したように、この発明は、引き上げの初期の
外側ルツボに引き上げられる結晶より低濃度のドーパン
トを有する原料を引き上げに伴う減少量よりも多く供給
して、外側から内側への溶融原料の流れを作りつつ外側
ルツボ及び内側ルツボのドーパント濃度比を目標値に速
く到達せしめるようにしたものであるので、単結晶の肩
部の引き上げ終了時に定常状態への移行が行え、結晶引
き上げに伴う溶融原料中のドーパントの濃化を最小限に
抑え、ドーパント濃度の偏析による不良部分を肩部のみ
に止どめて、歩留りの向上を図ることができるものであ
る。[Effects of the Invention] As described in detail above, the present invention provides a raw material having a lower concentration of dopant than a crystal pulled into an outer crucible at the initial stage of pulling, so as to supply more than the reduced amount caused by pulling, and from the outside to the inside. Since the ratio of the dopant concentration of the outer crucible and the inner crucible is made to reach the target value quickly while making the flow of the molten raw material to, the transition to the steady state can be performed at the end of pulling up the shoulder portion of the single crystal, It is possible to minimize the concentration of the dopant in the molten raw material due to the crystal pulling, and to limit the defective portion due to the segregation of the dopant concentration to only the shoulder, thereby improving the yield.
第1図はこの発明に用いる装置を示す断面図、第2図は
この発明の工程を示す略図、第3図は単結晶中の濃度変
化の測定値を計算値と対比して示す図、第4図は従来の
方法における引き上げ初期の内側ルツボ内の濃度変化の
グラフ、第5図は定常引き上げ時の内外ルツボの濃度を
示す模式図、第6図は従来の方法における内外ルツボ及
び製品の濃度変化のグラフである。FIG. 1 is a cross-sectional view showing an apparatus used in the present invention, FIG. 2 is a schematic diagram showing the steps of the present invention, FIG. FIG. 4 is a graph showing the concentration change in the inner crucible at the initial stage of pulling by the conventional method, FIG. 5 is a schematic diagram showing the concentration of the inner and outer crucibles at the time of steady pulling, and FIG. It is a graph of a change.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐平 健彰 埼玉県大宮市北袋町1丁目297番地 三 菱金属株式会社中央研究所内 (56)参考文献 特開 昭63−11595(JP,A) 特開 昭47−10355(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takeaki Sadape 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsui Kinzoku Co., Ltd. Central Research Laboratory (56) References JP-A-63-11595 (JP, A) 47-10355 (JP, A)
Claims (2)
を備えた二重ルツボに溶融原料を装入し、定常状態にお
いて内側ルツボの溶液面よりドーパント濃度がkC±0.1k
C(ただし、kは偏析係数)であるような単結晶を引き
上げる単結晶の引き上げ方法において、 引き上げ前の内側ルツボ内の溶液のドーパント濃度をC
(定常状態における内側ルツボ内の溶液濃度)より高く
しておき、 引き上げの初期に、ドーパント含有比率がkC以下である
ような原料を引き上げに伴う内側ルツボ内の溶融原料の
減少量よりも多く外側ルツボに供給して、内側ルツボと
外側ルツボのドーパント濃度比を目標値に到達せしめた
後、 ドーパントの含有比率がkCであるような原料を引き上げ
に伴う溶液の減少量に等しく外側ルツボに供給しつつ結
晶を引き上げることを特徴とする単結晶の引き上げ方
法。1. A molten material is charged into a double crucible having an outer crucible and an inner crucible communicating with each other, and a dopant concentration is kC ± 0.1 k from a solution surface of the inner crucible in a steady state.
In a single crystal pulling method for pulling a single crystal having C (where k is a segregation coefficient), the dopant concentration of the solution in the inner crucible before pulling is set to C
(The solution concentration in the inner crucible in the steady state), and at the beginning of the withdrawal, the amount of the molten material in the inner crucible that is larger than the decrease in the amount of the molten material in the inner crucible with the withdrawal of the material whose dopant content ratio is kC or less After supplying to the crucible and allowing the dopant concentration ratio of the inner crucible and the outer crucible to reach the target value, a raw material having a dopant content ratio of kC is supplied to the outer crucible in an amount equal to the decrease of the solution accompanying the lifting. A method for pulling a single crystal, wherein the crystal is pulled while being pulled.
むシリコンであり、 結晶中の定常状態におけるドーパント濃度が1.0×1014
〜1.0×1016atoms/cm3であることを特徴とする請求項1
に記載の単結晶の引き上げ方法。2. The molten raw material is silicon containing phosphorus as a dopant, and has a dopant concentration of 1.0 × 10 14 in a steady state in the crystal.
2. The composition according to claim 1, wherein the concentration is about 1.0 × 10 16 atoms / cm 3.
2. The method for pulling a single crystal according to item 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2519189A JP2615968B2 (en) | 1988-02-04 | 1989-02-03 | Single crystal pulling method |
EP89108388A EP0388503B1 (en) | 1989-02-03 | 1989-05-10 | Method for pulling single crystals |
DE89108388T DE68908872T2 (en) | 1989-02-03 | 1989-05-10 | Method of pulling single crystals. |
US07/360,126 US4980015A (en) | 1989-02-03 | 1989-06-01 | Method for pulling single crystals |
KR1019890010960A KR940009938B1 (en) | 1989-02-03 | 1989-08-01 | Method of pulling single crystals |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-24821 | 1988-02-04 | ||
JP2482188 | 1988-02-04 | ||
JP2519189A JP2615968B2 (en) | 1988-02-04 | 1989-02-03 | Single crystal pulling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01294589A JPH01294589A (en) | 1989-11-28 |
JP2615968B2 true JP2615968B2 (en) | 1997-06-04 |
Family
ID=26362390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2519189A Expired - Lifetime JP2615968B2 (en) | 1988-02-04 | 1989-02-03 | Single crystal pulling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2615968B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2697412B1 (en) * | 2011-04-14 | 2018-07-25 | GTAT IP Holding LLC | Method for producing silicon ingot having axially uniform doping |
-
1989
- 1989-02-03 JP JP2519189A patent/JP2615968B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01294589A (en) | 1989-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0388503B1 (en) | Method for pulling single crystals | |
CA1261715A (en) | Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique | |
JPH0859386A (en) | Semiconductor single crystal growing device | |
JPS6379790A (en) | Crystal pulling up device | |
JPH1029894A (en) | Method for regulating specific resistance of single crystal silicon and apparatus for producing single crystal silicon | |
JPH03295891A (en) | Device for producing silicon single crystal | |
JP2615968B2 (en) | Single crystal pulling method | |
US5733368A (en) | Method of manufacturing silicon monocrystal using continuous czochralski method | |
JPH0570279A (en) | Production of silicon single crystal | |
JPS58130195A (en) | Pulling apparatus for single crystalline silicon | |
GB2084046A (en) | Method and apparatus for crystal growth | |
JPS5933552B2 (en) | crystal growth equipment | |
KR100327475B1 (en) | Continuous growing apparatus for single crystal | |
JP2837903B2 (en) | Method for producing silicon single crystal | |
JPH09208360A (en) | Growth of single crystal | |
JP2018537390A (en) | Single crystal ingot growth equipment | |
JPH0692776A (en) | Silicon single crystal pulling up device | |
JPH05221781A (en) | Device for pulling up single crystal | |
JPH09208367A (en) | Initial charging of silicon material into double-layered crucible | |
JPH08259371A (en) | Method for growing single crystal excellent in sr uniformization | |
JPH09227278A (en) | Method for growing single crystal | |
JPH089169Y2 (en) | Single crystal manufacturing equipment | |
JPH0283292A (en) | Production of silicon single crystal and apparatus therefor | |
JPH09202688A (en) | Growth of single crystal | |
JP2717685B2 (en) | Method and apparatus for crystal growth by Czochralski method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090311 |
|
EXPY | Cancellation because of completion of term |