JPS5986111A - Method of producing powder coated wire - Google Patents

Method of producing powder coated wire

Info

Publication number
JPS5986111A
JPS5986111A JP19690882A JP19690882A JPS5986111A JP S5986111 A JPS5986111 A JP S5986111A JP 19690882 A JP19690882 A JP 19690882A JP 19690882 A JP19690882 A JP 19690882A JP S5986111 A JPS5986111 A JP S5986111A
Authority
JP
Japan
Prior art keywords
powder
electrodeposition
metal wire
coated
electrodeposition solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19690882A
Other languages
Japanese (ja)
Other versions
JPH0218534B2 (en
Inventor
庄司 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP19690882A priority Critical patent/JPS5986111A/en
Publication of JPS5986111A publication Critical patent/JPS5986111A/en
Publication of JPH0218534B2 publication Critical patent/JPH0218534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Powder Metallurgy (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は金属線に例えばアルミナ(A7203)などの
金属酸化物あるいは金属の粉末を被覆する方法に関し、
特に電気泳動を利用した電着法により粉末を被覆する粉
末被覆線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of coating a metal wire with a metal oxide or metal powder, such as alumina (A7203),
In particular, the present invention relates to a method for manufacturing a powder-coated wire in which powder is coated by an electrodeposition method using electrophoresis.

金属線に粉末を被覆した粉末被覆線は従来から種々の方
面で利用されている。例えば電子管用ヒータは、タング
ステンのような高融点金属線を所望の形状に形成した後
、ヒータのコイル間あるいはヒータとこのヒータを挿入
するカソードスリーブ間との短絡を防止する目的で絶縁
物であるアルミナなどを高融点金属線の周囲に被覆して
いる。また最近では特殊形状の直熱型含浸除徐を形成す
るのに高融点金属線を所望形状に形成した後高融点金属
粉末を周囲に被覆させて多孔質体を形成して電子放射性
物質を含浸させる直熱型陰極にも利用されている。
Powder-coated wires, which are metal wires coated with powder, have been used in various fields. For example, heaters for electron tubes are made of high melting point metal wire such as tungsten, which is formed into a desired shape, and then is made of insulating material to prevent short circuits between the heater coils or between the heater and the cathode sleeve into which the heater is inserted. The high melting point metal wire is coated with alumina or the like. Recently, in order to form a special-shaped direct heating type impregnating layer, a high melting point metal wire is formed into the desired shape, and then a high melting point metal powder is coated around the wire to form a porous body, which is then impregnated with an electron radioactive substance. It is also used as a directly heated cathode.

これら粉末の被覆の方法には種々あるがその一つとして
電着法が有用されている。
There are various methods for coating these powders, one of which is the electrodeposition method.

即ちこの種の電着法によるヒータの製造方法は。That is, the method for manufacturing a heater using this type of electrodeposition method is as follows.

例えば水を混じたメタノールのような有機溶剤に少量の
硝酸アルミニウムや硝酸マグネシウムのような電解質を
溶解した溶液にアルミナ粉末を懸濁させた電着液を用い
、この電着液に高融点金属線を浸漬して高融点金属線が
陰極となるように電圧を印加し、必要厚さのアルミナ粉
末を電気泳動により被着させた後、水素炉などで熱処理
をしてアルミナ粉末を焼結させている。
For example, an electrodeposition solution in which alumina powder is suspended in a solution of a small amount of electrolyte such as aluminum nitrate or magnesium nitrate dissolved in an organic solvent such as methanol mixed with water is used. A voltage is applied so that the high melting point metal wire serves as a cathode, and alumina powder of the required thickness is deposited by electrophoresis.Then, the alumina powder is sintered by heat treatment in a hydrogen furnace, etc. There is.

従来のこの種の電着液の組成は1例えば特公昭44−3
2444号(表1)2%公昭55−24650号(表2
)あるいは特公昭56−1740号(表3)に示されて
いるように、有機溶剤としてはいずれもメタノール(C
HaOH)またはエタノール(C2H50H)の−価ア
ルコールが使用されている。
The conventional composition of this type of electrodeposition solution is 1, for example,
No. 2444 (Table 1) 2% Kosho 55-24650 (Table 2
) or as shown in Japanese Patent Publication No. 56-1740 (Table 3), methanol (C
Hydrolic alcohols such as HaOH) or ethanol (C2H50H) have been used.

表−1表−2表−3 コノ有機溶剤をしてメタノール−まir−、H−I−タ
/ −ルが使われる理由としては、電メ°゛1液の電気
抵抗を適当に増大させ、急激にアルミナ粉末が被着して
被着面が凹凸にならないよう電気泳動を効果的にならし
める目的と、電着してヒータ線を電着液から取り出した
後、容易に溶媒が蒸発する効果を狙ったためと考えられ
る。
Table-1 Table-2 Table-3 The reason why methanol, air, and H-I-tal are used instead of organic solvents is to appropriately increase the electrical resistance of the electrolyte solution. The purpose is to effectively smooth out electrophoresis so that the alumina powder does not suddenly adhere and the surface becomes uneven, and the solvent evaporates easily after electrodeposition and the heater wire is removed from the electrodeposition solution. It is thought that this was intended for effect.

しかし、一方で有機溶媒が蒸発し易いということは、電
着作業中にも有機溶媒が蒸発し、電着液ノ組成が変化す
る原因となる。特にメタノールやエタノールでは粘性が
低く、粉末が大きい場合や密度の大きい場合は粉末が沈
降し易く。
However, on the other hand, the fact that the organic solvent evaporates easily means that the organic solvent evaporates during the electrodeposition operation, causing a change in the composition of the electrodeposition solution. In particular, methanol and ethanol have low viscosity, and if the powder is large or dense, it tends to settle.

スターテで電着液を常に攪拌しなければならな混合割合
が増加し液の比重は大きくなる。電着液の比重に対する
同条件での被着厚の関係は第1図に示すようにほぼ比例
するため、このような比重が増大する電着液を用いて同
条件で電着な続けると1飼自りの被着するアルミナ粉末
の量は多くなると共に、電着表面が栢くなるという欠点
がある。例えばv Al 20330011+  H2
0210CC、C2H50H230CC、Y(NO3)
371の組成の電着液で連続的に電着な続けた場合(1
個当りの電着時間は約9秒)、5時間経過すると電着液
の比重が135から1.65迄変化し、同じ条件(印加
する電圧9時間)で電着すると電着厚は35μから55
μ迄変化する。電子管用ヒータなど非常に精密な寸法を
要する電子部品ではこの変化では実用に供しなくなり、
被着厚をコントロールするのが非常に困難な状態である
The mixing ratio at which the electrodeposition solution must be constantly stirred in the starter increases, and the specific gravity of the solution increases. The relationship between the deposition thickness under the same conditions and the specific gravity of the electrodeposition solution is approximately proportional as shown in Figure 1, so if electrodeposition is continued under the same conditions using an electrodeposition solution with increasing specific gravity, the thickness will be 1. The disadvantage is that the amount of alumina powder deposited on the feed increases and the electrodeposited surface becomes hollow. For example v Al 20330011+ H2
0210CC, C2H50H230CC, Y (NO3)
When electrodeposition is continued continuously with an electrodeposition solution having a composition of 371 (1
The electrodeposition time per piece is about 9 seconds), and after 5 hours, the specific gravity of the electrodeposition solution changes from 135 to 1.65, and when electrodeposited under the same conditions (applied voltage for 9 hours), the electrodeposition thickness changes from 35 μm. 55
Changes up to μ. This change makes electronic parts that require extremely precise dimensions, such as heaters for electron tubes, unsuitable for practical use.
It is very difficult to control the deposition thickness.

更に前述の如く、−価アルコールは比較的粘性が小さい
ため、粉末が沈降し易く、電着と電着の合い間にはスタ
ーテで攪41゛シて均一化している(電着時に攪拌する
と電着液にうす巻きが生じて悪影響夕及ばずので電着時
はとめている)がスターテでの攪拌をとめるとすぐに沈
降が始まり電着液の上部と下部とで組成が異なり均一な
電着が得られないと共VC,タングステン粉末やモリブ
デン粉末のような金属粉末は比重が大きく一層沈降し易
いため電着し難いという欠点があった。またこれら−価
アルコールは引火性が強く、電気接点で生じる火花など
により火災の原因となることがあり1作業中子分な注意
を払い続けなければならないという欠点があった。
Furthermore, as mentioned above, since the viscosity of -hydric alcohol is relatively low, the powder tends to settle, and between electrodepositions, the powder is stirred with a starter to ensure uniformity (stirring during electrodeposition causes (I stopped the electrodeposition process because thin curling occurs in the deposited liquid and does not have any negative effects.) However, as soon as stirring in the starter is stopped, sedimentation begins and the composition differs between the upper and lower parts of the electrodeposition liquid, resulting in uniform electrodeposition. However, metal powders such as tungsten powder and molybdenum powder have a large specific gravity and are more likely to settle, making them difficult to electrodeposit. Furthermore, these alcohols are highly flammable and can cause fires due to sparks generated at electrical contacts, so they have the disadvantage of requiring constant attention during the work.

本発明はこのような欠点に鑑みなされたもので、連続的
に多数個電着を行なって電着時間が長時間に亘っても粉
末の被覆厚が一定で、被覆面の一定した粉末被覆線の製
造方法を提供することを目的とする。具体的には被覆す
る粉末を懸濁させる有機溶剤の主成分に従来のようなm
個アルコールを使用しないでグリセリンのような多価ア
ルコールを使用することにより、電着中の有機溶剤の蒸
発を防ぎ、金属線に粉末な被着したときに付着する溶媒
は次工程の焼結時に完全に蒸発させることにより品質の
安定した粉末被覆金属線を得る製造方法を提供すること
にある。以下具体例で詳細に説明する。
The present invention was developed in view of these drawbacks, and it is possible to produce a powder-coated wire with a constant powder coating thickness and a constant coated surface even when a large number of pieces are continuously electrodeposited and the electrodeposition time is long. The purpose is to provide a manufacturing method for. Specifically, conventional m
By using a polyhydric alcohol such as glycerin instead of alcohol, the evaporation of organic solvents during electrodeposition is prevented, and the solvent that adheres when powdered on the metal wire is removed during the next sintering process. The object of the present invention is to provide a manufacturing method for obtaining a powder-coated metal wire of stable quality by complete evaporation. This will be explained in detail below using a specific example.

本発明の一実施例として従来から多用されている高融点
金属線にアルミナ粉末を被覆させるヒータの製造方法に
ついて述べる。まず、アルミナ粉末を電着するだめの電
着液の組成を表4のように調合する。
As an embodiment of the present invention, a method for manufacturing a heater in which a high melting point metal wire, which has been widely used in the past, is coated with alumina powder will be described. First, the composition of an electrodeposition solution for electrodepositing alumina powder is prepared as shown in Table 4.

表−4 即ち、この組成は従来C2H50H230CC使用して
いた代りに三価アルコールであるグリセリンを300 
CC使用し、 H2O210CCをグリセリンと同じ<
300CCに増やしたもので他のAl2O3゜Y(NO
3)3は従来と同量としである。この場合の電着液の比
重は約1.45で、従来のC2H50Hを使用して調合
した時点での比重1.35よりやや大きい。この電着液
にヒータとする高融点金属線を浸漬し金属線陰極となる
ように10Vの電圧を7秒間印加すると45μ厚のAl
2O3粉末が金属線の周囲に被着される。7秒の電圧印
加後次々と金属線を取り換えて連続的に電着を続けられ
るが、  Al2O3粉末を被着した金属線は電着液か
ら取り出して水素炉で1700℃で焼結する。この場合
電着液の溶媒であるnzo−やグリセリンは揮発し難い
ため金属線を電着液から取り出した後でもH2Oやグリ
セリンが付着しているが、 H2Oの沸点は100℃で
グリセリンの沸点は290℃のため焼結時の1700℃
では完全に蒸発し、焼結後には何ら影響がなくなる。
Table 4 In other words, this composition uses 300% glycerin, a trihydric alcohol, instead of 300% C2H50H230CC.
Use CC, H2O210CC is the same as glycerin <
Increased to 300CC and other Al2O3゜Y(NO
3) 3 is the same amount as before. The specific gravity of the electrodeposition liquid in this case is about 1.45, which is slightly higher than the specific gravity of 1.35 when prepared using conventional C2H50H. A high melting point metal wire used as a heater is immersed in this electrodeposition solution and a voltage of 10V is applied for 7 seconds to form a metal wire cathode.
2O3 powder is deposited around the metal wire. After applying a voltage for 7 seconds, electrodeposition can be continued by replacing the metal wire one after another, but the metal wire coated with Al2O3 powder is taken out from the electrodeposition solution and sintered at 1700°C in a hydrogen furnace. In this case, nzo- and glycerin, which are the solvents of the electrodeposition solution, are difficult to volatilize, so even after the metal wire is removed from the electrodeposition solution, H2O and glycerin remain attached to it, but the boiling point of H2O is 100℃, and the boiling point of glycerin is 1700℃ during sintering due to 290℃
It will completely evaporate and will have no effect after sintering.

一万本実施例で使用する電着液は不揮発性のグリセリン
を使用しているため長時間に亘って電着を続けても溶媒
が蒸発することなく組成の割合を常に一定に保つことが
できる。即ちアルミナ粉末が金属線に被着して減るが、
溶媒もまた金属線に付着したまま電着液から取り出され
るため、はぼ同割合で減少する。(従来は溶媒の減少分
に付着して減る分と蒸発して減る分があり溶媒の減少率
がアルミナの減少率よりも大きかった。)そのため9本
発明の電着液の比重は調合時の1.45がそのまま維持
され、結果的にアルミナ粉末の被着厚も一定なものが得
られる。この実施例の電着液を用いて5時間連続的に次
々ヒータを取り換えて行なった場合のアルミナ被着厚の
変化を測定した結果を第1図に示す。第才図は横軸に最
初のヒータの電着を開始してからの経過時間、縦軸に同
条件(印加電圧。
The electrodeposition solution used in this example uses nonvolatile glycerin, so even if electrodeposition is continued for a long time, the solvent will not evaporate and the composition ratio can always be kept constant. . In other words, the alumina powder adheres to the metal wire and is reduced.
Since the solvent is also removed from the electrodeposition solution while remaining attached to the metal wire, it is reduced at approximately the same rate. (Conventionally, the reduction rate of the solvent was greater than the reduction rate of alumina because there was a reduction in the solvent by adhesion and a reduction by evaporation.)9 Therefore, the specific gravity of the electrodeposition solution of the present invention is 1.45 is maintained as it is, and as a result, the coating thickness of the alumina powder is also constant. FIG. 1 shows the results of measuring changes in the alumina deposition thickness when the electrodeposition solution of this example was used and the heaters were replaced one after another for 5 hours continuously. In the figure, the horizontal axis shows the elapsed time since the start of electrodeposition of the first heater, and the vertical axis shows the same conditions (applied voltage).

印加時間一定)で被着するアルミナ粉末の厚さケとった
もので図中Aが本実施例のもの、Bは従来の電着液を用
いた場合全射出させて示しである。図からもわかるよう
に本究明((虱しれば非常に長時間に亘って一定な被メ
ー厚(L: (Uることができる。
The thickness of the alumina powder deposited under a constant application time is taken, and A in the figure shows the one of this embodiment, and B shows the total injection when a conventional electrodeposition solution is used. As can be seen from the figure, it is possible to maintain a constant coating thickness (L: (U) over a very long period of time.

上記実施例では電着液の成分として必要最少限のものの
みの例3辷記したが、ピンホールやクラックを防止する
ため尿素や酢l!l!2全追加しても良く、また他の目
的で他の成分を追加しても、−またアルミナ以外の金属
酸化物粉末や金属粉末でも本発明のメ庄旨が」員なわれ
るものではない。更にグリセリン以外でも例えば二価ア
ルコールでりるエチレングリコールを便用しても同様の
効果が得られる。
In the above example, only the minimum necessary components of the electrodeposition solution were listed in Example 3, but in order to prevent pinholes and cracks, urea and vinegar were used. l! The gist of the present invention does not fall within the scope of the present invention, even if all components are added, and even if other components are added for other purposes, metal oxide powders or metal powders other than alumina are not included. Furthermore, the same effect can be obtained by using other than glycerin, for example, ethylene glycol dihydric alcohol.

本発明によると例えばグリセリンの粘度ハ20℃で14
95 cP従従来例えばエタノールの粘度20゛Cで1
.2cPよりはるかに大きく粘性があるため粉末が沈降
し難い。そのため従来のような電着液の場所による組成
の不均一が改善されると共に粉末の大きい場合や、密度
の大きい金属粉末例えばタフゲステン粉末やモリブデン
粉末の場合でも沈降することなく電着することができる
According to the present invention, for example, the viscosity of glycerin is 14 at 20°C.
95 cP Previously, for example, the viscosity of ethanol was 1 at 20°C.
.. Since the viscosity is much higher than 2 cP, the powder is difficult to settle. This improves the non-uniformity of the composition of the electrodeposited liquid depending on the location, as in the past, and enables electrodeposition without settling even when the powder is large or metal powder with a high density, such as Toughgesten powder or molybdenum powder, is used. .

更に本発明によれば有機溶剤として多価アルコールを使
用しているため、引火性がなく電気接点の火花等に起因
する火災の惧れはなく、印加電圧の条件環ケム範囲に選
択することができると共に9作業時に余計な神経を使う
必要がないという利点がある。
Furthermore, according to the present invention, since polyhydric alcohol is used as the organic solvent, it is non-flammable and there is no risk of fire caused by sparks from electrical contacts, and the applied voltage can be selected within the range of Chem. It has the advantage that it is possible to do this, and there is no need to use unnecessary nerves during the 9-day work.

以上説明したように1本発明によれば金属線に粉末全被
着させる場合、多価アルコールを有機浴剤の主成分とし
て使用した電層液を用いているため、一度調合した電着
液の組成が長時間に亘って一定となり、粉末の被着厚お
工び被着表面も一定なものが得られ、・品質が安定する
と共に1作業時に細かい条V−+−変更とか火災発生の
注意をする必要もなく、コストダウンにも寄与する効果
がある。更に本発明によれば、高融点金属線の廻りに冒
融点金属粉末を焼結して直熱型含浸陰極を得ることも容
易に可能となり波及効果大なるものがある。
As explained above, 1.According to the present invention, when the powder is completely coated on the metal wire, since the electrodeposition solution containing polyhydric alcohol as the main component of the organic bath agent is used, the electrodeposition solution once prepared is The composition remains constant over a long period of time, and the powder coating thickness and coating surface are also constant. - Quality is stable, and there is no need to change small V-+- lines during one operation or to be careful of fire outbreaks. There is no need to do this, and it has the effect of contributing to cost reduction. Further, according to the present invention, it is easily possible to obtain a directly heated impregnated cathode by sintering a high melting point metal powder around a high melting point metal wire, which has a large ripple effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図rよ従来の比重の変化する電着液で同一条件で電
着した場合の比重に対する被着厚の関係、第2図は同一
条件で電着した場合の経過時間に対する被着厚の変化を
示したもので、Aが本発明によるもの、Bが従来の方法
によるものである。
Figure 1r shows the relationship between the deposition thickness and the specific gravity when electrodeposited under the same conditions using a conventional electrodeposition solution with varying specific gravity. Figure 2 shows the relationship between the deposition thickness and the elapsed time when the electrodeposition was performed under the same conditions. The changes shown are A according to the present invention and B according to the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 金属線に粉末を被覆した粉末被覆線を製造する方法にお
いて、前記粉末を多価アルコールを主成分とする有機溶
剤および水の混合液に懸濁させ、少なくとも電解質を含
んだ電着液を用いて前記金属線に前記粉末を電着した後
、焼結することを特徴とする粉末被覆線の製造方法。
A method for producing a powder-coated wire in which a metal wire is coated with powder, the powder being suspended in a mixture of an organic solvent containing polyhydric alcohol as a main component and water, and using an electrodeposition solution containing at least an electrolyte. A method for manufacturing a powder-coated wire, comprising electrodepositing the powder on the metal wire and then sintering the powder.
JP19690882A 1982-11-10 1982-11-10 Method of producing powder coated wire Granted JPS5986111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19690882A JPS5986111A (en) 1982-11-10 1982-11-10 Method of producing powder coated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19690882A JPS5986111A (en) 1982-11-10 1982-11-10 Method of producing powder coated wire

Publications (2)

Publication Number Publication Date
JPS5986111A true JPS5986111A (en) 1984-05-18
JPH0218534B2 JPH0218534B2 (en) 1990-04-25

Family

ID=16365646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19690882A Granted JPS5986111A (en) 1982-11-10 1982-11-10 Method of producing powder coated wire

Country Status (1)

Country Link
JP (1) JPS5986111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188206U (en) * 1986-05-22 1987-11-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188206U (en) * 1986-05-22 1987-11-30

Also Published As

Publication number Publication date
JPH0218534B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
RU2224808C2 (en) Metal for electronics and method of production of such metal
JPH0371726B2 (en)
US5002647A (en) Process for preparation of thick films by electrophoresis
US2530546A (en) Electrophoretic deposition of insulating coating
JPH0216172A (en) Solderable conductive paint
JPS5986111A (en) Method of producing powder coated wire
US2966449A (en) Electrophoretic coating and process
US3353982A (en) Process for making a filter
US2800446A (en) Electron emissive coating material and method of application
US3190771A (en) Filament for vacuum deposition apparatus and method of making it
US4100449A (en) Uniform filament and method of making the same
US2913385A (en) Method of coating
JPH0247545B2 (en)
TWI295327B (en)
US5336382A (en) Process for the electrophoretic deposition of metal powder for the recoating of a part by diffusion brazing, and electrophoresis bath for use therein
US2778786A (en) Coating a carbonaceous surface with rhenium
JPH01156497A (en) Method forming superconductive article by electrodeposition method
GB976527A (en) Improvements relating to the manufacture of insulated wire
TW202300708A (en) Manufacturing method for antibacterial fiber
US3049482A (en) Coating of small bore articles
JPS62230869A (en) Electrically conductive coating compound to be soldered
US3935516A (en) Capacitor with glass metal conductive layer
US1037887A (en) Process of plating metals.
JPH036254A (en) Solderable conductive coating
JPH0445322B2 (en)