JPS598416B2 - Impact treatment equipment for condensed substances - Google Patents

Impact treatment equipment for condensed substances

Info

Publication number
JPS598416B2
JPS598416B2 JP19263281A JP19263281A JPS598416B2 JP S598416 B2 JPS598416 B2 JP S598416B2 JP 19263281 A JP19263281 A JP 19263281A JP 19263281 A JP19263281 A JP 19263281A JP S598416 B2 JPS598416 B2 JP S598416B2
Authority
JP
Japan
Prior art keywords
container
explosive
explosive layer
layer
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19263281A
Other languages
Japanese (ja)
Other versions
JPS5895547A (en
Inventor
修三 藤原
正夫 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19263281A priority Critical patent/JPS598416B2/en
Publication of JPS5895547A publication Critical patent/JPS5895547A/en
Publication of JPS598416B2 publication Critical patent/JPS598416B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances

Description

【発明の詳細な説明】 本発明は火薬類又は爆薬の爆発を利用し、固体、液体等
の凝縮系物質を衝撃処理する装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for impact treatment of condensed substances such as solids and liquids by using explosion of gunpowder or explosives.

従来、爆発衝撃を利用する、物質の合成、粉体の固化・
金属の圧着等の技術は知られており、グラファイトから
のダイヤモンドの合成に代表されるように、その一部は
工業化されている。
Traditionally, explosive impact has been used to synthesize substances, solidify powders, and
Technologies such as crimping metals are known, and some of them have been industrialized, as exemplified by the synthesis of diamond from graphite.

この場合、爆発ガスにより駆動された金属板等の高速飛
翔体を得て、これを試料に衝突させる方法が、より高い
衝撃圧力が得られるため有利であることが知られている
In this case, it is known that a method of obtaining a high-speed flying object such as a metal plate driven by explosive gas and causing it to collide with the sample is advantageous because a higher impact pressure can be obtained.

この場合、爆発による飛翔体の飛翔速度を大きくして、
試料内に発生する衝撃圧を高くシ、且つ衝撃持続時間を
長くすることが処理効果を高める上で望ましい。
In this case, by increasing the flight speed of the projectile caused by the explosion,
In order to enhance the processing effect, it is desirable to increase the impact pressure generated within the sample and to increase the impact duration.

これは、爆速の大きい且つ性能の良い爆薬を多量に用い
ることにより達成できるが、そのような爆薬は高価であ
り、大量使用するとなると経済性の点で大きな問題とな
る。
This can be achieved by using a large amount of explosives with high detonation velocity and good performance, but such explosives are expensive and their use in large quantities poses a major economical problem.

本発明は低コストで超高圧の効果的な衝撃圧縮を行い得
る装置を提供することを目的とするものであり、この目
的を達成すべく、本発明によれば、軸方向に延びる凝縮
系物質に対し平行且つ間隙をもって設置した飛翔部材の
反対面に主爆薬層と、主爆薬層よりも爆速の大きい副爆
薬層を順次積層するとともに、該副爆薬層の一端部に起
爆部を設けたことを特徴とする凝縮系物質の衝撃処理装
置が提供される。
It is an object of the present invention to provide an apparatus capable of effective impact compression at ultra-high pressures at low cost. A main explosive layer and a sub-explosive layer having a higher detonation speed than the main explosive layer are sequentially laminated on the opposite side of the flying member which is installed parallel to the main explosive layer with a gap therebetween, and a detonator is provided at one end of the sub-explosive layer. Provided is an impact treatment device for condensed substances characterized by:

本発明を次に図面により詳細に説明する。The invention will now be explained in more detail with reference to the drawings.

第1図は本発明による衝撃圧縮処理装置の一実施例を立
面断面で示した説明図であって、図中、1は圧縮処理す
べき、液体又は固体の凝縮系物質の試料であって、円筒
状の金属容器2内に収容されている。
FIG. 1 is an explanatory diagram showing an embodiment of the impact compression treatment apparatus according to the present invention in an elevational cross section, and in the figure, 1 is a sample of a liquid or solid condensed substance to be subjected to compression treatment. , is housed in a cylindrical metal container 2.

符号3,4で示すのは容器2の栓である。容器2と同心
的に円筒状の飛翔部材5が間隙6をもって設置されてい
る。
Reference numerals 3 and 4 indicate the stoppers of the container 2. A cylindrical flying member 5 is installed concentrically with the container 2 with a gap 6 therebetween.

飛翔部材5の外周面には主爆薬層9が設けられており、
この爆発力により飛翔部材5は容器に向って高速で飛翔
、衝突し、内部の試料1を衝撃圧縮させる。
A main explosive layer 9 is provided on the outer peripheral surface of the flying member 5,
Due to this explosive force, the flying member 5 flies toward the container at high speed and collides with it, causing impact compression of the sample 1 inside.

28は、主爆薬層9の外周面に設けられた副爆薬層であ
って、主爆薬層9の爆速よりも大きい爆速を有するもの
である。
Reference numeral 28 denotes a sub-explosive layer provided on the outer circumferential surface of the main explosive layer 9, which has a detonation velocity greater than that of the main explosive layer 9.

副爆薬層28は、上端部に設けた、雷管11及び起爆薬
層10からなる起爆部により起爆し、上端から下端に向
って連続的に爆発する。
The sub-explosive layer 28 is detonated by a detonator formed of the detonator 11 and the detonator layer 10 provided at the upper end, and explodes continuously from the upper end to the lower end.

この副爆薬層28の爆発により主爆薬9も上端から下端
に向って連続的に起爆する。
Due to the explosion of the sub-explosive layer 28, the main explosive 9 is also detonated continuously from the upper end to the lower end.

起爆薬層10の爆発により主爆薬9が直接誘爆されるの
を防ぐために、主爆薬層9と起爆薬層10との間には木
板などの隔離板29が挿設されている。
In order to prevent the main explosive 9 from being directly triggered by the explosion of the priming layer 10, a separating plate 29 such as a wooden board is inserted between the main explosive layer 9 and the priming layer 10.

21〜26は容器2の両端部に設けた容器破損防止手段
であり、その作用は後述する。
Reference numerals 21 to 26 are means for preventing damage to the container provided at both ends of the container 2, and their functions will be described later.

なお、この破損防止手段は省略することもできる。Note that this damage prevention means can also be omitted.

第2図は、第1図の装置による衝撃処理進行中の概念図
であって、この図により副爆薬層28の作用を説明する
FIG. 2 is a conceptual diagram of the impact treatment in progress by the apparatus of FIG. 1, and the action of the sub-explosive layer 28 will be explained with reference to this diagram.

いま、副爆薬層28及び主爆薬層9の爆速をそれぞれD
1及びD2とすると、主爆薬層9による爆轟波面Zは、
飛翔部材5に対し角度θをもって進行する。
Now, the detonation speeds of the sub-explosive layer 28 and the main explosive layer 9 are respectively D.
1 and D2, the detonation wavefront Z due to the main explosive layer 9 is:
It advances at an angle θ with respect to the flying member 5.

この時θはθ−s’n −’ ( D2/ DI )
−・(1)で表わされ、D1〉D2である
ため、θは90°より小さ,くなる。
At this time, θ is θ−s'n −' (D2/DI)
Since D1>D2, θ is smaller than 90°.

即ち、爆轟波面Zは、本発明の場合、飛翔部材に対し9
0°より小さい一定の角度を構成して形成される。
That is, in the case of the present invention, the detonation wavefront Z is 9
It is formed by configuring a constant angle smaller than 0°.

一般に、爆轟波面とこれにより加速される物体との構成
する角度が小さいほど、加速の効率はよくなり、より高
速の飛翔物体が得られる。
In general, the smaller the angle between the detonation wavefront and the object accelerated thereby, the better the efficiency of acceleration, and the faster the object can be flown.

通常使用されている爆薬の爆速値は2〜9km/秒であ
り、従って、上記(1)式よりθは約13°以上90°
未満となる。
The detonation velocity value of commonly used explosives is 2 to 9 km/sec, so from equation (1) above, θ is approximately 13° or more and 90°.
less than

このように、主爆薬層9の爆速より大きい爆速を示す副
爆薬層28を設けたことにより、主爆薬層9の爆発エネ
ルギーを効率よく飛翔部材5の運動エネルギーに変換す
ることが可能となる。
In this manner, by providing the sub-explosive layer 28 which exhibits a detonation velocity higher than the detonation velocity of the main explosive layer 9, it becomes possible to efficiently convert the detonation energy of the main explosive layer 9 into the kinetic energy of the flying member 5.

さらに、飛翔部材5が容器2に衝突すると、衝突点から
容器を通って試料1内にその中心軸に向う斜めの衝撃波
が発生し、中心軸で衝突してより圧力の高い反射衝撃波
が発生し、中心軸から外側へ向って進行する。
Furthermore, when the flying member 5 collides with the container 2, an oblique shock wave is generated from the collision point through the container into the sample 1 toward its central axis, and collides at the central axis to generate a reflected shock wave with higher pressure. , proceeding outward from the central axis.

衝撃波面Yの下方への進行速度は定常な状態では副爆薬
層の爆速D1と等しくなる故、D1が十分大きければ主
爆薬層9の爆速D2が小さくとも容器2の音速よりも大
きい衝撃波面Pの移動速度を得ることができ、超高圧の
圧縮処理が可能となる。
Since the downward traveling speed of the shock wave front Y is equal to the detonation velocity D1 of the sub-explosive layer in a steady state, if D1 is sufficiently large, even if the detonation velocity D2 of the main explosive layer 9 is small, the shock wave front P will be greater than the sound velocity of the container 2. It is possible to obtain a moving speed of

θが90°に近い場合、すなわちD2がD1とほぼ等し
い場合、爆轟波面Zは球面波となり均一な圧縮処理を施
すことが困難となる。
When θ is close to 90°, that is, when D2 is approximately equal to D1, the detonation wavefront Z becomes a spherical wave, making it difficult to perform uniform compression processing.

すなわち、第3図に示すように、OA,QSが各々副爆
薬層28、飛翔部材5の位置とし、OQが主爆薬層9の
最上面を示すものとすると、6点で起爆された主爆薬の
爆発がQに到達する間に、A点まで副爆薬28の爆発が
進行する。
That is, as shown in FIG. 3, if OA and QS are the positions of the sub-explosive layer 28 and the flying member 5, respectively, and OQ is the top surface of the main explosive layer 9, then the main explosive detonated at six points While the explosion of 28 reaches point Q, the explosion of the secondary explosive 28 progresses to point A.

ここで線分OAとOQの長さ,の比が爆速D, , D
2の比に等しい。
Here, the ratio of the lengths of line segments OA and OQ is explosive speed D, , D
Equal to the ratio of 2.

0を中心とし半径OQの円弧を得て、これにA点より接
線ARを引き接点をRとすると、直線AR及び円弧RQ
が主爆薬中の爆轟波面を示し、かつ角度OAR(これは
角度ROQに等しい)。
Obtain a circular arc with radius OQ centered at 0, draw a tangent AR from point A, and set the tangent point to R. Then, the straight line AR and the circular arc RQ
denotes the detonation wavefront in the main charge, and the angle OAR (which is equal to the angle ROQ).

をθとするとθは式(1)を満たす。When θ is θ, θ satisfies equation (1).

直線ORを延長し直線QSとの交点をTとすると、結局
、QT間には円状(実際は球面状)の爆轟波が、Tより
下方ではθの角度を有す爆轟波が到達することになり、
T点より下方の飛翔部材は一様に加速される。
If we extend the straight line OR and let the intersection with the straight line QS be T, a circular (actually spherical) detonation wave will arrive between QT, and a detonation wave with an angle of θ will arrive below T. As a result,
The flying members below point T are uniformly accelerated.

主爆薬の横方向の厚さは、OQで示されるゆえ結局QT
は次式で示す QT=OQ−諭θ ・・・・・・(2
)従ってθが90°に近くなると、即ち、D1がD2と
等しい値をとるようになると、球面状の爆轟波が飛翔部
材に衝突する割合が大きくなり、飛翔部材に一様な加速
を与えることができず、均一な衝撃圧゜縮処理を行うこ
とが困難となる。
The lateral thickness of the main explosive is denoted by OQ, so it ends up being QT.
is expressed by the following formula: QT=OQ−諭θ ・・・・・・(2
) Therefore, when θ approaches 90°, that is, when D1 takes the same value as D2, the proportion of spherical detonation waves colliding with the flying member increases, giving uniform acceleration to the flying member. This makes it difficult to perform uniform impact compression treatment.

第1図の装置においては、前述したように、得られる爆
薬の制限上、(l)式で与えられる角度θは約13°が
限界となる。
In the apparatus shown in FIG. 1, as mentioned above, due to the limit of the explosive that can be obtained, the angle θ given by equation (l) is limited to about 13°.

第4図に示される装置は、爆轟波面と飛翔部材との為す
角度θを更に小さくし、場合によってはこれを0とする
ことが可能なような装置を示したものであり、図中第1
図と同一符号は同一部材、要素を示す。
The device shown in FIG. 4 is a device that can further reduce the angle θ formed between the detonation wave front and the flying member, and in some cases reduce it to 0. 1
The same reference numerals as in the figures indicate the same members and elements.

第4図から容易に判断されるように、この実施例におい
ては、主爆薬層9はこれを起爆させるための起爆薬層1
0側の端部(即ち、図示の場合では上端部)から反対側
端部(即ち、下端部)に向って次第に一様に層厚を薄く
して形成されている。
As can be easily determined from FIG. 4, in this embodiment, the main explosive layer 9 is the primary explosive layer 1 for detonating the main explosive layer 9.
The layer thickness is gradually and uniformly thinned from the zero end (that is, the upper end in the illustrated case) toward the opposite end (that is, the lower end).

このような主爆薬層9の周囲に形成された副爆薬層28
の爆速D1は主爆薬層9の爆速よりも大きくされており
、主爆薬層の外面、即ち副爆薬層28の傾斜角をδとす
ると、主爆薬層9の爆轟波面と飛翔部材5との為す角度
θは次式で表される。
A sub-explosive layer 28 formed around such a main explosive layer 9
The detonation velocity D1 is made larger than the detonation velocity of the main explosive layer 9, and if the inclination angle of the outer surface of the main explosive layer, that is, the sub-explosive layer 28 is δ, the detonation wavefront of the main explosive layer 9 and the flying member 5 are The angle θ is expressed by the following equation.

θ一δ一cos”−’ ( D2/ D1)
・・・・・・(3)従って、COSδの値がD2/DI
に等しい時、θは0となる。
θ-δ-cos”-’ (D2/D1)
......(3) Therefore, the value of COS δ is D2/DI
When θ is equal to , θ becomes 0.

即ち、たとえば、副爆薬28として、主爆薬9の2倍の
爆速を有するものを使用する場合、δを60°とすれば
θを0とすることができる。
That is, for example, when using an explosive having twice the detonation velocity as the main explosive 9 as the secondary explosive 28, if δ is set to 60°, θ can be set to 0.

試料中に極めて高い圧力を発生する場合には、試料中に
最初に入射する衝撃波を出来るだけ強いものとし、かつ
中心軸での衝突角をなるべく小さくすれば、マツハ衝撃
波が発生しないで反射衝撃波のみで、ほぼ試料全体を均
一に圧縮できる。
When extremely high pressure is generated in a sample, if the shock wave that initially enters the sample is made as strong as possible and the collision angle at the central axis is made as small as possible, Matsuha shock waves will not be generated and only reflected shock waves will be generated. Almost the entire sample can be compressed uniformly.

本発明の場合、これは飛翔部材9の容器2への衝突角度
を十分小さくすることにより、したがって、主爆薬の爆
轟波面と飛翔部材9とが構成する角度θを十分小さくす
ることにより可能となり、特にθが零の時試料は完全に
円筒状に収縮する衝撃圧縮を受けることになる。
In the case of the present invention, this is made possible by making the angle of impact of the flying member 9 on the container 2 sufficiently small, and therefore by making the angle θ formed by the detonation wavefront of the main explosive and the flying member 9 sufficiently small. , especially when θ is zero, the sample undergoes impact compression that causes it to contract completely into a cylindrical shape.

同筒状に収縮する衝撃波は収縮とともに圧力が増大し、
中心では無限に近い超高圧となる。
The pressure of the shock wave that contracts in the same cylindrical shape increases as it contracts,
At the center, there is an extremely high pressure that is close to infinity.

収縮衝撃波の強さは例えばソモンの方法(フイジクス
オブ ハイエナジーデンシティ アカデミックプレス社
1971年刊)により、推定できるが、半径が〆。
The strength of the contraction shock wave can be measured using Somon's method (physics), for example.
of High Energy Density (published by Academic Press, 1971), it can be estimated, but the radius is 〆.

以下になると、凝縮系物質では圧力が数倍程度増巾する
ゆえ、この場合横方向のなるべく均一な圧縮を必要とす
るならば、第5図に示すように、試料内に試料と衝撃イ
ンピーダンスの類似した物質より出来た棒31を中心部
におけば良い。
If the pressure is below, the pressure increases several times in condensed materials, so in this case, if compression is required as uniformly as possible in the lateral direction, as shown in Figure 5, the pressure between the sample and the impact impedance increases. A rod 31 made of a similar material may be placed in the center.

この場合棒の径を試料径の少くとも%程度とするのがよ
い。
In this case, it is preferable that the diameter of the rod be at least about % of the sample diameter.

一方極度の高圧は中心部付近で達成されるので、逆に第
5図の棒31の部分に試料を、試料1の部分に試料と衝
撃インピーダンスの類似した物質を配置して超高圧処理
を行うことができる。
On the other hand, extremely high pressure is achieved near the center, so on the other hand, ultra-high pressure treatment is performed by placing the sample at the bar 31 in Figure 5 and a substance with similar impact impedance to the sample at sample 1. be able to.

以上に述べた本発明の装置における各部分について次に
説明する。
Each part of the apparatus of the present invention described above will be explained next.

起爆薬層10の爆薬としては、円板状のものが通常使用
され、その種類には特に制限は無いが、なるべく爆発伝
播限界薬厚の小さいものの使用が薬量を少くすることが
できるため好ましい。
A disk-shaped explosive is usually used as the explosive in the primer layer 10, and there are no particular restrictions on its type, but it is preferable to use one with a small explosive propagation limit as much as possible because the amount of explosive can be reduced. .

副爆薬層28の層厚は通常10mm以下とするのが良く
、その薬種としては、爆速か5.5km7秒以上で、爆
発伝播限界薬厚の小さいものを用いることが好ましい。
The thickness of the sub-explosive layer 28 is usually preferably 10 mm or less, and it is preferable to use a type of charge that has a detonation speed of 5.5 km/7 seconds or more and a small charge thickness that limits explosion propagation.

このようなものの例としては、ベントリフト又はヘキソ
ーゲン等のような高性能爆薬の微粉末をシリコンゴム、
ウレタンゴムのような重合プラスチック樹脂類に混合、
成型したものを挙げることができる。
Examples of such things include silicone rubber, fine powder of high explosives such as vent lift or hexogen, etc.
Mixed with polymeric plastic resins such as urethane rubber,
Examples include molded products.

また、液状爆薬の使用も可能である。It is also possible to use liquid explosives.

主爆薬層9の薬厚としては通常1071m以上(第4図
の実施例の場合には、下端の薄層側における薬厚)とす
るのが良く、その種類としては、用いる副爆薬の爆速よ
り小さいものであれば任意であり、アンホ爆薬、ダイナ
マイト類、含水爆薬等の一般産業用の爆薬も使用できる
The thickness of the main explosive layer 9 is usually 1071 m or more (in the case of the embodiment shown in Fig. 4, the thickness at the lower thin layer side), and the type of the main explosive layer 9 is determined by the detonation speed of the secondary explosive used. Any small explosive can be used, and general industrial explosives such as ampho explosives, dynamites, and hydrous explosives can also be used.

隔離部材29としては木材の他、プラスチック、せつこ
う、砂、紙等を適用することができる。
As the isolation member 29, other than wood, plastic, plaster, sand, paper, etc. can be used.

飛翔部材5の材質は特に制限はないが、経済性及び加工
性からみて、スチール又は真鍮が好ましG)。
The material of the flying member 5 is not particularly limited, but steel or brass is preferable from the viewpoint of economy and workability.G).

また飛翔部材5の肉厚は爆発による飛翔部材5の飛翔速
度を決定する要因であって、実用上は、少なくとも0.
5mm以上とするのが好ましい。
Further, the wall thickness of the flying member 5 is a factor that determines the flying speed of the flying member 5 due to an explosion, and in practical terms, it is at least 0.
It is preferable to set it to 5 mm or more.

試料容器2及びその栓3,4はなるべく強度の大きい金
属で構成されることが好ましく、実用上、ステンレス等
の高張力鋼材が望ましい。
The sample container 2 and its plugs 3 and 4 are preferably made of a metal with as high strength as possible, and in practice, high-tensile steel such as stainless steel is desirable.

容器2の肉厚は破損防止の点からは厚い方が好ましいが
、容器の変形に消費される衝撃エネルギーが多くなり、
それだけ試料の処理効果が減じられるので、この点から
は薄いのが好ましいが、本発明においてはステンレス容
器の場合、1〜10′/n71L程度の肉厚があれば十
分である。
It is preferable that the wall thickness of the container 2 is thicker from the viewpoint of preventing breakage, but this increases the impact energy consumed in deforming the container.
From this point of view, it is preferable that the container be thin, since the processing effect of the sample will be reduced accordingly, but in the case of a stainless steel container in the present invention, a wall thickness of about 1 to 10'/n71 L is sufficient.

金属栓は、形状が試料に対して、平滑なものよりか、第
1図に示すように凸型、あるいは凹型の形状をもたせた
方が、容器の破断防止に効果的であり、また容器本体と
接する部分がなるべく多くなるようなねじこみ式構造と
するのが好ましい。
It is more effective to prevent the container from breaking if the metal stopper has a convex or concave shape, as shown in Figure 1, rather than a flat one, as shown in Figure 1. It is preferable to use a screw-in structure in which as many parts as possible are in contact with the

飛翔部材5と容器2間の間隙6は、横方向(試料の軸方
向に直交する方向)の巾として主爆薬9の横方向厚みの
少なくとも%以上とするのが良い。
The width of the gap 6 between the flying member 5 and the container 2 in the lateral direction (direction perpendicular to the axial direction of the sample) is preferably at least % of the lateral thickness of the main explosive 9.

第1及び4図において、符号21〜26で示すのは、容
器2の両端に設けた容器破断防止手段である。
In FIGS. 1 and 4, reference numerals 21 to 26 indicate container breakage prevention means provided at both ends of the container 2.

すなわち、爆発により飛翔体を試料に対して衝突させて
圧縮処理を行う場合、この飛翔体の衝突により容器2の
上部は上方向へ、その他は全体として下方向へと移動し
ようとし、その結果容器の上及び下部、特に試料1と栓
3,4が接する近傍で容器の破断が生じ易く、試料が散
逸損失するという問題がある。
In other words, when a compression process is performed by colliding a flying object with a sample due to an explosion, the upper part of the container 2 tends to move upward due to the impact of the projectile, and the rest of the container 2 as a whole tries to move downward, and as a result, the container 2 There is a problem in that the container is likely to break at the upper and lower parts of the container, particularly in the vicinity where the sample 1 and the stoppers 3 and 4 come into contact, resulting in loss of the sample due to dissipation.

本発明の如く、超高圧な衝撃圧縮を行う場合にはこの容
器の破断に対処することが特に望まれるが、この破断防
止は、容器2の両端部に飛翔部材の衝突により爆発する
減速用爆薬層を設け、該飛翔部材の衝突による該容器の
該他端部側方向への移動速度を減じるようにしたことに
より達成できる。
When carrying out ultra-high-pressure impact compression as in the present invention, it is particularly desirable to prevent the container from rupturing. This can be achieved by providing a layer to reduce the speed of movement of the container toward the other end side due to the collision of the flying member.

21.22は容器破損防止用の減速用爆薬層であり、図
示のように、衝撃波減衰板23 .24及び25 ,2
6にそれぞれサンドインチ状にはさんで使用するのが好
ましい。
Reference numerals 21 and 22 are deceleration explosive layers for preventing damage to the container, and as shown in the figure, shock wave attenuating plates 23 . 24 and 25, 2
It is preferable to use them by sandwiching them between 6 and 6 in the form of a sandwich.

爆薬層2L22に用いる爆薬の薬種に関しては特に制限
はないが、低速爆轟性のもの、死圧現象を呈しやすいも
の、あるいは、衝撃で爆性が急速に変化しやすいものの
使用はなるべく避け起爆性が良好かつ爆発伝播限界薬厚
のなるべく小さなものが好ましく、このようなものとし
て、ベントリフト、ヘキソーゲンテトリル等の高性能爆
薬単体、これらの混合物、又はこれらの高性能爆薬の粉
体をパラフィン、みつろう、あるいはシリコンゴムやブ
タジエンゴム等で成型処理したもののほか、ニトロメタ
ン、硝酸及びこれらに可溶な可燃性物質からなる溶液な
どの液体爆薬を例挙することができる。
There are no particular restrictions on the type of explosive used in the explosive layer 2L22, but it is best to avoid using explosives that detonate at low speed, are likely to exhibit a dead pressure phenomenon, or whose explosive properties are likely to change rapidly due to impact. It is preferable to use high-performance explosives such as vent lift, hexogen tetrile, etc., a mixture of these high-performance explosives, or powders of these high-performance explosives in paraffin. , beeswax, silicone rubber, butadiene rubber, etc., as well as liquid explosives such as nitromethane, nitric acid, and solutions made of flammable substances soluble in these.

液状の減速用爆薬の場合は、薄肉の容器に入れて使用す
るが、固体状の場合も裸薬でなく、側面を塩化ビニル管
等で囲って使用しても良い。
In the case of a liquid moderator explosive, it is used in a thin-walled container, but in the case of a solid one, it may also be used by surrounding the sides with a vinyl chloride pipe or the like instead of using a naked charge.

爆薬層21.22の形状は通常、板状とするのが良く、
試料容器2と概略同一な平面形状とするのが好ましい。
The shape of the explosive layers 21 and 22 is usually plate-like.
It is preferable that the planar shape is approximately the same as that of the sample container 2.

薬厚は爆発限界薬厚以上として使用する。The thickness should be at least the explosive limit thickness.

衝撃波減衰板23.24,25,26としては、その衝
撃インピーダンスが減速用爆薬となるべく類似したもの
の使用が好ましく、例えば、メタクリル等のプラスチッ
ク類、或は水、無機もしくは有機塩類の水溶液等が使用
される。
As the shock wave attenuating plates 23, 24, 25, and 26, it is preferable to use materials whose impact impedance is as similar as that of deceleration explosives; for example, plastics such as methacrylic, or water, an aqueous solution of inorganic or organic salts, etc. are used. be done.

液体状物質を衝減波減衰用に適用する場合には、薄肉の
容器に封入して使用する。
When a liquid substance is used for shock wave attenuation, it is used by sealing it in a thin-walled container.

衝撃波減衰板23 , 24 ,25.26の形状は、
挾持する爆薬層21.22と略々同一平面形状を有し且
つ同一厚とするのが好ましい。
The shape of the shock wave attenuating plates 23, 24, 25, 26 is as follows:
Preferably, it has approximately the same planar shape and the same thickness as the sandwiching explosive layers 21, 22.

次に本発明による減速爆薬層21.22の作用について
説明する。
Next, the function of the moderating explosive layer 21, 22 according to the present invention will be explained.

いま減速用爆薬層21 .22が無いとすると、減衰板
23,24,25.26及び試料容器2への飛翔体5の
衝突により、容器の上部は上方向へそれ以外は下方向へ
全体として移動しようとする。
Now deceleration explosive layer 21. 22, the impact of the flying object 5 on the damping plates 23, 24, 25, 26 and the sample container 2 would cause the upper part of the container to move upwards and the rest to move downwards as a whole.

特に容器2の最下部は減衰板の下をプラスチック円板2
7とし、更にその下部を自由空間とした場合、自由面か
ら上方へ稀薄波が発生し容器全体の下方への移動速度を
さらに増加させる。
In particular, at the bottom of the container 2, there is a plastic disc 2 under the damping plate.
7, and if the lower part is made into a free space, dilution waves are generated upward from the free surface, further increasing the downward movement speed of the entire container.

また試料は一般に容器2及び金属栓3,4より、かなり
衝撃抵抗が小さいため試料との界面で二次的な稀薄波が
発生しやすく、稀薄波間の複雑な相互干渉により、この
近傍で強い引張力が発生し、容器を破断しやすい。
In addition, since the sample generally has a much lower impact resistance than the container 2 and the metal plugs 3 and 4, secondary dilution waves are likely to occur at the interface with the sample, and due to complex mutual interference between the dilution waves, a strong tensile force is generated in this vicinity. Force is generated and the container is likely to break.

容器の上部に関しても概略同様な効果が生じ、試料と容
器栓の界面近傍で破断しやすい。
Roughly the same effect occurs in the upper part of the container, which tends to break near the interface between the sample and the container stopper.

一方、爆薬層21.22を設け、これに対して飛翔体5
を衝突させて側面より起爆させた場合、その爆発力によ
って上記した容器の上部及び下部方向への移動速度は減
ぜられる。
On the other hand, explosive layers 21 and 22 are provided, and the flying object 5
If the container is detonated from the side by colliding with it, the explosive force will reduce the speed of movement of the container in the upper and lower directions.

従って容器の破断が防止できる。尚、起爆薬層10の薬
量が十分多い場合には、上部に設けた減速用爆薬層22
は省くことができる。
Therefore, breakage of the container can be prevented. In addition, when the amount of the explosive layer 10 is sufficiently large, the deceleration explosive layer 22 provided on the upper part
can be omitted.

以上の本発明の実施例においては、圧縮処理すべき試料
の平断面が円形なものについて説明したが、本発明はこ
れに限らず、角柱状、平板状などのように軸方向に延び
る形状の試料の処理にも適用でき、その場合、試料容器
、飛翔部材などの形状は試料の形状に対応して適宜変化
させることは当業者にとって当然のことと理解されよう
In the above embodiments of the present invention, the sample to be compressed has a circular planar cross section, but the present invention is not limited to this. It will be understood by those skilled in the art that the present invention can also be applied to sample processing, and in that case, the shapes of the sample container, flying member, etc. should be changed as appropriate in accordance with the shape of the sample.

本発明は、グラファイ1・からダイヤモンドの転化反応
のような衝撃を利用する物質合成や、タングステン、炭
化ケイ素等の粒状の高融点物質を緻密に衝撃する場合、
又は鋼のような金属材料を衝撃硬化せしめる場合、更に
は炭化ケイ素等のセラミック粉を微粉化しかつ歪を与え
て活性化する場合等、固体や液体の凝縮系物質を種々な
目的で衝撃処理する場合に適用される。
The present invention is applicable to material synthesis using impact such as the conversion reaction of graphite 1 to diamond, or when granular high melting point materials such as tungsten and silicon carbide are subjected to dense impact.
Or impact treatment of solid or liquid condensed substances for various purposes, such as impact hardening of metal materials such as steel, or pulverizing ceramic powder such as silicon carbide and activating it by applying strain. Applies to cases.

本発明を次に実施例により更に詳細に説明する。The present invention will now be explained in more detail with reference to Examples.

実施例 1 第1図に示した衝撃圧縮装置を用いて緑色の炭化ケイ素
粉末(かさ比重約1.9)を圧縮処理した。
Example 1 Green silicon carbide powder (bulk specific gravity approximately 1.9) was compressed using the impact compression apparatus shown in FIG.

ただし上部破断防止用爆薬層22及びメタクリル板25
.26は使用しなかった。
However, the explosive layer 22 for preventing upper part breakage and the methacrylic plate 25
.. 26 was not used.

飛翔体5として、内径70mm,肉厚1. 5mvt,
長さ170mmの真鍮管を用い、これと同心的に内径1
5 4mm,肉厚5.5mrn1長さ190mmの硬
質塩化ビニル管を設置した。
The flying object 5 has an inner diameter of 70 mm and a wall thickness of 1. 5mvt,
A brass tube with a length of 170 mm is used, and an inner diameter of 1
5 A hard vinyl chloride pipe with a diameter of 4 mm, a wall thickness of 5.5 mrn, and a length of 190 mm was installed.

この硬質塩化ビニル管の下端にはプラスチック製円板2
7を取り付け、また内壁周面に沿って厚さ3mmの副爆
薬層28を設けた。
At the bottom end of this hard PVC pipe is a plastic disc 2.
7 was attached, and a sub-explosive layer 28 with a thickness of 3 mm was provided along the inner wall circumferential surface.

副爆薬層28としては、平均粒径が0. 5 mm以下
のベントソフト粉末を未硬化シリコン樹脂(信越化学製
、KE−10)に対し70対30の重量割合で混合攪拌
し、成型後硬化させたものを用いた。
The sub-explosive layer 28 has an average particle size of 0. Bent soft powder of 5 mm or less was mixed and stirred with uncured silicone resin (KE-10, manufactured by Shin-Etsu Chemical) at a weight ratio of 70:30, and the mixture was molded and then cured.

副爆薬層は6. 7 krn/秒の爆速を示した。The sub-explosive layer is 6. It showed an explosive speed of 7 krn/sec.

次に、この副爆薬層28と真鍮管5との間の環状空間に
アンホ爆薬を充填して主爆薬層9を形成した。
Next, the annular space between the sub-explosive layer 28 and the brass tube 5 was filled with ampho explosive to form the main explosive layer 9.

アンホ爆薬の使用量は約2. 1 kgで、装填比重は
約0.8であった。
The amount of Anho explosive used is approximately 2. At 1 kg, the loading specific gravity was approximately 0.8.

この主爆薬層の爆速は約3. 1. km/秒であった
The detonation velocity of this main explosive layer is approximately 3. 1. km/sec.

上記した試料を内径301It11L1肉厚2 mrn
,長さ1 4. 0m711のステンレス製( SUS
−3 04 )円筒管で形成した容器2に充填し(空隙
率約40%)、両端に凸型のスチール製(SS−41)
の栓3,4を螺合させた。
The above sample has an inner diameter of 301It11L1 and a wall thickness of 2 mrn.
, length 1 4. Made of stainless steel (SUS
-3 04) Filled in a container 2 formed of a cylindrical tube (porosity about 40%), made of steel with convex shapes at both ends (SS-41)
The plugs 3 and 4 were screwed together.

栓3,4のねじ部の長さは5mm,ふた部の長さは5m
mであった。
The length of the screw part of plugs 3 and 4 is 5 mm, and the length of the lid part is 5 m.
It was m.

容器2を内径34.1mm1肉厚3. 9 mm,長さ
150mmのスチール(SS−41)管で囲んで補強し
、容器下端部には副爆薬層28と同一組成からなる直径
41.5mm,厚さ5mmの円板型のゴム状爆薬層21
を直径4 1. 5 mm、厚さ5mr/Lのメククリ
ル製円板23.24でサンドインチ状にはさんだものを
固定した後、全体を飛翔真鍮管5の内部に同心的に装入
した。
Container 2 has an inner diameter of 34.1 mm and a wall thickness of 3. It is surrounded and reinforced with a steel (SS-41) tube 9 mm long and 150 mm long, and at the bottom end of the container is a disc-shaped rubber explosive 41.5 mm in diameter and 5 mm thick that has the same composition as the sub-explosive layer 28. layer 21
Diameter 4 1. After fixing the sandwich between 5 mm and 5 mr/L Mekkrylic discs 23 and 24, the whole was concentrically inserted into the flying brass tube 5.

上部に直径1427’+712、肉厚20vtynの合
板29を設置し、その上に更に直径150mm1肉厚5
7n71Lの円板型の起爆部10を装着した。
A plywood board 29 with a diameter of 1427'+712 and a wall thickness of 20vtyn is installed on the top, and on top of that a plywood board 29 with a diameter of 150mm and a wall thickness of 5
A 7n71L disc-shaped detonator 10 was attached.

起爆部10としては、等重量部の前述したベントリット
とシリコン樹脂からなるゴム状円板を用いた。
As the detonator 10, a rubber disk made of equal weight parts of the vent lit and silicone resin was used.

このようにして構成した衝撃圧縮装置を大型爆発室の中
央に設置し、6号電気雷管で起爆させた。
The shock compression device constructed in this way was installed in the center of a large explosion chamber, and detonated with a No. 6 electric detonator.

爆発後、試料容器を回収し観察した結果、上部栓のねじ
部がちぎれていたが、下部の破損はみられず、試料回収
率は90%と認められた。
After the explosion, the sample container was recovered and observed. Although the threaded part of the top stopper was torn, no damage to the bottom part was observed, and the sample recovery rate was recognized as 90%.

回収した試料のかさ比重及び化学分析を第1表に示す。Table 1 shows the bulk specific gravity and chemical analysis of the collected samples.

また試料を振動ミルで粉砕した場合における、粒径44
μ以下の粒子が発生する割合を振動時間に対してプロッ
トした結果を第6図に示す。
In addition, when the sample was ground with a vibration mill, the particle size was 44
FIG. 6 shows the results of plotting the rate of generation of particles smaller than μ versus the vibration time.

また、回収試料の粉末X線回析方法による回折強度及び
半価巾C)を第2表に示す。
Table 2 also shows the diffraction intensity and half-width C) of the collected sample by powder X-ray diffraction method.

実施例 2 実施例1において、飛翔用の真鍮管5の肉厚を1.5m
mから3mmのものに変え、下部爆薬層21の肉厚を5
mmから10mmに変え、更に、容器2の上端部に爆薬
層21と同種の爆薬からなる直径415關、肉厚5mm
の爆薬層22を同一サイズのメクアクリル板25 .2
6でサンドインチ状に形成したものを設けた以外は実施
例1と全く同様な装置を構成し、圧縮処理を行った。
Example 2 In Example 1, the wall thickness of the brass tube 5 for flight was set to 1.5 m.
Change the thickness of the lower explosive layer 21 from m to 3 mm, and increase the thickness of the lower explosive layer 21 to 5 mm.
In addition, the upper end of the container 2 is made of the same type of explosive as the explosive layer 21, with a diameter of 415 mm and a wall thickness of 5 mm.
The explosive layer 22 of the acrylic plate 25 of the same size. 2
A compression treatment was carried out using the same apparatus as in Example 1, except for the provision of a sandwich-shaped device in step 6.

容器2の破撰は全く見られず、試料回収率は100%と
認めた。
No breakage of container 2 was observed, and the sample recovery rate was recognized as 100%.

試料を容器と共に輪切りにして切断面を観察したところ
、炭化ケイ素は最初の緑色から黒色へと変色し、固く緻
密にしまっていた。
When the sample was cut into rings along with the container and the cut surfaces were observed, the silicon carbide had changed color from its initial green color to black and had become hard and dense.

また、幾重ものらせん状の亀裂が見られ、中心部には直
径2〜3TL11Lの溶融凝縮部が見られた。
In addition, multiple spiral cracks were observed, and a molten condensation part with a diameter of 2 to 3 TL11L was observed in the center.

実施例1と同様な測定・試1験を行った結果を第1表、
第2表及び第6図に示す。
Table 1 shows the results of one measurement/test similar to Example 1.
It is shown in Table 2 and Figure 6.

実施例 3 実施例2において、容器補強管の肉厚を3. g mm
から7罷に変え、主爆薬9として桐ダイナマイト(約3
5kg使用、爆速約6km/秒を示す)を使用し、更に
、上・下爆薬層2L22を取除き、メタアクリル板23
,24,25.26として直径48TfLTL1肉厚5
TL71Lのものを用いそれぞれ2枚重ねしたものを使
用した以外は実施例2と全く同様な装置を構成し、圧縮
処理を行った。
Example 3 In Example 2, the wall thickness of the container reinforcing tube was set to 3. g mm
The main explosive 9 was paulownia dynamite (approximately 3
5kg was used and the detonation speed was approximately 6km/sec), the upper and lower explosive layers 2L22 were removed, and the methacrylic plate 23
, 24, 25.26 as diameter 48TfLTL1 wall thickness 5
The compression process was carried out using an apparatus that was exactly the same as in Example 2, except that two sheets of TL71L were used.

容器は両端部のネジ部附近でちぎれ、試料回収率は約5
0%と認めた。
The container was torn off near the screws on both ends, and the sample recovery rate was approximately 5.
It was accepted as 0%.

試料を容器と共に輪切りにして切断面を観察したところ
、中心部は約5〜10朋にわたって空孔となっていた。
When the sample was cut into rings along with the container and the cut surface was observed, it was found that there was a hole extending approximately 5 to 10 mm in the center.

この部分は試料が溶融飛散したために形成されたものと
考えられる。
It is thought that this part was formed due to melting and scattering of the sample.

実施例1と同様な測定試1験を行った結果を第1表、第
2表及び第6図に示す。
The results of one measurement test similar to Example 1 are shown in Table 1, Table 2, and FIG. 6.

第2表及び第6図に示される結果から明らかなように、
実施例1〜3に示す圧縮処理により非常に微細でかつ結
晶ひずみの入ったセラミック粒子が得られる。
As is clear from the results shown in Table 2 and Figure 6,
The compression treatments shown in Examples 1 to 3 yield very fine ceramic particles with crystal strain.

又、実施例2及び3は、第1表及び観察結果から認めら
れるように、炭化ケイ素の融解、分解が生じる程の高温
を発生し得る(炭化ケイ素は常圧で2500℃から分解
、昇華が起るとされており、融点は約2800°と考え
られている)ことを立証するものである。
Furthermore, as seen from Table 1 and the observation results, Examples 2 and 3 can generate temperatures high enough to cause melting and decomposition of silicon carbide (silicon carbide decomposes and sublimes from 2500°C at normal pressure). This proves that the melting point is believed to be approximately 2800°).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による衝撃圧縮処理装置を立断面で示す
説明図であり、第2図は第1図の装置による処理進行中
の状態を示す説明図、第3図は爆轟波と飛翔体との幾何
学的関係を表わす図、第4図は本発明の別の実施例を示
す説明図、第5図は第1又は第4図の容器内部の工態様
を示す図、及び第6図は衝撃処理後及び未衝撃の試料の
振動ミルによる粉砕効果を表わす図であり、折線a =
dはそれぞれ実施例1,2及び3ならびに未衝撃の試
料についてのグラフである。 図中、1・・・・・・試料、2・・・・・・容器、3,
4・・・・・・栓、5・・・・・・飛翔部材、6・・・
・・・空隙、9・・・・・・主爆薬層、10・・・・・
・起爆薬層、11・・・・・・雷管、21,22・・・
・・・減速爆薬層、23,24,25.26・・・・・
・衝撃波減衰板、27・・・・・・プラスチック板、2
8・・・・・・副爆薬層、29・・・・・・隔離板、3
1・・・・・・衝撃波導通棒、Y・・・・・・衝撃波面
、Z・・・・・・爆轟波面。
FIG. 1 is an explanatory diagram showing the impact compression processing apparatus according to the present invention in vertical section, FIG. 2 is an explanatory diagram showing the state in progress of processing by the apparatus of FIG. 1, and FIG. FIG. 4 is an explanatory diagram showing another embodiment of the present invention, FIG. 5 is a diagram showing the construction inside the container of FIG. 1 or 4, and FIG. The figure shows the crushing effect of a vibrating mill on a sample after impact treatment and before impact, and the broken line a =
d are graphs for Examples 1, 2 and 3 and unimpacted samples, respectively. In the figure, 1...sample, 2...container, 3,
4... Plug, 5... Flying member, 6...
...Gap, 9...Main explosive layer, 10...
- Explosive layer, 11... Detonator, 21, 22...
... Moderation explosive layer, 23, 24, 25.26...
・Shock wave attenuation plate, 27...Plastic plate, 2
8... Sub-explosive layer, 29... Separation plate, 3
1... Shock wave conducting rod, Y... Shock wave front, Z... Detonation wave front.

Claims (1)

【特許請求の範囲】 1 軸方向に延びる凝縮系物質に対し平行且つ間隙をも
って設置した飛翔部材の反対面に主爆薬層と、該主爆薬
よりも爆速の大きい副爆薬層を順次積層するとともに、
該副爆薬層の一端部に起爆部を設けたことを特徴とする
凝縮系物質の衝撃処理装置。 2 該主爆薬層の層厚を該一端部側から他端部側に向っ
て徐々に一様に薄くしたことを特徴とする特許請求の範
囲第1項の装置。 3 該凝縮系物質は金属容器に収納されている特許請求
の範囲第1項又は第2項の装置。 4 金属容器の中心軸上に、該凝縮系物質と略々同一の
衝撃インピーダンスを有する物質よりなる棒を設けた特
許請求の範囲第3項の装置。 5 該金属容器の中心軸上に該凝縮系物質を位置させ、
その周囲の容器内空間を該凝縮系物質と略略同一な衝撃
インピーダンスを有する物体を設置した特許請求の範囲
第3項の装置。 6 軸方向に延びる凝縮系物質を収納した金属容器に対
し平行且つ間隙をもって設置した飛翔部材の反対面に主
爆薬層と、該主爆薬層よりも爆速の大きい副爆薬層を順
次積層するとともに、該副爆薬の一端側に起爆部を設け
、更に該容器の両端部又は起爆部側端部の反対側端部に
該飛翔部材との衝突により爆発する減速用爆薬層を設け
たことを特徴とする凝縮系物質の衝撃圧縮処理装置。
[Claims] 1. A main explosive layer and a sub-explosive layer having a higher detonation speed than the main explosive are sequentially laminated on the opposite surface of a flying member installed parallel to the condensed substance extending in the axial direction with a gap, and
An impact treatment device for condensed substances, characterized in that a detonator is provided at one end of the sub-explosive layer. 2. The device according to claim 1, wherein the thickness of the main explosive layer is gradually and uniformly thinned from the one end side to the other end side. 3. The apparatus according to claim 1 or 2, wherein the condensed substance is housed in a metal container. 4. The device according to claim 3, wherein a rod made of a material having approximately the same impact impedance as the condensed material is provided on the central axis of the metal container. 5 positioning the condensed substance on the central axis of the metal container;
4. The device according to claim 3, wherein an object having substantially the same impact impedance as the condensed substance is installed in the space within the container surrounding the condensed substance. 6. A main explosive layer and a sub-explosive layer having a higher detonation speed than the main explosive layer are sequentially laminated on the opposite side of the flying member, which is installed parallel to and with a gap from the metal container containing the condensed substance extending in the axial direction, and A detonating part is provided at one end of the secondary explosive, and a deceleration explosive layer that explodes upon collision with the flying member is provided at both ends of the container or at the end opposite to the end on the side of the detonating part. Shock compression treatment equipment for condensed substances.
JP19263281A 1981-11-30 1981-11-30 Impact treatment equipment for condensed substances Expired JPS598416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19263281A JPS598416B2 (en) 1981-11-30 1981-11-30 Impact treatment equipment for condensed substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19263281A JPS598416B2 (en) 1981-11-30 1981-11-30 Impact treatment equipment for condensed substances

Publications (2)

Publication Number Publication Date
JPS5895547A JPS5895547A (en) 1983-06-07
JPS598416B2 true JPS598416B2 (en) 1984-02-24

Family

ID=16294475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19263281A Expired JPS598416B2 (en) 1981-11-30 1981-11-30 Impact treatment equipment for condensed substances

Country Status (1)

Country Link
JP (1) JPS598416B2 (en)

Also Published As

Publication number Publication date
JPS5895547A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
Winter et al. The role of localized plastic flow in the impact initiation of explosives
US3608014A (en) Method of explosively shocking solid materials
US5415101A (en) Shaped explosive charge, a method of blasting using the shaped explosive charge and a kit to make it
JP2023175710A (en) Double-tube connection structure for detonation synthesis, detonation synthesis device, application of double-tube connection structure for detonation synthesis or detonation synthesis device, and production method of high-strength composite tube or high-strength pressure vessel
Nesterenko et al. Dynamic behavior of particulate/porous energetic materials
JPS598416B2 (en) Impact treatment equipment for condensed substances
Bai et al. Experimental study of detonation of large-scale powder–droplet–vapor mixtures
US3658268A (en) Apparatus for shocking materials
US3653792A (en) High pressure shaped charged devices
US5271726A (en) Apparatus for explosive shocking of materials
JPS58139735A (en) Treatment of condensible materials by impulsive compression
JPS5893598A (en) Method and device for high pressure impact treatment of condensible material
US3249046A (en) Apparatus for accelerating plates to high velocity
US3162121A (en) Explosive charge assemblies
JPS598415B2 (en) Impact treatment method and device for condensed substances
US4201757A (en) Large boron nitride abrasive particles
JPH0322209B2 (en)
Fang et al. Synthesis and Characterization of Pressure Resistant Agent with Double‐Layer Core/Shell Hollow‐Structure for Emulsion Explosive
JPS58104629A (en) Method and apparatus for impact treatment of condensed substance
US3568248A (en) Plug closure in a container for subjecting sample to shock wave
JPH02253838A (en) Method and device for shock compression of solid material
KR101837837B1 (en) Reactive case manufacturing method of the porous structure of manufacturing method thereof
JP4415085B2 (en) Method and apparatus for impact pressure treatment of porous material
RU2503494C2 (en) Device to strain conical specimens by shockwave and to preserve them after straining
JPH02237634A (en) Method and device for impact-compressing solid material