JPS5893598A - Method and device for high pressure impact treatment of condensible material - Google Patents

Method and device for high pressure impact treatment of condensible material

Info

Publication number
JPS5893598A
JPS5893598A JP19263081A JP19263081A JPS5893598A JP S5893598 A JPS5893598 A JP S5893598A JP 19263081 A JP19263081 A JP 19263081A JP 19263081 A JP19263081 A JP 19263081A JP S5893598 A JPS5893598 A JP S5893598A
Authority
JP
Japan
Prior art keywords
sample
impact
container
explosive layer
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19263081A
Other languages
Japanese (ja)
Other versions
JPS6119295B2 (en
Inventor
Shuzo Fujiwara
修三 藤原
Masao Kusakabe
日下部 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19263081A priority Critical patent/JPS5893598A/en
Publication of JPS5893598A publication Critical patent/JPS5893598A/en
Publication of JPS6119295B2 publication Critical patent/JPS6119295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses

Abstract

PURPOSE:To decrease the moving speed of a vessel contg. a sample toward the other end part and to prevent the rupture of the vessel by providing explosive layers for deceleration which are exploded by the bombardment of a flying member and impulsive wave attenuating plates in both end parts of said vessel. CONSTITUTION:A sample 1 is contained in a vessel 2, and plugs 3, 4 are provided in both end parts thereof. Preventing means for rupture of the vessel wherein explosive layers 21, 22 for deceleration are sandwiched with impulsive wave attenuating plates 23, 24 and 25, 26 are provided respectively on the other sides thereof. A flying member 5 and a main explosive layer 9 are provided on the outside circumference of the vessel 2 via a space 6, and a plane detonation wave generating means 30 is provided in the upper part. A plastic plate 27 is provided in the lower part. For example, penthrite or the like which is subjected to a molding treatment is used for the layers 21, 22 and, for example, metharcylics, etc. are used for the plates 23-26. The sample is subjected to an impact compression treatment by actuating a detonator 11, whereby the high pressure impact treatment of the sample is accomplished uniformly.

Description

【発明の詳細な説明】 本発明は火薬類又は爆薬の爆発を利用し、固体、液体等
の凝縮系物質を衝撃処理する装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for impact treatment of condensed substances such as solids and liquids by using explosion of gunpowder or explosives.

従来、爆発衝撃を利用する、物質の合成、粉体の固化、
金属の圧着等の技術は知られており、グラファイトから
のダイヤモンドの合成に代表されるように、その一部は
工業化されている。この場合、爆発ガスによシ駆動され
た金属板等の高速飛翔体を得て、これを試料に衝突させ
る方法が、よシ高い衝撃圧力が得られるため有利である
ことが知られており、この方法を実施するための装置が
提案されている(%公開lI7−3’1397 ”)。
Traditionally, the use of explosive impact to synthesize substances, solidify powders,
Technologies such as crimping metals are known, and some of them have been industrialized, as exemplified by the synthesis of diamond from graphite. In this case, it is known that the method of obtaining a high-speed flying object such as a metal plate driven by explosive gas and colliding it with the sample is advantageous because a higher impact pressure can be obtained. An apparatus for carrying out this method has been proposed (%Publication II7-3'1397'').

第1図はこのような飛翔体を利用する、従来の衝撃処理
装置を示す説明図であり、図中1は試料、2は金属容器
、3,4は金属栓、5は円筒状飛翔体、6は空隙、7,
8は円板状保持部材、9は主爆薬、10は主爆薬9の起
爆薬、11は雷管及び12は金属床である。図示の状態
で雷管11を作動させて起爆薬10を爆発させると主爆
薬9は上方より下方へ向っである爆速で爆発し、その時
飛翔体5は上方より順次容器2に衝突し内部の試料1を
衝撃圧縮処理する。
FIG. 1 is an explanatory diagram showing a conventional impact processing device that uses such a flying object. In the figure, 1 is a sample, 2 is a metal container, 3 and 4 are metal plugs, 5 is a cylindrical flying object, 6 is a void, 7,
8 is a disc-shaped holding member, 9 is a main explosive, 10 is a detonator for the main explosive 9, 11 is a detonator, and 12 is a metal floor. When the detonator 11 is activated to detonate the primer 10 in the illustrated state, the main explosive 9 explodes from the top to the bottom at a certain detonation velocity, and at that time, the projectile 5 sequentially collides with the container 2 from above and the sample 1 inside. Shock compression treatment.

この従来方法においては、飛翔体5と試料容器2との衝
突点の移動速度は概略容器の音速以下という条件を採用
しているため、得られる衝撃圧力が制限される。飛翔体
5の飛翔速度を増大させる目的で、又は衝撃処理効果を
高めるべく衝撃圧の持続時間を増加させる目的で爆薬層
5の厚さを例えば701111以上の如く増大させると
、試料に対し均一な衝撃圧縮処理を加えることが困難と
なる。
In this conventional method, the moving speed of the collision point between the flying object 5 and the sample container 2 is approximately equal to or less than the sound speed of the container, so that the impact pressure that can be obtained is limited. If the thickness of the explosive layer 5 is increased to, for example, 701111 or more for the purpose of increasing the flight speed of the projectile 5 or for the purpose of increasing the duration of the impact pressure to enhance the impact treatment effect, it is possible to obtain a uniform uniformity for the sample It becomes difficult to apply impact compression treatment.

本発明者らは、上記したような肉厚爆薬層を用いた場合
に遭遇する処理の不均一性について種々研究を重ねた結
果、これが起爆方法に帰因することを見出した。即ち、
前記した従来法においては、起爆が試料の軸方向に対し
垂直な平面において中心から半径方向に同心的に放射状
に起る線起爆の形態で進行するため、爆轟波面が球状と
なシ、これにより駆動される飛翔体の速度がその場所に
よって異なることが不均一性の原因であることを見出し
た。
The inventors of the present invention have conducted various studies on the non-uniformity of processing encountered when using a thick explosive layer as described above, and have found that this is due to the detonation method. That is,
In the conventional method described above, the detonation proceeds in the form of a line detonation that occurs radially concentrically from the center in a plane perpendicular to the axial direction of the sample, so the detonation wavefront is spherical. It was found that the cause of the non-uniformity is that the speed of the flying object driven by the object differs depending on the location.

本発明は上記した従来技術の欠点を克服すべく完成した
ものであり、凝縮系物質の超高圧衝撃処理を可能ならし
むるとともに、均一な処理を施すことができる方法及び
それを実施するための一1装置を提供することを目的と
するものである。即ち、本発明によれば、軸方向に延び
る凝縮系物質に対し平行且つ間隙をもって設置した飛翔
部材の反対面に肉厚の主爆薬層を設け、該主爆薬層をそ
の一端部から他端部に向けて連続的に起爆せしめて、該
飛翔部材を該軸方向に衝突点が連続的に移動するように
衝突させて該凝縮系物質を衝撃圧縮させるにあたシ、該
軸と直交する切断面における該主爆層の断面全体を実質
的に同時に起爆せしめることを特徴とする凝縮系物質の
高圧衝撃圧縮処理方法が提供される。
The present invention has been completed in order to overcome the drawbacks of the prior art described above, and provides a method that enables ultra-high pressure impact treatment of condensed substances, as well as uniform treatment, and a method for carrying out the same. The purpose is to provide 11 devices. That is, according to the present invention, a thick main explosive layer is provided on the opposite surface of the flying member that is installed parallel to the condensed substance extending in the axial direction with a gap therebetween, and the main explosive layer is spread from one end to the other end. The flying member is caused to collide with the flying member so that the collision point continuously moves in the direction of the axis, and the condensed substance is compressed by impact. A method for high-pressure impact compression treatment of condensed materials is provided, the method comprising detonating substantially simultaneously the entire cross-section of the main detonation layer in a plane.

また、本発明の第二の発明によれば、 軸方向に延びる凝縮系物質に対し平行且つ間隙をもって
設置した飛翔部材の反対面に肉厚の主爆薬層を設けると
ともに、該主爆薬層の一端に起爆部を設け、該主爆薬層
を該一端部から他端部に向けて連続的に起爆せしめて、
該飛翔部材を該軸方向に衝突点が連続的に移動するよう
に衝突させて該凝縮系物質を衝撃圧縮させるようにした
凝縮系物質の衝撃処理装置において、該起爆部として平
面爆轟波発生手段を用いて、該軸と直交する切断面にお
ける該主爆薬層の断面全体を実質的に同時に起爆せしめ
るようにしたことを特徴とする凝縮系物質の衝撃処理装
置が提供される。
Further, according to the second aspect of the present invention, a thick main explosive layer is provided on the opposite surface of the flying member installed parallel to the condensed substance extending in the axial direction with a gap, and one end of the main explosive layer is provided. a detonating part is provided in the main explosive layer, and the main explosive layer is detonated continuously from the one end to the other end;
In an impact treatment device for condensed substances, the flying member collides with the flying member so that the collision point moves continuously in the axial direction to compress the condensed substance by impact, and the detonation part generates a plane detonation wave. There is provided an apparatus for impact treatment of condensed matter, characterized in that the entire cross-section of the main explosive layer in a cut plane perpendicular to the axis is detonated substantially simultaneously using means.

本発明を次に図面により詳細に説明する。尚、第一〜q
図において、第1図と同一な符号は同一の要素、部材を
示す。符号30で示すのは平面爆轟波発生手段である。
The invention will now be explained in more detail with reference to the drawings. In addition, first ~ q
In the figures, the same reference numerals as in FIG. 1 indicate the same elements and members. Reference numeral 30 indicates a planar detonation wave generating means.

平面爆轟波発生手段30としては、試料2の軸方向と直
交する面上における主爆薬層9の断面全体を実質的に同
時に起爆せし得るものであれば任意のものが適用でき、
例えば、特公昭!; 3−29乙73号、同!; 3−
.2!;8.33号公報に記載の爆轟波発生手段やノ・
イブレッシャー フィジクス アンド ケミストリー第
2巻1.2211頁(米国アカデミツクブレス社、/9
63年刊)記載のいわゆるマウストラップと呼ばれる装
置を用いることができる。
Any planar detonation wave generating means 30 can be used as long as it can substantially simultaneously detonate the entire cross section of the main explosive layer 9 on a plane perpendicular to the axial direction of the sample 2.
For example, Tokko Akira! ; 3-29 Otsu No. 73, same! ; 3-
.. 2! ; Detonation wave generating means described in Publication No. 8.33 and No.
Iblesher Physics and Chemistry Volume 2 1.2211 pages (Academic Press, USA, /9
A device called a so-called mouse trap described in 1963 can be used.

主爆薬9としてはなるべぐ爆発伝播速度の大きいものの
使用が好ましく、飛翔部材5の音速より十分爆速の大き
いものが好ましい。例えば、飛翔体としてスチール製の
ものを用いる場合、その音速は約S―/秒であるので、
爆薬9としては爆速かs、5IcIr17秒より大きい
ものの使用が好ましい。
As the main explosive 9, it is preferable to use one having a large explosion propagation velocity, and preferably one whose explosion velocity is sufficiently higher than the sound velocity of the flying member 5. For example, when using a steel flying object, the speed of sound is approximately S-/second, so
As the explosive 9, it is preferable to use one having a detonation velocity greater than 5IcIr17 seconds.

このような爆薬の具体例として、ヘキソーグン、Kント
リットテトリル等の高性能爆薬の単体又は混合物、゛ニ
トログリセリン量の多いダイナマイト類、ニトロメタン
、硝酸及び燃料からなる混合液体、硝酸ヒドラジンとヒ
ドオジンの混合物等の固体、液体爆薬が挙げられる。
Specific examples of such explosives include single or mixtures of high performance explosives such as hexogun and K-trittetryl, dynamites with a large amount of nitroglycerin, mixed liquids consisting of nitromethane, nitric acid and fuel, and hydrazine nitrate and hydrozine. Examples include solid and liquid explosives such as mixtures.

飛翔部材5の材質は特に制限はないが、経済性及び加工
性からみて、スケール又は真鍮が好ましい。また飛翔部
材5の肉厚は爆発による飛翔部材5の飛翔速度を決定す
る要因であって、実用上は、少なくともo 、 t m
m以上とするのが好ましい。
The material of the flying member 5 is not particularly limited, but scale or brass is preferable from the viewpoint of economy and workability. Further, the wall thickness of the flying member 5 is a factor that determines the flying speed of the flying member 5 due to an explosion, and in practical terms, at least o, t m
It is preferable to set it to m or more.

試料容器2及びその栓3,4はなるべく強度の大きい金
属で構成されることが好ましく、実用上、ステンレス等
の高張力鋼材が望ましい。容器2の肉厚は破損防止の点
からは厚い方が好ましいが、容器の変形に消費°される
衝撃エネルギーが多くなり、それだけ試料の処理効果が
減じられるので、この点からは薄いのが好ましいが、本
発明においてはステンレス容器の場合、/〜lo朋程度
の肉厚があれば十分である。金属栓は、形状が試料に対
して、平滑なものよりも、第一図に示すように凸型、あ
るいは凹型の形状をもたせた方が、容器の破断防止に効
果的であり、また容器本体と接する部分がなるべく多く
なるようなねじこみ式構造とするのが好ましい。飛翔部
材5と容器2間の間隙6は、遣方向(試料の軸方向に直
交する方向)の巾として主爆薬9の横方向厚みの少なく
とも嵐以上とするのが良い。
The sample container 2 and its plugs 3 and 4 are preferably made of a metal with as high strength as possible, and in practice, high-tensile steel such as stainless steel is desirable. It is preferable for the wall thickness of the container 2 to be thick from the point of view of preventing breakage, but from this point of view it is preferable that it be thin, since the impact energy consumed in deforming the container increases and the sample processing effect is reduced accordingly. However, in the present invention, in the case of a stainless steel container, it is sufficient to have a wall thickness of about /~lo. It is more effective to prevent the container from breaking if the metal stopper has a convex or concave shape as shown in Figure 1, rather than a flat metal stopper. It is preferable to use a screw-in structure in which as many parts as possible are in contact with the It is preferable that the gap 6 between the flying member 5 and the container 2 has a width in the throwing direction (direction perpendicular to the axial direction of the sample) that is at least equal to or larger than the lateral thickness of the main explosive 9.

第3図は、第一図図示の装置の爆発衝撃処理が進行中の
状態を示した説明図である。第2図の爆薬上部端面な平
面爆轟波発生手段30で同時起爆すると、第3図のQで
示す平面状の爆轟波が下方に進行する。
FIG. 3 is an explanatory diagram showing a state in which the explosion impact treatment of the apparatus shown in FIG. 1 is in progress. When the explosives are simultaneously detonated by the planar detonation wave generating means 30, which is the upper end face of the explosive shown in FIG. 2, a planar detonation wave shown by Q in FIG. 3 travels downward.

この時爆轟波面Qと飛翔部材5の軸の構成する角度は9
0度であり定常状態では飛翔部材と試料容器2との衝突
点の移動速度は主爆薬9の爆速に等しくなる。主爆薬9
の爆発特性と、飛翔部材5の材質、肉厚、衝撃特性が既
知ならばたとえばハイフン クネッフェル氏著のパルス
トハイマグネティクフィールド書(ノース、オランダ出
版社/97θ年判)あるいは第を回国際デトネーション
シンポジウム(米国、ネイパルオーダンスラボラト1ト トリ/96S年)誌にエヌー□、イー、ホスキン氏他の
著者記載の方法により飛翔部材5の飛翔速度を計算によ
って知ることができる。飛翔部材5が飛翔し、容器2の
壁と衝突すると、衝突点から容器をとおって試料内に中
心軸へ向う斜めの衝撃波が発生し、中心軸で衝突し、よ
り圧力の高い反射衝撃波が発生し、中心軸から外側へ向
って進行する。
At this time, the angle formed by the detonation wavefront Q and the axis of the flying member 5 is 9
In a steady state at 0 degrees, the moving speed of the collision point between the flying member and the sample container 2 is equal to the detonation speed of the main explosive 9. Main explosive 9
If the explosive characteristics of the flying member 5 and the material, wall thickness, and impact characteristics of the flying member 5 are known, for example, the Pulsed High Magnetic Field book by Mr. Hyphen Kneffel (North, Netherlands Publishing Company / 97θ format) or the 1st International Detonation Symposium. The flying speed of the flying member 5 can be determined by calculation using the method described by Messrs. N., E., Hoskin et al. in the journal Napal Ordans Laboratory, Totori, 1996S, USA. When the flying member 5 flies and collides with the wall of the container 2, an oblique shock wave is generated from the collision point, passes through the container, and heads toward the central axis within the sample, collides at the central axis, and a reflected shock wave with higher pressure is generated. and progress outward from the central axis.

衝撃波Pの衝突点の下方への移動速度(Vaと記す)は
定常な場合、主爆薬9の爆速に等しいが、反射衝撃波背
後の試料物質内を伝播する擾乱の伝播速度がVaより大
きいと、衝突点でマツハ衝撃波が生成され、これもVa
の速度つまり主爆薬の爆速と等速で下方に伝播する。試
料内に入射した衝撃波間の衝突角が大きいほど、・した
がって入射した衝撃波が強いほど、マツハ衝撃波波面の
面積が大きくなると同時に、マツハ面背後と、入射衝撃
波背後の圧力差も小さくなるゆえ、試料のほぼ均一な圧
縮ができる。
In a steady state, the downward movement speed of the impact point of the shock wave P (denoted as Va) is equal to the detonation speed of the main explosive 9, but if the propagation speed of the disturbance propagating in the sample material behind the reflected shock wave is greater than Va, A Matsuha shock wave is generated at the collision point, which is also Va
It propagates downward at a velocity equal to the detonation velocity of the main explosive. The larger the collision angle between the shock waves that entered the sample, and therefore the stronger the incident shock waves, the larger the area of the Matsuha shock wave front, and the smaller the pressure difference between the Matsuha surface and the back of the incident shock wave. can be compressed almost uniformly.

マツハ衝撃波が発生する臨界的な衝突角の場合、マツハ
衝撃波面の面積は小さく、かつ各波面背後の圧力差も大
きくて、圧縮が試料の横方向断面において、不均一にな
りやすく、これを嫌うならば第7図に示すように試料1
の中心部になるべく試料と同一の衝撃インピーダンスを
有す棒状の物体31を置き試料1をマツハ衝撃波が通過
しないようにすればよい。このマツハ衝撃波導通棒は試
料径の少くとも4程度の径とするのがよい。
In the case of a critical collision angle where a Matsuha shock wave is generated, the area of the Matsuha shock wave front is small and the pressure difference behind each wave front is large, so compression tends to be uneven in the transverse cross section of the sample, which is undesirable. Then, as shown in Figure 7, sample 1
A rod-shaped object 31 having the same impact impedance as the sample 1 may be placed in the center of the sample 1 to prevent the Matsuha shock wave from passing through the sample 1. The diameter of this Matsuha shock wave conducting rod is preferably at least 4 times the diameter of the sample.

試料1がどのような圧縮を受けるかは計算により推定で
きるが、実際に爆発処理した試料を含んだ容器2を回収
し、円筒軸に垂直な面で切断し、切断面を観察すれば容
易に判定できる。
The type of compression that sample 1 undergoes can be estimated by calculation, but it can be easily estimated by collecting the container 2 containing the sample that has actually been exploded, cutting it along a plane perpendicular to the cylinder axis, and observing the cut surface. Can be judged.

第2図において、符号21〜26で示すのは、容器2の
両端に設けた容器破断防止手段である。
In FIG. 2, reference numerals 21 to 26 indicate container breakage prevention means provided at both ends of the container 2.

すなわち、爆発により飛翔体を試料に対して衝突させて
圧縮処理を行う場合、この飛翔体の衝突により容器2の
上部は上方向へ、その他は全体として下方向へと移動し
ようとし、その結果容器の上及び下部、特に試料1と栓
3,4が接する近傍で容器の破断が生じ易く、試料が散
逸損失するという問題がある。本発明の如く、爆薬層を
肉厚とし、超高圧な衝撃圧縮を行う場合にはこの容器の
破断に対処することが特に望まれるが、との破断防止は
、容器2の両端部に飛翔部材の衝突により爆発する減速
用爆薬層を設け、該飛翔部材の衝突によ′る該容器の核
他端部側方向への移動速度を減じるようにしたことによ
シ達成できる。
In other words, when a compression process is performed by colliding a flying object with a sample due to an explosion, the upper part of the container 2 tends to move upward due to the impact of the projectile, and the rest of the container 2 as a whole tries to move downward, and as a result, the container 2 There is a problem in that the container is likely to break at the upper and lower parts of the container, particularly in the vicinity where the sample 1 and the stoppers 3 and 4 come into contact, resulting in loss of the sample due to dissipation. As in the present invention, when the explosive layer is made thick and ultra-high pressure impact compression is performed, it is particularly desirable to deal with this breakage of the container. This can be achieved by providing a deceleration explosive layer that explodes upon collision with the flying member to reduce the speed of movement of the container toward the other end of the core upon collision with the flying member.

21.22は容器破損防止用の減速用爆薬層であシ、図
示のように、衝撃波減衰板23.24及び25.26に
それぞれサンドインチ状にはさんで使用するのが好まし
い。爆薬層21.22に用いる爆薬の薬種に関しては特
に制限はないが、低速爆轟性のもの、元圧現象を呈しや
すいもの、あるいは、衝撃で爆性が急速に変化しやすい
ものの使用はなるべく避は起爆性が良好かつ爆発伝播限
界薬厚のなるべく小さなものが好ましく、このよう々も
のとして、ベントリフト、ヘキソ−ゲンチトリル等の高
性能爆薬単体、これらの混合物、又はこれらの高性能爆
薬の粉体なパラフィン、みつろうあるいはシリコンゴム
やブタジェンゴム等で成型処理したもののほか、ニトロ
メタン、硝酸及びこれらに可溶な可燃性物質、からなる
溶液などの液体爆薬を例挙することができる。液状の減
速用爆薬の場合は、薄肉の容器に入れて使用するが、固
体状の場合も裸薬でなく、側面を塩化ビニル管等で囲っ
て使用しても良い。爆薬層21.22の形状は、通常、
板状とするのが良く、試料容器2と概略同一な平面形状
とするのが好ましい。薬厚は爆発限界薬厚以上として使
用する。
Reference numerals 21 and 22 are decelerating explosive layers for preventing damage to the container, and as shown in the figure, they are preferably sandwiched between shock wave attenuating plates 23, 24 and 25, 26 in a sandwich-like manner. There are no particular restrictions on the type of explosive used in the explosive layer 21, 22, but it is best to avoid using explosives that detonate at low speeds, are likely to exhibit a source pressure phenomenon, or whose explosive properties are likely to change rapidly upon impact. It is preferable that the explosive has good detonation properties and the explosion propagation limit is as small as possible, such as single high-performance explosives such as bent lift and hexo-gentytrile, mixtures thereof, or powders of these high-performance explosives. In addition to those molded with natural paraffin, beeswax, silicone rubber, butadiene rubber, etc., liquid explosives such as solutions made of nitromethane, nitric acid, and flammable substances soluble in these can be cited. In the case of a liquid moderator explosive, it is used in a thin-walled container, but in the case of a solid one, it may also be used by surrounding the sides with a vinyl chloride pipe or the like instead of using a naked charge. The shape of the explosive layer 21.22 is usually
It is preferably plate-shaped, and preferably has a planar shape that is approximately the same as the sample container 2. The thickness should be at least the explosive limit thickness.

衝撃波減衰板23.24,25.26としては、その衝
撃インピーダンスが減速用爆薬となるべく類似したもの
の使用が好ましく、例えば、メタクリル等のプラスチッ
ク類、或は水、無機もしくは有機塩類の水溶液等が使用
される。液体状物質を衝撃波減衰用に適用する場合には
、゛薄肉の容器に封入して使用する。衝撃波減衰板23
,24,25゜26の形状は、挾持する爆薬層21.2
2と略々同一平面形状を有し且つ同一厚とするのが好ま
しい。
As the shock wave attenuation plates 23, 24, 25, 26, it is preferable to use materials whose impact impedance is as similar as that of deceleration explosives; for example, plastics such as methacrylic, or water, an aqueous solution of inorganic or organic salts, etc. are used. be done. When a liquid substance is used for shock wave attenuation, it is used by sealing it in a thin-walled container. Shock wave damping plate 23
, 24, 25° 26 is the shape of the sandwiching explosive layer 21.2
It is preferable to have substantially the same planar shape and the same thickness as No. 2.

次に本発明による減速爆薬層21.22の作用について
説明する。いま減速用爆薬層21.22が無いとすると
、減−板23 、24 、25 、26及び試料容器2
への飛翔体5の衝突により、容器2の上部は上方向へそ
れ以外は下方向へ全体として移動しようとする。特に容
器2の最下部は減衰板の下をグラスチック円板27とし
、更にその下部を自由空間とした場合、自由面から上方
へ稀薄波が発生し容器全体の下方への移動速度をさらに
増加させる。また試料は一般に容器2及び金属栓3.4
よシ、かなシ衝撃抵抗が小さいため試料との界面で二次
的な稀薄波が発生しやすく、稀薄波間の複雑な相互干渉
によシ、この近傍で強い引張力が発生し、容器を破断し
やすい。容器の上部に関しても概略同様な効果が生じ、
試料と容器枠の界面近傍で破断しやすい。一方、爆薬層
21.22を設け、これに対して飛翔体5を衝突させて
側面よシ起爆させた場合、その爆発力によって上記した
容器の上部及び下部方向への移動速′度は減ぜられる。
Next, the function of the moderating explosive layer 21, 22 according to the present invention will be explained. Assuming that there is no deceleration explosive layer 21, 22, the deceleration plates 23, 24, 25, 26 and the sample container 2
Due to the impact of the projectile 5 on the container 2, the upper part of the container 2 as a whole tends to move upwardly and otherwise downwardly. In particular, if the lowest part of the container 2 is a plastic disk 27 under the damping plate and the lower part is a free space, dilution waves will be generated upward from the free surface, further increasing the downward movement speed of the entire container. let Also, the sample is generally a container 2 and a metal stopper 3.4.
Because the impact resistance is small, secondary dilution waves are likely to occur at the interface with the sample, and due to complex mutual interference between the dilution waves, a strong tensile force is generated in this vicinity, rupturing the container. It's easy to do. Roughly the same effect occurs on the top of the container,
It is easy to break near the interface between the sample and the container frame. On the other hand, if the explosive layer 21, 22 is provided and the flying object 5 collides with it and detonates it from the side, the above-mentioned moving speed in the upper and lower directions of the container will be reduced by the explosive force. It will be done.

従って容器の破断が防圧できる。Therefore, the rupture of the container can be prevented.

尚、起爆部30の爆発力が十升強い場合には、上部に設
けた減速用爆薬層22は省くことができる。
Incidentally, if the explosive force of the detonator 30 is ten sho strong, the deceleration explosive layer 22 provided at the top can be omitted.

以上の本発明の実施例においては、圧縮処理すべき試料
の平断面が円形なものについて説明したが、本発明はこ
れに限゛らず、角柱状、平板状などのように軸方向に延
びる形状の試料の処理にも適用でき、その場合、試料容
器、飛翔部材などの形状は試料の形状に対応して適宜変
化させることは当業者にとって当然のことと理解されよ
う。
In the above embodiments of the present invention, the sample to be compressed has a circular plane cross section, but the present invention is not limited to this, and the present invention is not limited to this. It will be understood by those skilled in the art that the present invention can also be applied to processing samples of different shapes, and in that case, the shapes of the sample container, flying member, etc. can be changed as appropriate depending on the shape of the sample.

本発明は、グラファイトからダイヤモンドの転化反応の
ような衝撃を利用する物質合成や、タングステン、炭化
ケイ素等の粒状の高融点物質を緻密に衝撃する場合、文
は鋼のような金属材料を衝撃硬化せしめる場合、更には
炭化ケイ素等のセラミック粉を微粉化しかつ歪を与えて
活性化する場合等、固体や液体の凝縮系物質を種々な目
的で衝撃処理する場合に適用される。
The present invention is applicable to material synthesis using impact, such as the conversion reaction of graphite to diamond, or when granular high-melting materials such as tungsten and silicon carbide are subjected to dense impact, and for impact hardening of metal materials such as steel. It is applied to impact treatment of solid or liquid condensed substances for various purposes, such as when pulverizing ceramic powder such as silicon carbide and activating it by applying strain.

本発明を次に実施例により更に詳細に説明する。The present invention will now be explained in more detail with reference to Examples.

実施例 第2図に示した衝撃圧縮装置を用いて緑色の炭化ケイ素
粉末(かさ比重約へ9)を圧縮処理した。
EXAMPLE Green silicon carbide powder (bulk specific gravity: about 9) was compressed using the impact compression apparatus shown in FIG.

飛翔体5とし2て、内径り0I11肉厚八!; xis
長さ/9θ龍の真鍮管を用い、これと同心的に内径10
θu1肉厚711s長さ/ 9011の硬質塩化ビニル
管を設置し、その間に形成した環状空間に硝酸ヒドラノ
ン75重量部を抱水ヒドラジ725重量部に溶解させた
液体爆薬を装薬して、主爆薬層9を形成させた。この爆
薬は毎秒ざ、31anの爆速を有する。
As the flying object 5 and 2, the inner diameter is 0I11 and the wall thickness is 8! ;xis
Length/9θ Dragon brass tube is used, and the inner diameter is 10mm concentrically with this.
A hard vinyl chloride pipe with a wall thickness of 711 seconds and a length of 9011 is installed, and the annular space formed between them is charged with a liquid explosive made by dissolving 75 parts by weight of hydranone nitrate in 725 parts by weight of hydrazine hydrate, and the main explosive is Layer 9 was formed. This explosive has a detonation velocity of 31 ann per second.

上記試料を、内径3011%肉厚=2111!%長さ/
ll0mmのステンレス<5US−3oti) 曽で形
成した容器2に充填しく空隙率約1Ioes>、両端に
凸型のスチール(881/)製栓3,4を螺合させた。
The above sample has an inner diameter of 3011% and a wall thickness of 2111! %length/
A container 2 made of 110 mm stainless steel (5US-3 oti) was filled with a porosity of about 1 Ioes, and convex steel (881/) stoppers 3 and 4 were screwed together at both ends.

栓3゜4のねじ部の長さは3111%ふた部の長さはS
龍であった。容器2を内径311./WIN肉厚7龍、
長さ/!;Omtxのスチール(SS−ダ/)管で囲ん
で補強し、容器の上及び下部に直径lIgmtx、厚さ
smの円板型のゴム状爆薬層21.22を直径lIgI
II11厚さSVXのメタクリルアミド板でサンドイッ
チ状にはさんだものをそれぞれ固定して、全体を飛翔体
5内部に同心的に装着し、上記に起爆部30を、下部に
プラスチック板27を取り付けた。起爆部30としては
、有効径が100 mの液体1爆薬レンズからなる平面
爆轟波発生装置を用いた。また爆薬層21.22として
は、粒径00511m以下のペントリット粉末を硬化前
のシリコン樹脂(信越化学展、KE−10)  に対し
、7θ対30の重量割合で混合攪拌し、成型後硬化はせ
たものを用いた。このようにして構成した衝撃圧縮処理
装置を爆発室の中心部に置き、6号電気雷管で起爆させ
た。処理後の試料を含む容器を約10.、間隔で輪切り
にし各切断面を観察したところ、いずれの切断面につい
ても炭化ケイ素は凝集し、固く緻密に締っており、色は
黒味を帯びており、かさ比重は約3.7に集中しており
、ばらつきは少なかった。このことから、試料は均一な
処理を施こされたことが認められた。
The length of the screw part of the stopper 3゜4 is 3111%, the length of the lid part is S
It was a dragon. The container 2 has an inner diameter of 311. /WIN thick 7 dragons,
length/! It is surrounded and reinforced with a steel (SS-da/) tube of Omtx, and a disk-shaped rubber explosive layer 21.22 with a diameter lIgmtx and a thickness sm is placed on the top and bottom of the container.
The sandwiched parts were each fixed with methacrylamide plates having a thickness of II11 and SVX, and the whole was mounted concentrically inside the flying object 5, and the detonator 30 was attached to the upper part and the plastic plate 27 was attached to the lower part. As the detonator 30, a planar detonation wave generator consisting of a liquid 1-explosive lens with an effective diameter of 100 m was used. In addition, for the explosive layer 21, 22, pentolith powder with a particle size of 00511 m or less is mixed and stirred into a silicone resin (Shin-Etsu Chemical Exhibition, KE-10) before hardening at a weight ratio of 7θ to 30, and after molding, the hardening layer is mixed and stirred. I used something similar. The impact compression treatment device constructed in this manner was placed in the center of the explosion chamber, and detonated using a No. 6 electric detonator. The container containing the sample after treatment was placed in a container containing the sample for approximately 10 minutes. When the silicon carbide was cut into rings at intervals and observed on each cut surface, it was found that the silicon carbide was aggregated and compacted tightly and blackish in color, and the bulk specific gravity was approximately 3.7. It was concentrated and there was little variation. From this, it was confirmed that the sample was uniformly processed.

尚、処理後の試料容器を点検したところ、下部の栓4の
ネジ部が少し損傷しただけで、試料の回収率はiooチ
と認められた。
When the sample container was inspected after processing, it was found that the threaded portion of the bottom stopper 4 was only slightly damaged, and the sample recovery rate was found to be 100%.

比較例 上記実施例において、平面爆轟波発生装置30に替えて
、粒径0.5itl以下に調整したペントリノ::、:
1 ト粉末を硬化前のシリコン樹脂(信越化学展、旺−/θ
)と等量混合攪拌し、直径100 ynyx、肉厚、t
lllの円板状に成型硬化したものを使用した他は、上
記実施例と全く同様にして処理を行った。処理後の試料
を含む容器を実施例と同様にして切断、観察、測定を行
ったところ、かさ比重はコ、s〜3.0にばらついてお
り、均一な圧縮処理は行われていなかった。容器の損傷
程度は実施例と変りはなかった。
Comparative Example In the above example, instead of the planar detonation wave generator 30, pentrino whose particle size was adjusted to 0.5 itl or less::,:
1 Silicone resin before curing (Shin-Etsu Chemical Exhibition, O-/θ)
) and stirred in equal amounts, diameter 100 nyx, wall thickness, t
The treatment was carried out in exactly the same manner as in the above example, except that a molded and hardened disc-shaped specimen was used. When the containers containing the treated samples were cut, observed, and measured in the same manner as in the examples, the bulk specific gravity varied between 3.0 and 3.0, and uniform compression treatment was not performed. The degree of damage to the container was the same as in the example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衝撃圧縮処理装置を立断面で示す説明図
であり、第2図は本発明による衝撃圧縮装置の一例を立
断面で示す説明図、第3図は第2図の装置の処理進行中
の状態を示す説明図、及び第9図は第2図の容器内部に
マツハ衝撃波導通手段を設けた例を示す図である。図中
、 1・・・・・・・・・試料、   2・・・・・・・・
・容器、11・・・・・・・・・雷管、   21.2
2・・・・曲・減速爆薬層、23 、24 、25 、
26・・・・・・・・・衝撃波減衰板、27・・・・・
・・・・プラスチック板、30・・・・・・・・・平面
爆轟波発生手段、31・・・・・・・・・マツハ衝撃波
導通棒、P・・・・・・・・・衝撃波面、 Q・・・・
・・・・・爆轟波面゛第1図     第2図 第3図 第4図1
FIG. 1 is an explanatory diagram showing a conventional impact compression processing device in vertical section, FIG. 2 is an explanatory diagram showing an example of an impact compression device according to the present invention in vertical section, and FIG. An explanatory diagram showing a state in progress of processing, and FIG. 9 are diagrams showing an example in which Matsuha shock wave conduction means is provided inside the container of FIG. 2. In the figure, 1... Sample, 2...
・Container, 11...Detonator, 21.2
2... Song/deceleration explosive layer, 23, 24, 25,
26... Shock wave attenuation plate, 27...
...Plastic plate, 30...Planar detonation wave generating means, 31...Matsuha shock wave conducting rod, P...Shock wave Face, Q...
...Detonation wavefront Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)軸方向に延びる凝縮系物質に対し平行且つ間隙を
もって設置した飛翔部材の反対面に肉厚の主爆薬層を設
け、該主爆薬層をその一端部から他端部に向けて連続的
に起爆せしめて、該飛翔部材を該軸方向に衝突点が連続
的に移動するように衝突させて該凝縮系物質を衝撃圧縮
させるにあたり、該軸と直交する切断面における該主爆
薬層の断面全体を実質的に同時に起爆せしめることを特
徴とする凝縮系物質の高圧衝撃圧縮処理方法。
(1) A thick main explosive layer is provided on the opposite surface of the flying member, which is installed parallel to the condensed substance extending in the axial direction with a gap, and the main explosive layer is continuously extended from one end to the other end. When detonating the flying member and impacting the condensed substance so that the impact point continuously moves in the axial direction, the cross section of the main explosive layer in a cut plane perpendicular to the axis is A method for high-pressure impact compression treatment of condensed substances, characterized by detonating the entire substance at the same time.
(2)軸方向に延びる凝縮系物質に対し平行且つ間隙を
もって設置した飛翔部材の反対面に肉厚の主爆薬層を設
けるとともに、該主爆薬層の一端に起爆部を設け、該主
爆薬層を該一端部から他端部に向けて連続的に起爆せし
めて、該飛翔部材を該軸方向に衝突点が連続的に移動す
るように衝突させて該凝縮系物質を衝撃圧縮させるよう
にした凝縮系物質の衝撃処理装置において、該起爆部と
して平面爆轟波発生手段を用いて、該軸と直交する切断
面における該主爆薬層の断面全体を実質的に同時に起爆
せしめるようにしたことを特徴とする凝縮系物質の衝撃
処理装置。
(2) A thick main explosive layer is provided on the opposite surface of the flying member installed parallel to the condensed substance extending in the axial direction with a gap therebetween, and a detonator is provided at one end of the main explosive layer. is continuously detonated from the one end toward the other end, and the flying member is caused to collide with the flying member such that the collision point continuously moves in the axial direction, thereby compressing the condensed substance by impact. In the impact processing device for condensed substances, a planar detonation wave generating means is used as the detonation part to detonate substantially the entire cross section of the main explosive layer in a cut plane perpendicular to the axis at the same time. Features: Impact treatment equipment for condensed substances.
JP19263081A 1981-11-30 1981-11-30 Method and device for high pressure impact treatment of condensible material Granted JPS5893598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19263081A JPS5893598A (en) 1981-11-30 1981-11-30 Method and device for high pressure impact treatment of condensible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19263081A JPS5893598A (en) 1981-11-30 1981-11-30 Method and device for high pressure impact treatment of condensible material

Publications (2)

Publication Number Publication Date
JPS5893598A true JPS5893598A (en) 1983-06-03
JPS6119295B2 JPS6119295B2 (en) 1986-05-16

Family

ID=16294440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19263081A Granted JPS5893598A (en) 1981-11-30 1981-11-30 Method and device for high pressure impact treatment of condensible material

Country Status (1)

Country Link
JP (1) JPS5893598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195506A (en) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 Detonation type synthesizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195506A (en) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 Detonation type synthesizer
JP2023504294A (en) * 2020-01-21 2023-02-02 成都奇点無限科技有限公司 Double pipe connection structure for detonation synthesis, detonation synthesis device and its use

Also Published As

Publication number Publication date
JPS6119295B2 (en) 1986-05-16

Similar Documents

Publication Publication Date Title
Mott Fragmentation of shell cases
RU2125550C1 (en) Porous granulated product, method for decreasing density of this product, and explosive composition
Liu et al. Aluminum acceleration and reaction characteristics for aluminized CL‐20‐based mixed explosives
JPS5893598A (en) Method and device for high pressure impact treatment of condensible material
Bai et al. Experimental study of detonation of large-scale powder–droplet–vapor mixtures
Higgins et al. Detonation velocity/diameter relation in gelled explosive with inert inclusions
Johnson et al. Performance properties of commercial explosives
JPS6248529B2 (en)
JPS5895547A (en) Impact treating device for condensable material
US3249046A (en) Apparatus for accelerating plates to high velocity
Sil’vestrov et al. Critical diameter and critical thickness of an emulsion explosive
JPS5895546A (en) Method and device for impact treatment of condensable material
Fang et al. Synthesis and Characterization of Pressure Resistant Agent with Double‐Layer Core/Shell Hollow‐Structure for Emulsion Explosive
JPH0322209B2 (en)
Gustavsen et al. Low pressure shock initiation of porous HMX for two grain size distributions and two densities
RU2221210C2 (en) Multi-stage explosive body accelerator
Khristoforov Experimental modeling of impact of space dust and debris on flying vehicles and their components
US3568248A (en) Plug closure in a container for subjecting sample to shock wave
RU2037379C1 (en) Explosive powder pressing method
JP4415085B2 (en) Method and apparatus for impact pressure treatment of porous material
Apparao et al. Performance of Unconfined Detonable Fuel Aerosols of Different Height to Diameter Ratios
RU2654225C1 (en) Method for explosive compacting powdered materials
JPS58104629A (en) Method and apparatus for impact treatment of condensed substance
Jetté et al. Experimental investigation of gasless detonation in metal-sulfur compositions
Kamada et al. Ductile extension of a lenticular bubble under high‐energy ion bombardment with relation to blistering and flaking