JPS5984092A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS5984092A
JPS5984092A JP57194120A JP19412082A JPS5984092A JP S5984092 A JPS5984092 A JP S5984092A JP 57194120 A JP57194120 A JP 57194120A JP 19412082 A JP19412082 A JP 19412082A JP S5984092 A JPS5984092 A JP S5984092A
Authority
JP
Japan
Prior art keywords
rotor
heat exchanger
heat exchange
moisture
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194120A
Other languages
Japanese (ja)
Other versions
JPH0366594B2 (en
Inventor
Nobuyuki Yano
矢野 宣行
Takuro Kodera
小寺 卓郎
Toshio Utagawa
歌川 敏男
Akira Aoki
亮 青木
Kazufumi Watanabe
渡辺 和文
Masao Wakai
若井 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP57194120A priority Critical patent/JPS5984092A/en
Priority to PCT/JP1983/000392 priority patent/WO1984001817A1/en
Priority to DE8383903413T priority patent/DE3371247D1/en
Priority to EP83903413A priority patent/EP0127683B1/en
Priority to US06/629,844 priority patent/US4574872A/en
Publication of JPS5984092A publication Critical patent/JPS5984092A/en
Publication of JPH0366594B2 publication Critical patent/JPH0366594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1052Rotary wheel comprising a non-axial air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PURPOSE:To increase heat exchanging efficiency and reduce sliding sounds by a method wherein a plurality of partitioning plates, having a non-permeating property for moisture but having moisture absorbing property, are laminated into circumferential direction with spaces to form a rotor and the rotor is rotated. CONSTITUTION:The rotor 1 is formed by laminating first element 4, having paths penetrating into the axial direction of the cylinder, and the second element 5, having paths communicating two openings of an inner cylindrical part, through which airstream is passing in-and-out into the radial direction thereof which is orthogonal to the axial direction of the first element 4, through partitioning walls 6. At least a part of the material constituting the element has the moislture absorbing property while the partitioning wall is made of the material having non-permeating property for the moisture. Heat, generated on the surface of the element, may be transferred to the other element by the heat transfer in the partitioning plate by rotating the rotor 1 and exchanging the primary and secondary airstreams periodically, therefore, the rotating speed may be lowered and the sliding sounds may be reduced. Further, the effective absorbing amount of the moisture into the element is increased, therefore, the heat exchanging efficiency may be increased. The device may be used as a latent heat exchanger by stopping the rotation of the rotor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回転式空調換気扇等に用いる熱交換装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in heat exchange devices used in rotary air conditioning ventilation fans and the like.

従来例の構成とその問題点 従来の全熱交換方式には、ロータへの蓄熱および蓄湿を
利用した蓄熱回転式と、仕切板を介して全熱交換さす静
IL透過式の2方式がある。蓄熱回転式はロータの蓄熱
容量が少ないため、通常約16回転/分程度のロータの
回転数が必要となる。このだめ回転にともなう摺動音が
発生しやすい。また、ロータへの顕熱蓄熱や水分の吸着
熱や脱着熱の影響により、エレメントへの水分の有効吸
着量が減少するという欠点がある。
Conventional configuration and problems There are two conventional total heat exchange systems: a heat storage rotation type that utilizes heat and moisture storage in the rotor, and a static IL transmission type that exchanges total heat through a partition plate. . Since the heat storage rotary type has a small rotor heat storage capacity, the rotor usually requires a rotation speed of about 16 revolutions/minute. Sliding noise is likely to occur due to this slow rotation. Furthermore, there is a drawback that the effective amount of moisture adsorption to the element is reduced due to the effects of sensible heat storage in the rotor and heat of adsorption and desorption of moisture.

一方、静止透過式では顕熱交換および潜熱交換は仕切板
中の熱伝導機構および透湿現象のみによって行なわれる
ので、一般的に全熱交換効率は低い。また前記両方式の
全熱交換器とも全熱交換という単一機能しか発揮できな
い。
On the other hand, in the static transmission type, sensible heat exchange and latent heat exchange are performed only by the heat conduction mechanism in the partition plate and the moisture permeation phenomenon, so the total heat exchange efficiency is generally low. Furthermore, both of the above types of total heat exchangers can perform only a single function of total heat exchange.

発明の目的 従来よりも高効率で、しかも顕熱交換器としても使用出
来るという複合機能をもち、かつ回転数が従来の蓄熱回
転式に比べ少なくてすむだめ、摺動音が低いという特長
をもった蓄熱透過回転式熱交換装置を提供するものであ
る。
Purpose of the Invention It has higher efficiency than the conventional one, has the multiple function of being able to be used as a sensible heat exchanger, and has the features of requiring less rotation than the conventional heat storage rotary type and having low sliding noise. The present invention provides a heat storage/transmission rotary heat exchange device.

発明の構成 非透湿性であるが吸湿性をもった仕切板を間隔を置いて
円周方向に複数層重ね合わせ、−次気流と二次気流とを
これら各層間を交互に通るように形成した円筒状ロータ
を構成要素とし、これを回転させることにより、これら
−次気流と二次気流を周期的に入れ換えて前記仕すノ板
間の各層を通すことを繰返す全熱交換方式を採用するこ
とにより、エレメントへの蓄積顕熱や水分の吸脱着にと
もなってエレメントの表面で発生する熱を、ロータの回
転のみで他方へ移動させるのでなく、そのある程度の部
分を仕切板中の熱伝導により他方へ移動させることがで
きるので、従来の回転式全熱交換装置に比べ、回転速度
を落すことが出来、摺動音を減することが出来る。まだ
、エレメントへの水分の有効吸着量が増大するので熱交
換効率が高くなる)まだ、この構成では従来の静止透過
式全熱交換法に比べ、熱交換機構に蓄熱、蓄湿機構が加
わるのでロータの回転周期を選ぶことにより、効率をよ
り高くすることが可能である。
Structure of the Invention A plurality of layers of non-moisture permeable but hygroscopic partition plates are stacked circumferentially at intervals, and a secondary air flow and a secondary air flow are formed to pass alternately between these layers. A total heat exchange method is adopted in which a cylindrical rotor is used as a component, and by rotating the rotor, the secondary airflow and the secondary airflow are periodically exchanged and passed through each layer between the serving plates. In this way, the sensible heat accumulated in the element and the heat generated on the surface of the element due to adsorption and desorption of moisture are not transferred to the other side only by the rotation of the rotor, but a certain amount of the heat is transferred to the other side by heat conduction in the partition plate. Since the rotation speed can be lowered compared to conventional rotary total heat exchange equipment, the sliding noise can be reduced. However, compared to the conventional static permeation total heat exchange method, this configuration adds a heat storage and moisture storage mechanism to the heat exchange mechanism. By selecting the rotation period of the rotor, it is possible to increase the efficiency.

このような特徴の他に、新しい方式ではロータの回転を
市めることにより顕熱交換器としての機能を発揮さすこ
とができる。とのととは従来の全熱交換法に比べ、新し
い機能が付加されることを意味する。
In addition to these features, the new system can function as a sensible heat exchanger by allowing the rotor to rotate. Tonoto means that a new function is added compared to the conventional total heat exchange method.

実施例の説明 以下本発明の実施例を図にもとすいて説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の熱交換方式を実現するだめの実施例の
円筒形ロータの部分的な概略外観と、関連する気体の流
出入経路を示した図である3図中1は円筒形のロータ、
2はその内円筒部分で後で説明するように気流通路入換
部がついている。3は両気流を分離するセパレータであ
る。この構造のロータ1の場合、セパレータ3の一方側
からロータ1に入った気流はセパレータ3の同一側から
ロータ1を出る。
Figure 1 is a diagram showing a partial schematic appearance of a cylindrical rotor according to an embodiment of the present invention, and the related gas inflow and outflow routes. rotor,
2 is an inner cylindrical portion with an airflow passage switching section as will be explained later. 3 is a separator that separates both air flows. In the case of the rotor 1 having this structure, airflow entering the rotor 1 from one side of the separator 3 exits the rotor 1 from the same side of the separator 3.

とのロータ1は第2図に示すように、筒袖方向に貫通す
る通路を有する第1のエレメント4と、これに直角な半
径方向に気流が出入する内円筒部の2つの開口部間を連
通ずる通路を有す第2のエレメント5を隔壁6を介じて
、円周方向に互いに積層させた構成をしている。
As shown in FIG. 2, the rotor 1 has a first element 4 having a passage penetrating in the sleeve direction, and two openings in the inner cylindrical part through which air flows in and out in the radial direction perpendicular to the first element 4. It has a structure in which second elements 5 having communicating passages are stacked on each other in the circumferential direction with partition walls 6 interposed therebetween.

第3図はこのようなロータ1を構成するエレメントの実
、殉例で、基本素子7,8の一対を交互に積重ねてロー
タ1を構成している。この場合、基本素子7および8は
成型した塩化ビニル板の表面に吸湿剤としてコロイダル
シリカを塗布して乾燥イ」着させたものである。この基
本素子7の中の気流の通路は筒袖方向に貫通しており、
基本素子8の中の通路は内円筒側入に1の一方より入り
、内田面側の他方の出]コより出る構造になっている。
FIG. 3 shows an actual example of the elements constituting such a rotor 1. The rotor 1 is constructed by stacking a pair of basic elements 7 and 8 alternately. In this case, the basic elements 7 and 8 are formed by applying colloidal silica as a moisture absorbent to the surface of a molded vinyl chloride plate and drying it. The airflow passage in this basic element 7 penetrates in the sleeve direction,
The passage in the basic element 8 enters from one side of the inner cylinder side and exits from the other side of the inner cylinder side.

第4図はロータ1を構成している基本素子の他の実施例
である。この場合、基本素子9の隔壁6間の間隔は半径
方向で異なるが、基本素子1oの通路間隔は一定である
ので、基本素子1o内の通路の抵抗は基本素子8の場合
より小さいという特徴がある。
FIG. 4 shows another embodiment of the basic elements constituting the rotor 1. In FIG. In this case, although the spacing between the partition walls 6 of the basic element 9 varies in the radial direction, the passage spacing of the basic element 1o is constant, so that the resistance of the passage in the basic element 1o is smaller than that of the basic element 8. be.

第6図はこのような円筒形ロータ1を使った場合の本実
施例の熱交換器の断面模式図で、熱交換器内の気流の流
れを模式的に示したものである、図中11.12はロー
タ1に入る両気流のiΦ路を分けるセパレータである。
FIG. 6 is a schematic cross-sectional view of the heat exchanger of this embodiment when such a cylindrical rotor 1 is used, and schematically shows the flow of air in the heat exchanger. .12 is a separator that separates the iΦ path of both airflows entering the rotor 1.

これは1枚の仕切板15の中央部を軸として両端を18
00ひねったものを用いているが他の構成であってもよ
い。13゜14は1ノ旧J」筒ft1ll気流通路の出
入口に設けられた気流通路入換部で、基本的には第6図
のような構造をもったものでそのXj、 x2間に相当
するものである。図中x、、 x2間で固気流の通路を
分ける仕切板15が1000回転しているだめ、この部
分で仕切板15の両側の気流の通路が互いに入換わるよ
うになっている。このような構造において、熱交換時に
筒軸を中心にして回転するものは、ロータ1とロータ1
と一体構造になっている仕切部16のみで、セパレータ
11.12や気流通路入換部13.14は固定されてい
るので動がない。
This means that the central part of one partition plate 15 is the axis and both ends are 18
00 twist is used, but other configurations may be used. 13 and 14 are the air flow passage exchange parts provided at the entrance and exit of the 1/2 J" cylinder ft1ll air flow passage, which basically has the structure as shown in Figure 6, and corresponds to the area between Xj and x2. It is something. Since the partition plate 15 that divides the solid air flow path between x, . In such a structure, the parts that rotate around the cylinder axis during heat exchange are rotor 1 and rotor 1.
The separator 11.12 and the airflow passage switching section 13.14 are fixed, so they do not move.

両気流間の熱交換は、第2図における第1のニレメン]
・4と第2のエレメント5の間の隔壁6を通して顕熱交
換が行なわれるだけでなく、ロータ1の回転により、例
えば第6図に示すように、図中ロータ1の上面部では第
1のエレメント4には気流B、第2のニレメン)5には
気流人が流れているが、下面部では第1のエレメント4
には気流人、第2のエレメント6には気流Bというよう
に、互いに入換わることを繰返すことにより、エレメン
トに蓄熱、蓄湿された顕熱と水分が他方の気流中に移行
することにより全熱交換が行なわれる。
The heat exchange between the two air streams is the first element in Figure 2]
- Sensible heat exchange is not only carried out through the partition wall 6 between the element 4 and the second element 5, but also due to the rotation of the rotor 1, as shown in FIG. Air flow B flows through element 4, air flow B flows through second element 5, but air flow B flows through element 4, and air flow B flows through element 4.
By repeating the exchange of each other, such as airflow person in the second element 6 and airflow B in the second element 6, the sensible heat and moisture stored in the element are transferred to the other airflow. Heat exchange takes place.

従来の蓄熱回転式の全熱交換器と比べて、この方式の利
点はエレメントへの水分の吸着おノよび脱着にともなう
吸着熱や脱着熱、あるいは高温気流中の顕熱をロータの
回転だけによらず、第1のエレメント4と第2のエレメ
ント5間の隔壁6を通して大部分移行させることができ
るだめ、エレメントの水分の有効吸着量を多くとること
ができ効率を高くできる。まだ隔壁6を通しての顕熱移
行によりロータ1が静止していてもエレメントの蓄熱容
儀が飽和に達しないため、従来の回転式に比ベロータの
回転速度を遅くすることができる。従来の蓄熱回転式の
最適回転数は15回転/分前後であるが、実験結果によ
ると新方式では1回(争前後が最適であることがわかっ
た。このことは新方式が従来の回転式に比べ回転にとも
なう摺動音が少なくなる原因である。また、この方式は
従来の静止透過式に比べても高効率のデータが得られて
いる。これは顕熱交換機構が静止透過式では伝導のみで
あるが、新方式では伝導と蓄熱の両機構によっているこ
とが原因と考えられる。
Compared to conventional heat storage rotary total heat exchangers, the advantage of this method is that the heat of adsorption and desorption associated with the adsorption and desorption of moisture on the element, or the sensible heat in the high-temperature air stream, is absorbed only by the rotation of the rotor. Since most of the water can be transferred through the partition wall 6 between the first element 4 and the second element 5, the effective amount of water adsorbed by the element can be increased and the efficiency can be increased. Since the heat storage capacity of the element does not reach saturation even when the rotor 1 is stationary due to sensible heat transfer through the partition wall 6, the rotational speed of the bellows rotor can be lowered compared to the conventional rotary type. The optimum rotation speed for the conventional heat storage rotary type is around 15 revolutions per minute, but according to the experimental results, the optimum rotation speed for the new method is once (before and after the rotation). This is due to the fact that the sliding noise caused by rotation is reduced compared to the conventional static transmission type.This method also provides data on higher efficiency compared to the conventional static transmission type.This is because the sensible heat exchange mechanism is different from the static transmission type. This is thought to be due to the fact that the new method uses both conduction and heat storage mechanisms, whereas the new method uses both conduction and heat storage mechanisms.

第7図は本発明の熱交換方式を実現するだめの他の実施
例の円筒形ロータの概略外観と関連する気体の流出入経
路を示しだ図である。この実施例の場合、ロータ17は
第8図に示すように筒軸方向の一端側23と他端側に近
い内円部側に開口部24ff:もった第1のエレメント
1′8と、これとは逆に筒袖方向の他端側25とそれと
反対側の内円部側に開口部26をもった第2のエレメン
ト19−を・隔壁20を介して円周方向に互いに積層さ
せた構成をしている。第9図はこの場合のロータ17を
構成するエレメントの実施例で、基本素子21゜22一
対を交互に積重ねてロータ17を構成している。この場
合の基本素子21.22は成型した塩化ビニール板の表
面に吸湿剤としてA11hO3を塗布後乾燥させたもの
であるー。このような基本素子21.22を積層したロ
ータでは、内部の気流の流れは90°方向転換するよう
になっており、この両逆路とも通路抵抗が同一になると
いう特徴をもっている。固気流通路間の風圧が等しくな
るので、伝熱による熱交換率が向上する。
FIG. 7 is a diagram showing a schematic appearance of a cylindrical rotor of another embodiment for realizing the heat exchange system of the present invention and the related gas inflow and outflow paths. In the case of this embodiment, as shown in FIG. 8, the rotor 17 has a first element 1'8 having an opening 24ff at one end 23 in the cylinder axis direction and an inner circle near the other end. On the contrary, a second element 19- having an opening 26 on the other end side 25 in the sleeve direction and on the inner circle side on the opposite side is laminated on each other in the circumferential direction with a partition wall 20 interposed therebetween. are doing. FIG. 9 shows an embodiment of the elements constituting the rotor 17 in this case, and the rotor 17 is constructed by stacking pairs of basic elements 21 and 22 alternately. The basic elements 21 and 22 in this case are formed by applying A11hO3 as a moisture absorbent to the surface of a molded vinyl chloride plate and then drying it. In a rotor in which such basic elements 21 and 22 are laminated, the direction of the internal airflow is changed by 90 degrees, and the path resistance is the same in both reverse paths. Since the wind pressure between the solid air flow passages becomes equal, the heat exchange rate due to heat transfer is improved.

第10図はこの例のロータ17を使った場合の熱交換器
の断面模式図で熱交換器内の気流′の流れを模式化した
ものである。この例のような場合でも、熱交換機構は前
記ロータ1の気流通路の場合の熱交換機構と同様である
FIG. 10 is a schematic cross-sectional view of a heat exchanger using the rotor 17 of this example, which schematically shows the flow of air in the heat exchanger. Even in a case like this example, the heat exchange mechanism is the same as the heat exchange mechanism in the case of the airflow passage of the rotor 1.

第11図は第5図の熱交換器を使い、35”C。Figure 11 uses the heat exchanger shown in Figure 5, and the temperature is 35"C.

eo%、25°C+  5o%風量”/u+inの両気
流間の熱交換効率をロータの回転数を変化させてとった
データである。図中人は全熱交換効率、Bは顕熱交換効
率、Cは潜熱交換効率である。このデータかられかるよ
うに、この方式では回転が停止している時は顕熱交換器
として機能し、回転数の増加につれ湿度交換効率が低下
するという傾向がある。このことはこの熱交換方式は回
転数を変化させることにより、より高度な空調に対応で
きる可能性を有していることを示している。なお、第1
2図は比較のだめ従来の蓄熱回転式の場合の同様の実験
データを示したもので、エレメントとしてはコルゲート
加工したクラフト紙をロータ状にまいた構造である。こ
の場合は、データに示すようにロータの回転数が変化し
ても、顕熱交換効率と潜熱交換効率の全熱交換効率中に
しめる割合は、蓄熱透過式程には変化していないことが
わかる。
eo%, 25°C + 5o% air volume"/u+in is the data obtained by changing the rotation speed of the rotor. In the figure, B is the total heat exchange efficiency, and B is the sensible heat exchange efficiency. , C is the latent heat exchange efficiency.As can be seen from this data, in this system, when the rotation is stopped, it functions as a sensible heat exchanger, and as the rotation speed increases, the humidity exchange efficiency tends to decrease. This shows that this heat exchange method has the potential to support more advanced air conditioning by changing the rotation speed.
For comparison purposes, Figure 2 shows similar experimental data for a conventional heat storage rotary system, in which the elements are made of corrugated kraft paper scattered in the shape of a rotor. In this case, as shown in the data, even if the rotor speed changes, the ratio of sensible heat exchange efficiency and latent heat exchange efficiency to the total heat exchange efficiency does not change as much as in the heat storage transmission method. .

発明の効果 以上のごとく本発明の熱交換装置では全熱交換効率を従
来法より高く出来る。また、ロータの回転を停止するこ
とにより、全熱交換器を顕熱交換器にすることが出来る
。まだ、回転数制御により顕熱交換効率と潜熱交換効率
の比率を変化さすことが出来る。これらの特徴により、
本発明の熱交換装置を使用した空調機はより省エネルギ
に適しだものとなる。
Effects of the Invention As described above, the heat exchange device of the present invention can have a higher total heat exchange efficiency than the conventional method. Further, by stopping the rotation of the rotor, the total heat exchanger can be used as a sensible heat exchanger. However, the ratio between sensible heat exchange efficiency and latent heat exchange efficiency can be changed by controlling the rotation speed. With these characteristics,
An air conditioner using the heat exchange device of the present invention is more suitable for energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱交換装置を実現するだめの一実施例
の円筒形ロータの部分的概略説明図、第2図は第1図の
部分的詳細図、第3図は前記ロータを構成する駄本素子
の斜視図、第4図は基本率の他の実施例の円筒形ロータ
の部分的概略説明図、第8図は第7図のロータの部分的
詳細図、第9図は前記ロータを構成する基本素子の斜視
図、第10図は本発明の異なる実施例の熱交換装置の断
面模式図、第11図は第6図の熱交換装置を使い両気流
間の熱交換効率を示す図、第12図は第11図に示すデ
ータと比較するだめの従来の蓄熱回転式の熱交換効率を
示す図である。 1・・・・・・ロータ、2・・・・・・内円筒部分、3
・・・・・・セパレータ、4,5・・・・・・エレメン
ト、6・・・・・・隔壁、7〜1o・・・・・・基本素
子、11,12・・・・・・セパレータ、13.14・
・・・・・気流通路入換部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 3 図 第7図 藁8図 紀9図 第10図
FIG. 1 is a partial schematic explanatory diagram of a cylindrical rotor according to an embodiment of the heat exchange device of the present invention, FIG. 2 is a partial detailed diagram of FIG. 1, and FIG. 3 is a configuration of the rotor. FIG. 4 is a partial schematic illustration of a cylindrical rotor according to another embodiment of the basic ratio, FIG. 8 is a partial detailed view of the rotor of FIG. 7, and FIG. Fig. 10 is a schematic cross-sectional view of a heat exchange device according to a different embodiment of the present invention, and Fig. 11 shows the heat exchange efficiency between both air streams using the heat exchange device of Fig. 6. 12 is a diagram showing the heat exchange efficiency of a conventional heat storage rotary type for comparison with the data shown in FIG. 11. 1... Rotor, 2... Inner cylindrical part, 3
... Separator, 4, 5 ... Element, 6 ... Partition wall, 7-1o ... Basic element, 11, 12 ... Separator , 13.14・
...Airflow passage exchange section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 7 Straw 8 Figure Ki 9 Figure 10

Claims (1)

【特許請求の範囲】 (1)第1.第2のエレメントを交互に積層して中空の
円筒を形成し、前記第1.第2のエレメント間に存在す
る隔壁は非透湿性であり、前記エレメントを構成する素
材の少なくとも一部を吸湿性とし、前記一方のエレメン
トを一次気流通路、他方のエレメントを二次気流通路と
し、前記円筒状熱交換器を回転させることによって前記
−火気流と二次気流の通路を周期的に入れ換え、前記円
筒状熱交換器の中空部の少なくとも一端に気流通路入換
部を設けだ熱交換装置。 (2)第1のエレメントは円筒軸方向に気流の通過孔を
有し、前記第2のエレメントは前記中空部に対して複数
の開口を有し、一方の開口部から他方の開口部へ気流を
通過可能にした特許請求の範囲第1項記載の熱交換装置
。 (3)第1のエレメントは円筒状熱交換器の一端から軸
方向通路を介して中空部へ通じ、前記第2のエレメント
は前記円筒状熱交換器の他端から(4)円筒状熱交換器
の直径方向にセパレータを介在させ、前記円筒状熱交換
器および中空部を2分する特許請求の範囲第2項まだは
第3項記載の熱交換装置。 (6)気流通路入換部は、伸縮自在の平板の中央線を円
筒状熱交換器の軸と一致させ両端を1800ひねった形
状である特許請求の範囲第1項か年、       記
載の熱交換装置。
[Claims] (1) First. The second elements are alternately stacked to form a hollow cylinder; The partition wall existing between the second elements is non-moisture permeable, at least a part of the material constituting the element is hygroscopic, one element is a primary airflow passage, and the other element is a secondary airflow passage; By rotating the cylindrical heat exchanger, the passages for the flame flow and the secondary air flow are periodically exchanged, and an air flow passage exchange part is provided at at least one end of the hollow part of the cylindrical heat exchanger. Device. (2) The first element has an air flow passage hole in the cylindrical axial direction, and the second element has a plurality of openings in the hollow part, and air flows from one opening to the other opening. The heat exchange device according to claim 1, which allows the passage of the heat exchanger. (3) The first element communicates from one end of the cylindrical heat exchanger to the hollow part via an axial passage, and the second element communicates from the other end of the cylindrical heat exchanger with (4) the cylindrical heat exchanger. The heat exchange device according to claim 2 or 3, wherein a separator is interposed in the diametrical direction of the vessel to divide the cylindrical heat exchanger and the hollow portion into two. (6) The air flow passage exchange part has a shape in which the center line of a stretchable flat plate is aligned with the axis of the cylindrical heat exchanger and both ends are twisted by 1800°. Device.
JP57194120A 1982-11-04 1982-11-04 Heat exchanger Granted JPS5984092A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57194120A JPS5984092A (en) 1982-11-04 1982-11-04 Heat exchanger
PCT/JP1983/000392 WO1984001817A1 (en) 1982-11-04 1983-11-02 Heat exchanger
DE8383903413T DE3371247D1 (en) 1982-11-04 1983-11-02 Heat exchanger
EP83903413A EP0127683B1 (en) 1982-11-04 1983-11-02 Heat exchanger
US06/629,844 US4574872A (en) 1982-11-04 1983-11-02 Heat exchanger apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194120A JPS5984092A (en) 1982-11-04 1982-11-04 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS5984092A true JPS5984092A (en) 1984-05-15
JPH0366594B2 JPH0366594B2 (en) 1991-10-17

Family

ID=16319244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194120A Granted JPS5984092A (en) 1982-11-04 1982-11-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5984092A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949238A (en) * 1972-09-14 1974-05-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949238A (en) * 1972-09-14 1974-05-13

Also Published As

Publication number Publication date
JPH0366594B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US4574872A (en) Heat exchanger apparatus
JPS6080044A (en) Ventilating device
JP3433805B2 (en) Heat exchanger for regenerator with one or more adjustable performance characteristics
JPS6131889A (en) Heat exchanging device
JPS5984092A (en) Heat exchanger
JP5241693B2 (en) Desiccant system
JPS5984091A (en) Heat exchanger
JPS6131888A (en) Heat exchanging device
JPS59208339A (en) Ventilator
JPH0333998B2 (en)
JP3788236B2 (en) Rotor structure and humidity control apparatus including the same
JPS59112193A (en) Heat exchanger
JPH02187542A (en) Dehumidifier and humidifier, and airconditioner equipped therewith
JPS6042876B2 (en) Composite heat exchange equipment
JPS59112194A (en) Heat exchanger
JPH0366598B2 (en)
JPH0366595B2 (en)
JPH0760072B2 (en) Counterflow heat exchanger
JPS61186750A (en) Heat exchanging ventilation fan
JPH0434075B2 (en)
JPS6080084A (en) Heat exchanger
JPH0331975B2 (en)
JPS6324228B2 (en)
JPS6268520A (en) Dry dehumidifier
JPS59161694A (en) Heat exchanger