JPH0331975B2 - - Google Patents

Info

Publication number
JPH0331975B2
JPH0331975B2 JP56128952A JP12895281A JPH0331975B2 JP H0331975 B2 JPH0331975 B2 JP H0331975B2 JP 56128952 A JP56128952 A JP 56128952A JP 12895281 A JP12895281 A JP 12895281A JP H0331975 B2 JPH0331975 B2 JP H0331975B2
Authority
JP
Japan
Prior art keywords
heat exchanger
air
partition plate
heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56128952A
Other languages
Japanese (ja)
Other versions
JPS5831288A (en
Inventor
Nobuyuki Yano
Akira Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12895281A priority Critical patent/JPS5831288A/en
Publication of JPS5831288A publication Critical patent/JPS5831288A/en
Publication of JPH0331975B2 publication Critical patent/JPH0331975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Description

【発明の詳細な説明】 本発明は屋外空気の吸気と室内空気の排気など
吸排同時に行なう換気装置などに用いる熱交換器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger used in a ventilation system that simultaneously takes in outdoor air and exhausts indoor air.

その目的は蓄熱・蓄湿性のあるエレメントをも
つた顕熱交換器を使つて、吸排気を周期的に交換
(その通路において周期的に吸気と排気を交互に
通過)させて熱交換換気することにより、より高
効率の全熱交換機能をもち、かつ、多機能を有す
熱交換器を提出することにある。
The purpose is to periodically exchange intake and exhaust air (intake and exhaust air alternately pass through the passage) using a sensible heat exchanger that has elements that can store heat and moisture, thereby providing heat exchange ventilation. The purpose of the present invention is to provide a heat exchanger that has a more efficient total heat exchange function and has multiple functions.

従来、空調換気扇に用いられている熱交換器と
して透過式全熱交換器がある。このエレメントの
仕切板には、紙のように透湿性と熱透過性をもつ
たものが使用されており、仕切板によつて仕切ら
れた各層間を吸気流と排気流が交互に一定方向に
通過することにより、仕切板を通して全熱交換を
行なう方式で、一般に全熱交換効率は55〜60%と
低い。一方、これらの仕切板は通気性をもつてい
るので、通常15%前後の空気のもれは避けられな
く、有効換気量を下げる原因ともなつている(も
つとも、このことはみかけの全熱交換効率を上げ
る結果にもなつているのだが)。また、エレメン
トの各層の中を流れる気流の方向が変化しないの
で、エレメントの気流入口部分には、ほこりが蓄
積しやすく、フイルターが必要のみならず、熱交
換器入口部の清掃メインテナンス項目として定期
的に必要である。
Conventionally, there is a transmission type total heat exchanger as a heat exchanger used in air conditioning ventilation fans. The partition plates of this element are made of a paper-like material with moisture permeability and heat permeability, and intake and exhaust air flows alternately in a fixed direction between each layer separated by the partition plates. This method performs total heat exchange through a partition plate, and the total heat exchange efficiency is generally low at 55 to 60%. On the other hand, since these partition plates are breathable, air leakage of around 15% is unavoidable, which is a cause of lowering the effective ventilation rate (although this is due to the apparent total heat exchange (This also results in increased efficiency.) In addition, since the direction of airflow flowing through each layer of the element does not change, dust tends to accumulate at the air inlet of the element, which not only requires a filter, but also requires periodic cleaning of the heat exchanger inlet as a maintenance item. is necessary.

また、この種熱交換器のエレメントは目づまり
を起し易く、このことがエレメントの寿命を短く
する主因ともなつている。また、この種空調換気
扇の機能は全熱交換換気のみであるので、換気扇
の設置に有効な場所でも、稼働に有効な時期も限
定されているのが現状である。
Furthermore, the elements of this type of heat exchanger are prone to clogging, which is a major cause of shortening the life of the elements. Furthermore, since the function of this type of air conditioning ventilation fan is only total heat exchange ventilation, the current situation is that even where it is effective to install the ventilation fan, there are limits to when it is effective for operation.

本発明は上記従来の静止透過式全熱交換器の空
調換気扇の欠点を解消するものである。
The present invention eliminates the drawbacks of the conventional static permeation type total heat exchanger air conditioning ventilation fan.

以下にその一実施例を図面にもとずいて説明す
る。第1図は実施例の全熱交換器の構成を示す一
部外観図である。この外形は従来のものと全く同
一である。図中1は仕切板、2は間隔板である。
第2図は仕切板1の断面図である。これはアルミ
板3の表面に吸湿性物質として、酸化アルミニウ
ムの層4および4′をつけたものである。この仕
切板1は蓄熱・蓄湿・熱透過性はもつているが、
透湿性はもつていない。間隔板2は仕切板1と同
一の材質のものを使用している。
An embodiment thereof will be described below based on the drawings. FIG. 1 is a partial external view showing the configuration of a total heat exchanger according to an embodiment. This external shape is exactly the same as the conventional one. In the figure, 1 is a partition plate, and 2 is a spacing plate.
FIG. 2 is a sectional view of the partition plate 1. This is made by applying layers 4 and 4' of aluminum oxide as a hygroscopic material to the surface of an aluminum plate 3. Although this partition plate 1 has heat storage, moisture storage, and heat permeability,
It has no moisture permeability. The spacing plate 2 is made of the same material as the partition plate 1.

まず、第2図において、吸排気の流れと熱交換
について考える。この構成の特徴は仕切板1が非
透湿性であり、また第2図では仕切板1の4側へ
室外からの空気(一次気流)を、4′側へ室内か
らの空気(二次気流)を流しているが、この空気
を周期的に交換することである。なお、第2図で
は仕切板1の両側において空気を入れ換えるとそ
の流れる方向が逆転するが、この方向は必ずしも
逆転する必要はなく、たとえば第2図の4側にお
ける気流の方向は4′側の気流と入れ換えた後も
変らないようにしてもよい。
First, in FIG. 2, consider the flow of intake and exhaust air and heat exchange. The feature of this configuration is that the partition plate 1 is non-permeable to moisture, and in Fig. 2, air from the outdoors (primary airflow) flows to the 4 side of the partition plate 1, and air from the room (secondary airflow) flows to the 4' side of the partition plate 1. This air is exchanged periodically. In addition, in FIG. 2, when air is exchanged on both sides of the partition plate 1, the direction of air flow is reversed, but this direction does not necessarily have to be reversed. For example, the direction of air flow on the 4 side in FIG. It may be arranged so that it does not change even after replacing it with the airflow.

いま高温高湿の夏の室外雰囲気33℃60%、冷房
中の室内雰囲気を26℃50%に設定した場合、第2
図の矢印方向の風の流れの場合には、室外側から
室内へ入る高温高湿の空気流に接触することによ
り、仕切板1の上面は高温になる。また、吸湿材
4に外気流中の湿分が吸着するので、吸着熱や凝
縮熱が発生し、仕切板1の上面部の温度をさらに
上昇させる。
If the outdoor atmosphere in the hot and humid summer is set to 33℃ 60%, and the indoor atmosphere during cooling is set to 26℃ 50%, the second
When the wind flows in the direction of the arrow in the figure, the upper surface of the partition plate 1 becomes hot due to contact with the high-temperature, high-humidity airflow entering the room from the outside. Further, since moisture in the outside air flow is adsorbed by the moisture absorbing material 4, heat of adsorption and heat of condensation are generated, further increasing the temperature of the upper surface of the partition plate 1.

一方、仕切板下面部は低温低湿の室内からの空
気流との接触によつて冷やされるのみならず、前
サイクル中の外気通過時に4′に吸着した水分の
脱着のため、吸熱反応がおこるので、さらに冷や
される。これら一連の現象により、吸湿性をもた
せぬ仕切板の場合よりも、仕切板1の上下の温度
差が大きくなるため、単なる顕熱交換器よりも仕
切板1を通しての顕熱移行量が多くなる。
On the other hand, the lower surface of the partition plate is not only cooled by contact with the air flow from the low-temperature, low-humidity room, but also an endothermic reaction occurs due to the desorption of moisture adsorbed to 4' during the previous cycle when the outside air passed through. , further cooled. Due to this series of phenomena, the temperature difference between the top and bottom of the partition plate 1 becomes larger than in the case of a partition plate that does not have hygroscopic properties, so the amount of sensible heat transferred through the partition plate 1 is larger than that of a simple sensible heat exchanger. .

さらに、この方式の利点は室外側から持ち込ま
れた顕熱と仕切板1の室外側表面で発生する吸着
熱を、仕切板1を通して室内からの排気中に移
し、再び室外側へ排出さす以外に、仕切板1に蓄
熱させ次のサイクル時に、室内からの排気中に放
熱させ、室外へ排出さす機構も加わるので、従来
の透過式に比べ、室外から室内への顕熱移行が減
少し、顕熱交換効率が増大することにある。
Furthermore, the advantage of this method is that the sensible heat brought in from the outdoor side and the adsorption heat generated on the outdoor surface of the partition plate 1 are transferred to the exhaust air from the room through the partition plate 1, and then discharged to the outdoor side again. , a mechanism is added that stores heat in the partition plate 1 and radiates it into the exhaust air from the room during the next cycle and discharges it outdoors, so compared to the conventional transmission type, the transfer of sensible heat from the outdoors to the room is reduced. The purpose is to increase heat exchange efficiency.

なお、潜熱移行は従来は仕切板1中の透湿によ
つて行なつたが、今回の方式では蓄湿・脱湿方式
で行なう点が異なるが、測定結果ではこの両方式
による大きな差は得られない。
Note that latent heat transfer was conventionally performed by moisture permeation in the partition plate 1, but the difference is that this method uses a moisture storage/dehumidification method, but the measurement results show that there is no significant difference between the two methods. I can't.

第3図は、この方式の熱交換効率の測定法を示
したもので、第4図は得られた結果である。図中
5は熱交換器で、大きさは150×250、6,6′は
プロペラ式のフアン、7は側壁である。フアンは
正逆回転方向を変えられるようにしてある。風量
はどちらの方向でも2.5m3/mmになるようにセツ
トしている。フアン6,6′の回転方向を逆転さ
せた場合、切換スイツチを入れてから4秒後には
2600回転の定常値になることが測定結果から確か
められている。イ、ロ、ハ、ニの位置に温度セン
サーと湿度センサーをセツトし、その変化を記録
計に書かせるようにした。使用している湿度計は
タンタルの静電容量の変化を利用したもので、応
答性ははやく、数秒後に平衡値の95%まで達する
ものである。
FIG. 3 shows a method for measuring heat exchange efficiency using this method, and FIG. 4 shows the results obtained. In the figure, 5 is a heat exchanger with a size of 150 x 250, 6 and 6' are propeller type fans, and 7 is a side wall. The fan can be rotated in forward or reverse directions. The air volume is set to 2.5m 3 /mm in either direction. When the direction of rotation of fans 6 and 6' is reversed, 4 seconds after turning on the changeover switch,
It has been confirmed from the measurement results that the steady value is reached at 2600 rotations. Temperature and humidity sensors were set at positions A, B, C, and D, and the changes were recorded on the recorder. The hygrometer used makes use of changes in the capacitance of tantalum, and is quick to respond, reaching 95% of the equilibrium value within a few seconds.

このようなテスト装置を前記の室外側と室内側
の温湿度条件にセツトした2つの恒温恒湿の部屋
間にセツトして、30秒サイクルで風の流れの方向
を周期的に逆転した場合(すなわち、室内からの
空気の流れる通路と室外からの空気の流れる通路
が入れ変わる)の全熱交換効率の変化は第4図の
Aのようであつた。図中A′はこれを30秒間の平
均値としてならしたものである。Bは従来の全熱
交換器で仕切板に防燃紙、間隔板にクラフト紙を
使つたもので、大きさ形状とも新方式のものと同
一のものをこのテスト装置にセツトして、風の流
れを逆転させない従来の方式の場合の全熱交換効
率の測定結果である。この結果から分かるよう
に、今回のいわゆる蓄熱透過式と名ずけてもよい
方式のものは、従来の透過式全熱交換器に比べ、
全熱交換効率が格段に向上している。なお図中横
軸はフアン回転方向切換時からの経過時間を示
す。
When such a test device was set between two constant temperature and humidity rooms set to the above-mentioned temperature and humidity conditions on the outside and inside, and the direction of the air flow was periodically reversed in a 30-second cycle ( In other words, the change in the total heat exchange efficiency was as shown in A in FIG. 4 (the passage through which air flows from indoors and the passage through which air flows from outside change places). In the figure, A' is the average value for 30 seconds. B is a conventional total heat exchanger that uses flame retardant paper for the partition plates and kraft paper for the spacer plates.A device that is the same size and shape as the new system was installed in this test equipment, and These are the results of measuring the total heat exchange efficiency in the case of a conventional system that does not reverse the flow. As can be seen from these results, the current so-called heat storage transmission type, which can be called a heat storage transmission type, has a lower temperature than the conventional transmission type total heat exchanger.
Total heat exchange efficiency has been significantly improved. Note that the horizontal axis in the figure indicates the elapsed time from the time of switching the fan rotation direction.

第5図イ,ロはこの方式を利用して製作した空
調換気扇の実施例の模式図であり、第6図はその
外観図である。図中12は熱交換器、8,8′は
フアンで実際は1モータ・2フアン形式をとつて
いるシロツコフアンである。9は前面パネルであ
るルーパーである。10,10′はシヤツターで
あり、運転休止中は閉じられている。ここではフ
アン8,8′の回転方向は常に一定方向である。
熱交換器12内部を通る気流の周期的な交換は熱
交換器12を第5図中の矢印11のように30秒間
に1回、約1秒間で周期的に90゜スウイングさす
方法で行なつている。第5図イとロの相違点は熱
交換器を90゜回転させている点である。各々の状
態における熱交換器内の空気の種類と流れの方向
を第6図イ,ロに示す。
Figures 5A and 5B are schematic diagrams of an embodiment of an air conditioning ventilation fan manufactured using this method, and Figure 6 is an external view thereof. In the figure, 12 is a heat exchanger, and 8 and 8' are fans, which are actually Sirotskov fans of the 1-motor, 2-fan type. 9 is a looper which is a front panel. Shutters 10 and 10' are closed when the vehicle is not in operation. Here, the rotation direction of the fans 8, 8' is always constant.
The periodic exchange of airflow inside the heat exchanger 12 is performed by periodically swinging the heat exchanger 12 through 90 degrees for about 1 second, once every 30 seconds, as shown by arrow 11 in Figure 5. ing. The difference between Figure 5 A and B is that the heat exchanger is rotated 90 degrees. The type of air and the direction of flow in the heat exchanger in each state are shown in Figure 6 A and B.

このような方式の空調換気扇では、熱交換器1
2をスウイングさせないで固定して運転すれば、
熱交換器12の内部を通過する風の流れの方向が
常に一定方向となるので、仕切板を通しての顕熱
交換機構のみが生かされるので、顕熱交換換気が
行なえ、従来の空調換気扇では運転が不可能であ
つた湿気が多い場所、つまり、地下室やトイレ、
浴室、台所などの顕熱交換換気が可能となり、利
用可能範囲や時期を拡大できるという利点をもつ
ている。
In this type of air conditioning ventilation fan, the heat exchanger 1
If you drive with 2 fixed without swinging,
Since the flow direction of the air passing through the heat exchanger 12 is always constant, only the sensible heat exchange mechanism through the partition plate is utilized, so sensible heat exchange ventilation can be performed, and conventional air conditioning ventilation fans cannot be operated. In damp places where it is not possible, i.e. basements, toilets, etc.
Sensible heat exchange ventilation becomes possible in bathrooms, kitchens, etc., and has the advantage of expanding the range and timing of use.

また、潜熱交換は仕切板を通しては行なわれな
いが、エレメントの蓄湿、放湿を通して行なわれ
る、また顕熱交換は仕切板を通して行なわれるの
みならず、エレメントの蓄熱・放熱を通して行な
われるものも加わるので、熱交換効率を透過式の
ものに比べて、相当高くすることが可能である。
また、仕切板には通気性がないため、仕切板を通
しての空気のもれもなくなる。
In addition, latent heat exchange is not performed through the partition plates, but is performed through moisture storage and release from the elements, and sensible heat exchange is not only performed through the partition plates, but also occurs through heat storage and heat release from the elements. Therefore, it is possible to significantly increase the heat exchange efficiency compared to the transmission type.
Furthermore, since the partition plate has no air permeability, air leakage through the partition plate is also eliminated.

さらに、風の流れの方向が周期的に逆転する部
分のエレメント入口部へはほこりがたまることが
なく、フイルターが不要になるのみか、エレメン
トの掃除というメンテナンスも不要となる。ま
た、透過式のようにエレメントの表面に目ずまり
が起り、エレメントの寿命が短かくなるというこ
ともなくなる。
Furthermore, dust does not accumulate at the element inlet where the direction of air flow is periodically reversed, eliminating the need for a filter or maintenance such as cleaning the element. In addition, unlike the transmission type, clogging occurs on the surface of the element and shortens the life of the element.

なお、上記実施例においては熱交換部をスウイ
ングさせているが、熱交換器は固定してダンパー
操作などにより風向を変えてもよい。また熱交換
器は仕切板と間隔板を積層する構造を示したが仕
切板として金属板等を用いたときは間隔板を用い
なくとも風路を確保できる。
In the above embodiment, the heat exchange section is made to swing, but the heat exchanger may be fixed and the wind direction may be changed by operating a damper or the like. Further, although the heat exchanger has a structure in which partition plates and spacing plates are laminated, when a metal plate or the like is used as the partition plate, the air passage can be secured without using the spacing plates.

以上のように本発明の熱交換器では、熱交換効
率が従来のものより格段に高く、また顕熱交換換
気が行なえ、さらに熱交換器のメンテナンスも不
要、フイルターも不要であり、寿命も極めて長く
できる。
As described above, the heat exchanger of the present invention has a much higher heat exchange efficiency than conventional ones, can perform sensible heat exchange ventilation, does not require maintenance of the heat exchanger, does not require a filter, and has an extremely long lifespan. You can make it longer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱交換器の一部外
観図、第2図は同熱交換器の構成要素である仕切
板の構成図、第3図は全熱交換効率を測定するた
めの装置の概念図、第4図は本発明の一実施例の
熱交換器の特性図、第5図イ及びロは同熱交換器
を用いた空調換気扇の構成図、第6図イ及びロは
同熱交換器における空気の流れ図、第7図は第5
図に示す空調換気扇の斜視図である。 1……仕切板、2……間隔板、3……アルミ
板、4,4′……酸化アルミニウム層、5……熱
交換器、6,6′,8,8′……フアン、7……側
壁、9……前面パネル、10,10′……シヤツ
タ、12……熱交換器。
Figure 1 is a partial external view of a heat exchanger according to an embodiment of the present invention, Figure 2 is a configuration diagram of a partition plate that is a component of the heat exchanger, and Figure 3 is a diagram showing the measurement of total heat exchange efficiency. FIG. 4 is a characteristic diagram of a heat exchanger according to an embodiment of the present invention, FIG. B is the flow diagram of air in the same heat exchanger, and Figure 7 is the flow diagram of air in the same heat exchanger.
FIG. 2 is a perspective view of the air conditioning ventilation fan shown in the figure. DESCRIPTION OF SYMBOLS 1... Partition plate, 2... Spacing plate, 3... Aluminum plate, 4, 4'... Aluminum oxide layer, 5... Heat exchanger, 6, 6', 8, 8'... Fan, 7... ...Side wall, 9...Front panel, 10, 10'...Shutter, 12...Heat exchanger.

Claims (1)

【特許請求の範囲】 1 所定間隔を置いて複数層に重ね合わせた仕切
板と、前記仕切板相互間に形成される風路に一次
気流と二次気流を交互に通過させる手段と、前記
一次気流と二次気流を互いに周期的に交換する手
段を具備し、前記仕切板は伝熱性、非透湿性、蓄
湿性および蓄熱性を有するものであることを特徴
とする熱交換器。 2 仕切板の間に間隔板を設け、前記間隔板に蓄
熱性と蓄湿性を持たせたことを特徴とする特許請
求の範囲第1項記載の熱交換器。
[Scope of Claims] 1. A plurality of partition plates stacked at predetermined intervals, a means for alternately passing a primary airflow and a secondary airflow through an air passage formed between the partition plates, and 1. A heat exchanger comprising means for periodically exchanging an air flow and a secondary air flow with each other, and wherein the partition plate has heat conductivity, moisture impermeability, moisture storage ability, and heat storage ability. 2. The heat exchanger according to claim 1, wherein a spacer plate is provided between the partition plates, and the spacer plate has heat storage properties and moisture storage properties.
JP12895281A 1981-08-18 1981-08-18 Heat exchanger Granted JPS5831288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895281A JPS5831288A (en) 1981-08-18 1981-08-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895281A JPS5831288A (en) 1981-08-18 1981-08-18 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS5831288A JPS5831288A (en) 1983-02-23
JPH0331975B2 true JPH0331975B2 (en) 1991-05-09

Family

ID=14997462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895281A Granted JPS5831288A (en) 1981-08-18 1981-08-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5831288A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896988A (en) * 1981-12-07 1983-06-09 Matsushita Electric Ind Co Ltd Heat exchange method
JPH0412374Y2 (en) * 1985-06-04 1992-03-25
JP5058062B2 (en) * 2008-04-30 2012-10-24 三菱電機株式会社 Humidifier
US8858690B2 (en) * 2011-08-24 2014-10-14 Corning Incorporated Thermally integrated adsorption-desorption systems and methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354461U (en) * 1976-10-13 1978-05-10

Also Published As

Publication number Publication date
JPS5831288A (en) 1983-02-23

Similar Documents

Publication Publication Date Title
US4582129A (en) Heat exchanging system
JP5220102B2 (en) Heat exchange ventilator
US9062890B2 (en) Energy recovery ventilator
Bai et al. A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions
JP4341373B2 (en) Humidity control device
JP2015087058A (en) Total heat exchanger type ventilation fan
JPH0331975B2 (en)
JPS5896988A (en) Heat exchange method
JPH0228774B2 (en)
JPH0331976B2 (en)
JPH0333998B2 (en)
JPS59208339A (en) Ventilator
Shurcliff Air-to-air heat-exchangers for houses
JPS5855637A (en) Air conditioner
JPH06101930A (en) Air cooler using moisture absorbent
JP2020070965A (en) Heat exchange type ventilating device
JPS6324228B2 (en)
CN211400140U (en) Window type multifunctional air conditioning center
JPS6114438B2 (en)
JPS58179743A (en) Air-conditioning ventilating fan
Ouazia et al. Evaluation Study of the Performance of Dual Core Energy Recovery System for Dwellings in the Arctic
JPS6324227B2 (en)
JPS58179746A (en) Air-conditioning ventilating fan
JPS5899627A (en) Ventilation fan
JPS6342169B2 (en)