JPH0331976B2 - - Google Patents

Info

Publication number
JPH0331976B2
JPH0331976B2 JP56128953A JP12895381A JPH0331976B2 JP H0331976 B2 JPH0331976 B2 JP H0331976B2 JP 56128953 A JP56128953 A JP 56128953A JP 12895381 A JP12895381 A JP 12895381A JP H0331976 B2 JPH0331976 B2 JP H0331976B2
Authority
JP
Japan
Prior art keywords
airflow
total heat
partition plate
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56128953A
Other languages
Japanese (ja)
Other versions
JPS5831239A (en
Inventor
Nobuyuki Yano
Akira Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12895381A priority Critical patent/JPS5831239A/en
Publication of JPS5831239A publication Critical patent/JPS5831239A/en
Publication of JPH0331976B2 publication Critical patent/JPH0331976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1044Rotary wheel performing other movements, e.g. sliding

Description

【発明の詳細な説明】 産業上の利用分野 本発明は屋外空気の吸気と屋内空気の排気な
ど、吸排同時に行なう全熱交換換気装置に関する
ものであり、その目的は蓄湿蓄熱性を有するエレ
メントをもつた透過式全熱交換器を使つて、吸排
気を周期的に交換(すなわち、その通路において
周期的に吸気と排気を交互に通過)させて全熱交
換換気することにより、より高効率の全熱交換能
力をもち、かつメインテナンスフリーなどの特徴
をもつたより便利な全熱交換空調装置を提供する
ことにある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a total heat exchange ventilation system that simultaneously takes in and exhausts outdoor air and exhausts indoor air. By using a permeation type total heat exchanger and exchanging intake and exhaust air periodically (that is, passing the intake air and exhaust air alternately in the passage) and performing total heat exchange ventilation, higher efficiency can be achieved. It is an object of the present invention to provide a more convenient total heat exchange air conditioner that has a total heat exchange capability and is maintenance-free.

従来、空調換気扇に用いられている全熱交換器
に透過式全熱交換器がある。これは、エレメント
の仕切板として紙のような透湿性と熱透過性をも
つたものを使用し、仕切板によつて仕切られた各
層間を交互に吸気流と排気流が同時にそれぞれ一
定方向に通過することにより、仕切板を通して全
熱交換を行なうものであり、一般に全熱交換効率
は55〜60%と低い、また、仕切板間の各層の中を
流れる気流の方向が変化しないので、熱交換器の
気流入口部分には、ほこりが蓄積しやすく、フイ
ルタが必要のみならず熱交換器入口部の清掃が定
期的なメインテナンス項目として必要である。ま
た、この種の熱交換器のエレメントは目づまりを
起し易く、このことが熱交換効率の低下や熱交換
器の寿命を短くする主因ともなつている。
Conventionally, there is a transmission type total heat exchanger as a total heat exchanger used in air conditioning ventilation fans. This uses paper-like material with moisture permeability and heat permeability as the partition plate of the element, and the intake air flow and exhaust air flow are simultaneously directed in the same direction alternately between each layer partitioned by the partition plate. The total heat exchange efficiency is generally as low as 55 to 60%, and the direction of the airflow in each layer between the partition plates does not change, so the heat is transferred through the partition plates. Dust tends to accumulate at the air inlet of the exchanger, and not only a filter is required, but also cleaning of the heat exchanger inlet is a regular maintenance item. Furthermore, the elements of this type of heat exchanger tend to become clogged, which is a main cause of lowering the heat exchange efficiency and shortening the life of the heat exchanger.

本発明は上記従来の静止透過式全熱交換器を使
用して、仕切板の各層間を一定方向に吸気と排気
流を流しながら全熱交換換気を行なう空調装置の
上記欠点を解消するものである。
The present invention solves the above-mentioned drawbacks of an air conditioner that uses the above-mentioned conventional static permeation total heat exchanger to perform total heat exchange ventilation by flowing intake and exhaust air in a fixed direction between each layer of a partition plate. be.

以下本発明の詳細について、実施例を示す図面
にもとづき説明する。第1図は本発明の一実施例
の全熱交換器の一部外観図で、図において1は仕
切板、2は間隔板である。仕切板1には防燃紙、
間隔板2は波形に成形されたクラフト紙を使用し
ている。このクラフト紙は蓄湿性および蓄熱性を
有している。第2図は仕切板1の断面を示したも
のである。この仕切板1は熱透過性と透湿性、蓄
熱性と蓄湿性をもつている。第2図において、吸
排気の流れと熱交換について考える。この構成の
特徴は仕切板1の両側において室内側からの空気
と室外側から空気を周期的に入れ換えることであ
る。
The details of the present invention will be explained below based on the drawings showing embodiments. FIG. 1 is a partial external view of a total heat exchanger according to an embodiment of the present invention, in which 1 is a partition plate and 2 is a spacer plate. Partition plate 1 has fireproof paper,
The spacer plate 2 is made of corrugated kraft paper. This kraft paper has moisture and heat storage properties. FIG. 2 shows a cross section of the partition plate 1. As shown in FIG. This partition plate 1 has heat permeability, moisture permeability, heat storage ability, and moisture storage ability. In Figure 2, consider the flow of intake and exhaust air and heat exchange. A feature of this configuration is that air from the indoor side and air from the outdoor side are periodically exchanged on both sides of the partition plate 1.

なお、第2図では仕切板1の両側において吸排
気を入れ換えるとその流れる方向が逆転するが、
この方向は必ずしも逆転する必要はなくたとえば
第2図の3側における気流の方向は4側の気流と
入れ換えた後も変わらないようにしてもかまわな
い。いま高温高湿の夏の室外雰囲気を33℃60%、
冷房中の室内雰囲気を26℃50%に設定した場合、
第2図の矢印方向の風の流れの場合には室外側か
ら室内側へ向う顕熱と潜熱は仕切板1に蓄熱蓄湿
されるものもあれば、仕切板1中を3側から4側
に移動して室内側からの空気流にさらされている
仕切板1の4側から、室内側からの気流に乗つて
室外側へ排出されるものもある。また、仕切板1
への水分の吸着によつて生じた吸着熱や、仕切板
1からの水分の脱着によつて生じた脱着熱(この
場合は吸熱反応のため負)の一部も同様に蓄熱、
または、仕切板1中を3→4方向に向つて移行す
る。サイクルが切換わり、気流の方向が逆転し
て、室外側の空気流と空内側の空気流が入れ替わ
ると、仕切板1の表面3近くに蓄熱、蓄湿されて
いた顕熱と潜熱は、室内側からの低温の気流にの
つて室外側へ排出される。
In addition, in Fig. 2, if the intake and exhaust are exchanged on both sides of the partition plate 1, the direction of flow is reversed.
This direction does not necessarily have to be reversed; for example, the direction of the airflow on the 3 side in FIG. 2 may remain unchanged even after being replaced with the airflow on the 4th side. The outdoor atmosphere in the summer, which is currently hot and humid, is 33℃60%.
When the indoor atmosphere during cooling is set to 26℃50%,
In the case of wind flow in the direction of the arrow in Figure 2, some of the sensible heat and latent heat flowing from the outdoor side to the indoor side are stored in the partition plate 1, while others are stored in the partition plate 1 from the 3rd side to the 4th side. Some of them are discharged from the 4 sides of the partition plate 1, which are exposed to the airflow from the indoor side, to the outdoor side by riding on the airflow from the indoor side. Also, partition plate 1
Similarly, part of the heat of adsorption generated by the adsorption of moisture from the partition plate 1 and the heat of desorption generated by the desorption of moisture from the partition plate 1 (in this case negative due to an endothermic reaction) are also stored.
Alternatively, it moves inside the partition plate 1 in the direction 3→4. When the cycle is switched and the direction of the airflow is reversed, and the airflow on the outdoor side and the airflow on the air side are swapped, the sensible heat and latent heat that had been stored near the surface 3 of the partition plate 1 are transferred to the room. It is discharged to the outside of the room along with the low-temperature airflow from the inside.

この方式の利点は、室外からの空気流と室内か
らの空気流を周期的に反転させ入れ替えることに
より、室外側から熱交換器中に持ち込まれたエン
タルピーを仕切板1を通して再び室外側へ排出さ
す以外に、仕切板1や間隔板2に蓄エンタルピー
させ、仕切板の両面において空気流を交換した時
にそれを室外側へ排出さす機構も加わるので、従
来の方式に比べ、全熱交換効率が飛躍的に増大す
ることにある。
The advantage of this method is that by periodically reversing and replacing the airflow from outside and the airflow from inside, the enthalpy brought into the heat exchanger from the outside is discharged back to the outside through the partition plate 1. In addition, a mechanism is added that stores enthalpy in the partition plate 1 and spacing plate 2 and discharges it to the outside when airflow is exchanged on both sides of the partition plate, so the total heat exchange efficiency is dramatically improved compared to conventional methods. The aim is to increase the number of people.

第3図は、この方式の熱交換効率の測定法を示
した模式図であり、第4図はその得られた結果で
ある。図中5は全熱交換器で、大きさは150×
250、6,6′はプロペラ式のフアンであり、正逆
回転方向を変えられるようにしている。全熱交換
器5を通過する風量は、どちらの方向でも2.5
m3/minになるようにセツトされている。フアン
6,6′の回転方向を逆転させた場合、切間スイ
ツチを入れてから、4秒後には2600回転の定常値
になることが測定結果から確かめられている。
イ、ロ、ハ、ニの位置に温度センサーとを湿度セ
ンサーをセツトし、その変化を記録計に書かせる
ようにした。使用している湿度計はタンタルの静
電容量の変化を利用したもので、応答正ははや
く、数秒後には平衡値の95%まで達するものであ
る。このようなテスト装置を前記室内側と室外側
の温湿度条件にそれぞれ調節された2つの隣り合
う恒温恒湿の部屋間にセツトして、30秒サイクル
で風の流れの方向を周期的に逆転した場合(すな
わち室内からの空気の流れる通路と室外からの空
気の流れる通路が入れ変わる)の全熱交換効率の
変化を求めた結果が第4図のAである。図中
A′はこれを30秒間の平均値としてならしたもの
である。Bは同一の全熱交換器5を使用して、風
の流れの方向を逆転させないで一定方向に流し続
けるいわゆる従来タイプの全熱交換方式の場合の
平衡時の効率を同装置で求めた結果である。この
結果からも明らかなように、このような蓄熱透過
方式による空調換気法では、従来の透過式全熱交
換器を使つて、風を一定方向に流し続ける空調換
気法に比べて全熱交換効率が格段に向上すること
が分かる。
FIG. 3 is a schematic diagram showing this method of measuring heat exchange efficiency, and FIG. 4 shows the results obtained. 5 in the figure is a total heat exchanger, and its size is 150×
Reference numerals 250, 6, and 6' are propeller-type fans, which allow the direction of rotation to be changed between forward and reverse directions. The air volume passing through the total heat exchanger 5 is 2.5 in either direction.
m 3 /min. It has been confirmed from measurement results that when the rotation direction of the fans 6, 6' is reversed, the constant value of 2600 rotations is reached 4 seconds after the cut-off switch is turned on.
Temperature and humidity sensors were set at positions A, B, C, and D, and the changes were recorded on the recorder. The hygrometer used uses changes in the capacitance of tantalum, and responds quickly, reaching 95% of the equilibrium value within a few seconds. Such a test device was set between two adjacent constant temperature and humidity rooms that were adjusted to the indoor and outdoor temperature and humidity conditions, respectively, and the direction of the air flow was periodically reversed in a 30-second cycle. A in FIG. 4 shows the result of determining the change in total heat exchange efficiency in the case where the airflow from the indoors and the airflow from the outdoors are switched. In the diagram
A′ is the average value for 30 seconds. B is the result of using the same total heat exchanger 5 to find the efficiency at equilibrium in the case of the so-called conventional total heat exchange method in which the air flow continues to flow in a fixed direction without reversing the flow direction. It is. As is clear from these results, the air conditioning ventilation method using such a heat storage transmission method has a higher total heat exchange efficiency than the air conditioning ventilation method that uses a conventional transmission total heat exchanger and continues to flow air in a fixed direction. It can be seen that the results are significantly improved.

なお、図中、横軸はフアン6,6′の回転方向
切換時からの経過時間を示す。第5図イ,ロはこ
の方式を利用して製作した空調換気扇の実施例の
模式図であり、第6図はその外観図である。
In the figure, the horizontal axis indicates the elapsed time from the time when the rotational direction of the fans 6, 6' was changed. Figures 5A and 5B are schematic diagrams of an embodiment of an air conditioning ventilation fan manufactured using this method, and Figure 6 is an external view thereof.

ただし、この図の場合前面パネルのルーパーは
取りはずしている。図中12は全熱交換器、8,
8′はシロツコ式のフアンで、実際は1モータ、
2フアンの構造である。9は前面パネルのルーパ
ーである。10,10′はシヤツターで運転休止
中は閉じられている。ここではフアン8,8′の
回転方向は常に一定方向で、熱交換器内部を通る
気流の周期的な交換は、全熱交換器12を90゜ス
ウイングさす方式で行なつている。全熱交換器1
2を図中の矢印11のように、30秒間に一回スウ
イングさす。スウイングに要する時間は約1秒間
である。
However, in this figure, the front panel looper has been removed. In the figure, 12 is a total heat exchanger, 8,
8' is a Sirotsko type fan, actually one motor,
It has a 2-fan structure. 9 is a looper on the front panel. 10 and 10' are shutters that are closed when the vehicle is not in operation. Here, the rotation direction of the fans 8, 8' is always constant, and the periodic exchange of airflow passing through the heat exchanger is performed by swinging the total heat exchanger 12 through 90 degrees. Total heat exchanger 1
2 swing once every 30 seconds as shown by arrow 11 in the figure. The time required for swinging is about 1 second.

なお、第5図イとロの相違点は熱交換器90゜回
転させている点である。各々の状態における熱交
換器内の空気の種類と流れの方向を第6図イ,ロ
に示す。
The difference between Figures 5A and 5B is that the heat exchanger is rotated 90 degrees. The type of air and the direction of flow in the heat exchanger in each state are shown in Figure 6 A and B.

以上のように本発明においては、顕熱交換と潜
熱交換は仕切板を通して行われるのみならず、エ
レメントの蓄熱、蓄湿と放熱、脱湿作用により行
われるものも加わるので、全熱交換効率を従来の
透過式のものに比べて、相当高くすることが可能
である。また、一次気流と二次気流の方向が周期
的に逆転する部分の全熱交換入口にはほこりが付
着蓄積していかないので、フイルタが不要になる
ばかりか、全熱交換器入口面の掃除というメンテ
ナンスも不要となる。また、従来の方式のよう
に、エレメントの表面に目づまりが起こり、エレ
メントの寿命が短くなるということも少なくな
る。
As described above, in the present invention, sensible heat exchange and latent heat exchange are not only carried out through the partition plates, but also those carried out by the heat storage, moisture storage and heat release, and dehumidification effects of the elements, so that the total heat exchange efficiency can be improved. Compared to the conventional transmission type, it can be made considerably more expensive. In addition, since dust does not adhere to and accumulate at the total heat exchanger inlet where the direction of the primary airflow and secondary airflow are periodically reversed, not only is there no need for a filter, but it is also possible to clean the total heat exchanger inlet surface. Maintenance is also unnecessary. Furthermore, unlike conventional methods, clogging on the surface of the element, which shortens the life of the element, is less likely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成要素である全
熱交換器の模式的外観図、第2図は第1図におけ
る仕切板の断面図、第3図は全熱交換効率の測定
装置の模式図、第4図は前記測定装置を使つて得
られた全熱交換効率を示す特性図、第5図イ及び
ロは本発明の一実施例の全熱交換空調装置の概念
図、第6図イ及びロは同装置における空気の流れ
図、第7図は同装置における要部斜視図である。 1……仕切板、2……間隔板、5,12……全
熱交換器、6,6′,8,8′……フアン、9……
全面パネル、10,10′……シヤツタ。
Figure 1 is a schematic external view of a total heat exchanger that is a component of an embodiment of the present invention, Figure 2 is a sectional view of the partition plate in Figure 1, and Figure 3 is a total heat exchange efficiency measuring device. FIG. 4 is a characteristic diagram showing the total heat exchange efficiency obtained using the measuring device, FIG. 6A and 6B are air flow diagrams in the same device, and FIG. 7 is a perspective view of the main part of the same device. 1... Partition plate, 2... Spacing plate, 5, 12... Total heat exchanger, 6, 6', 8, 8'... Fan, 9...
Full panel, 10, 10'...shutter.

Claims (1)

【特許請求の範囲】 1 所定間隔を置いて複数層に重ね合わせた仕切
板と、前記仕切板相互間に形成される風路に一次
気流と二次気流を交互に通過させる手段と、前記
一次気流と二次気流を互いに周期的に交換する手
段を具備し、前記仕切板は透湿性、蓄湿性および
蓄熱性を有するものであることを特徴とする全熱
交換空調装置。 2 仕切板の間に間隔板を設け、前記間隔板に蓄
熱性と蓄湿性を持たせたことを特徴とする特許請
求の範囲第1項記載の全熱交換空調装置。
[Scope of Claims] 1. A plurality of partition plates stacked at predetermined intervals, a means for alternately passing a primary airflow and a secondary airflow through an air passage formed between the partition plates, and 1. A total heat exchange air conditioner comprising means for periodically exchanging airflow and secondary airflow with each other, and wherein the partition plate has moisture permeability, moisture storage ability, and heat storage ability. 2. The total heat exchange air conditioner according to claim 1, characterized in that a spacer plate is provided between the partition plates, and the spacer plate has a heat storage property and a moisture storage property.
JP12895381A 1981-08-18 1981-08-18 Total heat-exchange air conditioner Granted JPS5831239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895381A JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895381A JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Publications (2)

Publication Number Publication Date
JPS5831239A JPS5831239A (en) 1983-02-23
JPH0331976B2 true JPH0331976B2 (en) 1991-05-09

Family

ID=14997486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895381A Granted JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Country Status (1)

Country Link
JP (1) JPS5831239A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896988A (en) * 1981-12-07 1983-06-09 Matsushita Electric Ind Co Ltd Heat exchange method
GB8506415D0 (en) * 1985-03-12 1985-04-11 Atkin H S Room ventilator
JP5058062B2 (en) * 2008-04-30 2012-10-24 三菱電機株式会社 Humidifier
CN104141997B (en) * 2013-05-08 2017-03-01 东莞市净诺环境科技股份有限公司 Pendulum core type energy-saving purification ventilator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022365U (en) * 1973-06-19 1975-03-13
JPS518530U (en) * 1974-07-05 1976-01-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022365U (en) * 1973-06-19 1975-03-13
JPS518530U (en) * 1974-07-05 1976-01-22

Also Published As

Publication number Publication date
JPS5831239A (en) 1983-02-23

Similar Documents

Publication Publication Date Title
US4582129A (en) Heat exchanging system
US11525600B2 (en) Air conditioning system and control method thereof
JP5220102B2 (en) Heat exchange ventilator
US9513065B2 (en) Energy recovery ventilation control system
JPH04227433A (en) Ventilating and heat exchanging device
JP2004257588A (en) Dehumidifying air-conditioner
US6257317B1 (en) Integrated heat recovery ventilator-hepa filter
JPH0331976B2 (en)
JP2009257651A (en) Ventilator
CN101173806B (en) Adsorbent, humidity-regulating device having the adsorbent and indoor unit of air-conditioner
JPH0331975B2 (en)
JPS5896988A (en) Heat exchange method
JPH0228774B2 (en)
JP3161636B2 (en) Air cooling device using moisture absorbent
JPS59208339A (en) Ventilator
JPH0333998B2 (en)
Shurcliff Air-to-air heat-exchangers for houses
JPS5855637A (en) Air conditioner
JPS58179743A (en) Air-conditioning ventilating fan
JPS6324228B2 (en)
JPS5829382Y2 (en) air conditioner
JPS6324227B2 (en)
JPS6342169B2 (en)
JPS5899627A (en) Ventilation fan
JPS58110989A (en) Air conditioner